文档库 最新最全的文档下载
当前位置:文档库 › 偏压连拱隧道中隔墙力学特性数值分析

偏压连拱隧道中隔墙力学特性数值分析

偏压连拱隧道中隔墙力学特性数值分析
偏压连拱隧道中隔墙力学特性数值分析

偏压连拱隧道中隔墙力学特性数值分析

摘要:中隔墙作为连拱隧道的中枢结构和重要承载构件,其受力及位移情况往往对工程成败和安全起着决定性作用。本文针对张石高速公路某偏压连拱隧道工程实例,利用数值有限元法,并结合中隔墙主筋轴力现场监测量测分析,对偏压连拱隧道中隔墙的受力特征及变形进行了研究。

关键词:偏压连拱隧道;中隔墙;模拟计算;监测

abstract: in the wall as the arch of the central structure of the tunnel and an important bearing components, the force and displacement often plays a decisive role in engineering the success and security. force and deformation of a bias for chang shi highway, arch tunnel project instance, using numerical finite element method, combined with the measurement of wall reinforcement in the axial force on-site monitoring, the arch in the tunnel wall on bias were studied.key words: bias arch tunnel; in the wall; simulation; monitoring

中图分类号: u45文献标识码:a 文章编号:2095-2104(2012)1 工程概况

张石高速公路某连拱隧道全长550 m,隧道工程地质较差,基岩为页岩,风化严重,上覆第四系粘土,含碎石、角砾,有顺层滑移伴

危岩、落石等危险,围岩属ⅲ~ⅳ级围岩,隧道进口段上部围岩为一明显斜坡,因此隧道处于偏压状态。隧道内轮廓为单心园和直中墙组成,其内半径为550cm,隧道为单坡、直线隧道,纵坡3%。隧道建筑界限为:净宽10.25m,净高5.0m。开挖界限为宽23.97m,高9.85m。

2隧道结构的计算模型

2.1 基本假设

本模型做了如下假设:

1)计算模型为弹塑性应变,围岩进入塑性后,采用d-p准则,支护体系在线弹性范围内变化;

2)岩体变形是各项同性的;

3)隧道受力、变形为平面应变问题;

4)围岩的初始应力场由自重应力构成,不考虑构造应力的影响。

2.2 本构模型

岩石单元采用弹塑性应变模型,材料进入塑性状态的准则采用drucker-prager屈服准则,其表达式为:

式中:、为d-p准则材料常数,为应力张量的第一不变量;为应力偏量的第二不变量。

式中:、为岩体的粘聚力和内摩擦角。

2.3 数值模型的建立

按照弹塑性力学理论及工程类比方法,一般选取3至5倍洞径为计算区域[3][4]。本模型选取中墙两边各50 m,下部至隧道底部以下30 m,上部选至地表。模型左右边界为水平约束,下边界为垂直约束,上边界是自由地表。采用弹塑性模型,围岩采用二维平面应变单元plane42单元进行模拟;初期支护(喷射混凝土、钢拱架)采用壳单元shell63单元起进行模拟;二次衬砌断面较大,采用plane82单元进行模拟;初期支护与围岩紧密接触,将其与围岩视为一体,而初期支护与二次衬砌采用接触单元来进行处理,两者间只传递压应力不传递摩擦力。对于管棚注浆预加固和锚杆等加固的围岩,按经验采取提高c、φ值来模拟,喷射混凝土中的钢拱架也采用提高混凝土参数的办法来模拟。偏压连拱隧道有限元网格划分,模型共有8159个单元,26432个节点。

3计算结果和分析

3.1中墙随开挖进程应力及位移变化

从数值模拟分析结果可知,中隔墙对于加强隧道围岩的稳定性、确保整座隧道支护系统的安全性至为关键。

(1) 在偏压隧道的各个施工阶段,中隔墙始终承受着巨大偏向围岩压力,顶部和底部的水平应力分量为方向相反的张应力,在这对力偶的作用下,中隔墙墙身中部向左侧鼓出,基脚右趾向上抬起。整道隔墙具有顺时针偏转的态势,为避免连拱隧道施工过程中可能的剪切错动破坏,故隧道施工过程应尽量减少隧道中隔墙承受的围

岩压力。

(2) 随着隧道的左右洞上下台阶的交替开挖,中墙承受的压力在浇筑中墙时较小,随着左右洞室的开挖而变得越来越大,偏压中墙的两端均出现了应力集中现象;中墙顶部压力达到2.85mpa,比开挖左洞下台阶时的中墙顶部压力增加了1.73mpa;中墙底部压力局部达到2.52mpa,比开挖左洞下台阶时的中墙底部压力增加了

1.02mpa。

(3) 在左右洞室的上台阶开挖时,中墙应力增加最大,而下台阶开挖时,中墙应力变化不大,左洞上、下台阶开挖时中墙应力左侧比右侧大,而当开挖右洞上、下台阶时中墙应力则转换为右侧比左侧大,中墙始终处于偏压状态。中墙顶部应力始终比其底部大,中墙顶底应力差的最大值原因是由于开挖时并非对称,中隔墙受力略偏向于左边的缘故。

(4) 在左洞开挖支护过程中,中墙左右两侧受力不对称,出现了偏压现象,左洞上台阶开挖时,中墙左上侧壁应力为1.82mpa,是右上侧壁应力(1.27mpa)的1.43倍;中墙左下侧壁应力为2.71mpa,是右下侧壁应力(0.403mpa)的6.78倍,而在下台阶开挖时,中墙相应部位应力变化幅度较小;

(5) 在右洞上台阶开挖和支护过程中,中墙左上侧壁应力为

3.961mpa,比右上侧壁应力(

4.552mpa)小0.59mpa;中墙左下侧壁应力为4.078mpa,比右下侧壁应力(4.281mpa)小0.21mpa,中墙两

侧的所受应力分布不对称,此时表现为右侧的应力比左侧大。右洞下台阶开挖时应力增加不大,但还是右侧应力比左侧大些,说明中墙受偏压作用明显。

(6) 由隧道贯通时中心断面移矢量等值线图可知,隧道开挖后,由于偏压作用,拱顶产生了一个倾斜椭圆型的位移矢量区,与无偏压的对称情况相比,其倾斜向左较为明显,同时在其拱底产生了一个半圆形的大约为1.4倍洞高的位移矢量区,偏斜方向与拱顶位移矢量区相一致。

3.2 塑性区分析

隧道全线贯通时塑性区分布。由于隧道的开挖引起的塑性屈服主要集中在拱顶、中墙顶部的v型区域和拱脚附近的岩体,且主要发生剪切屈服。拱底有一定范围的张拉屈服区;中墙底部的岩体也有相当部分发生了塑性屈服;左洞拱脚的塑性屈服区远大于右洞。总体上,偏应力作用相当明显,表现出明显的不对称性。此外,随着隧道的开挖,拱顶,中墙顶部,拱底,拱脚附近以及中墙底部的塑性区逐渐增大,当隧道全线贯通时达到了最大,开挖过程中,隧道掌子面上部的岩体也发生了较大范围的塑性屈服,因此施工过程中应加以重视。

4偏压连拱隧道中隔墙监测分析

偏压隧道采用中导洞法施工,中导洞先贯通并浇注中隔墙,然后左右洞均采用台阶法开挖,两洞掌子面保持约25m左右的位置。在

隧道监控量测中,采用了xjg-2型钢筋应力传感器量测中墙钢筋的应力,测点布置见图1所示,其中1#、4#应力计分别对应中隔墙左侧上下测点;2#、3#应力计分别对应中隔墙右侧上下测点。各钢筋测力计测得值与时间关系曲线如图2所示。

图1 钢筋测力计布设示意图

图2k21+205钢筋轴力与时间关系曲线

从图2中可以看出,断面在这一个月内中隔墙总体上左侧受压,右侧受拉,且其所受拉力均不断增加。本段时间该断面附近的施工情况为右洞掌子面超前左洞约35 m。从中墙钢筋应力时程曲线图可以看到,k21+205断面钢筋应力在右洞开挖完成后,钢筋应力都逐步增大,但相差不大,其绝对值都在1.5mpa~2.0mpa之间。隧道中隔墙量测断面靠左洞侧钢筋计测值均为负,且绝对值持续增大,靠右洞侧钢筋计测值均为正值,测值也是持续增大;当开挖左洞后,右侧上部钢筋应力略有增大,右侧下部钢筋应力则迅速减小,基本不承受应力。而左侧钢筋应力则持续增大,尤其是左侧下部钢筋应力在左洞拱顶加固期间持续增大到3.7mpa,且还没有稳定的趋势,可见由于偏压荷载的存在,左洞施工对中墙受力的影响很大,因此,在掘进中遵循短进尺、弱爆破,以减少对中隔墙的扰动。

5 结论

(1)通过对连拱隧道偏压段开挖过程的数值模拟研究表明,连拱隧道中隔墙荷载的主要影响因素为埋深、围岩性质、施工工法以及偏压状况,中隔墙为弯压构件,在不平衡推力的作用下要发生一定程度的偏转。

(2)围岩的偏压应力区主要出现在一些应力集中点处,且范围很小,支护结构的拉应力主要出现的中隔墙底部,数值较大,且拉应力方向为水平向,中隔墙基部及边墙角隅拐角应力集中显著,在结构设计时应对结构形状进一步优化,尽量减少集中应力。

(3)当偏压明显时,应在墙体结构上采取相应的措施以提高墙体的稳定性,如降低墙体高度、加大下部结构的尺寸或采取不对称结构,从而保证整个衬砌结构的稳定与安全。

参考文献

【1】刘艳青, 卢汝绥. 软岩隧道围岩压力的位移直接反演方法的研究[j].土木工程学报.2001,34(1):84-87.

【2】姜勇, 朱合华. 岩石偏压隧道动态分析及相关研究[j].地下空间.2004,24(3):312-314.

【3】张延新, 蔡美峰, 乔兰等. 高速公路隧道开挖与支护力学行为研究[j]. 岩石力学与工程学报, 2006,25(6): 1284-1289. 【4】佘健, 何川. 软弱围岩段隧道施工过程中围岩位移的三维弹塑性数值模拟[j]. 岩石力学与工程学报, 2006,25(3): 623-629.

连拱隧道施工工艺工法

连拱隧道施工工艺工法 QB/ZTYJGYGF-SD-0503-2011 第五工程有限公司刘建萍 1 前言 1.1工艺工法概况 中导洞-主洞施工方法是双连拱隧道施工的一种高效施工方法。它根据新奥法原理,采用光面爆破大断面开挖,使用锚、喷、网、钢拱架和超前导管及超前管棚等支护手段,先开挖贯通中导洞,浇筑中隔墙混凝土,然后采用上下台阶法开挖左、右主洞,最后进行全断面二次衬砌。 早期的双连拱隧道多采用三导洞法施工,对围岩扰动的次数多,施工周期长,工效慢、工期长、成本高,不利于隧道防水。通过连拱隧道工程实践采用中导洞-主洞台阶法施工,效果良好。 1.2工艺原理 1.2.1 本工法的基本理论基础是新奥法。开挖后允许围岩有一定的变形,从而释放部分地应力;通过监控量测和适时支护来控制围岩变形,使围岩不会失稳;围岩与锚喷等支护共同作用形成复合承载结构。 1.2.2中导洞-主洞法根据新奥法的基本原理,简化施工工序,在三个工作面平行施工的情况下缩短了工期。 2 工艺工法特点 2.1 采用新奥法施工,尽量减少对围岩的扰动,充分保护和利用围岩的自承载能力,提高隧道结构的整体安全度。 2.2 与三导洞法相比,减少了两个侧壁导洞,施工干扰少、临时支护量小,有

效地降低了对围岩的扰动,缩短了施工周期,降低成本,减少工程投资。 2.3中导洞首先贯通,可揭示隧道围岩情况,为左右两洞大断面开挖施工提供依据。 3 适用范围 本工法适用于双连拱山岭隧道的各种围岩情况,隧道主洞的开挖方式则根据具体的情况来选择。 正台阶二步开挖法是全断面一次开挖法的改进方法,多用于围岩能短期内处于稳定的地层中。台阶法根据台阶长度的不同,可划分为长台阶、短台阶和超短台阶三种,在Ⅲ级以下的围岩中一般采用长台阶或全断面开挖法,对于III、IV级围岩多采用短台阶开挖法,对于Ⅴ级以上的软弱围岩则常采用超短台阶开挖法,对于土质围岩及软弱围岩则采用环形开挖留核心土法或三台阶七步开挖法。 本工艺工法主要介绍中导洞-主洞法施工双连拱隧道。 4 主要引用标准 《公路隧道施工技术规范》TTJ04 《公路隧道设计规范》JTG026 《公路工程质量检验评定标准》JTJ071 5 施工方法 采用中导洞-主洞法施工,其步骤为先开挖中导坑,并做导坑临时支护直到中导洞贯通,然后由内向外浇筑中隔墙混凝土。 中隔墙施工完成后,将其顶部与临时支护之间间隙采用与设计同标号的喷射砼喷(回)填密实,待喷填砼强度满足设计要求后,即可开挖两侧主洞。 根据主洞的地质情况,首先做好洞口的防护、排水和洞身的超前预加固,然后

耗能阻尼器的减振及其在实际工程中的应用

耗能阻尼器的减振及其在实际工程中的应用 摘要:本文介绍了多种阻尼器的力学性能和其优缺点,为不同环境下选用合适的阻尼器减震装置提供方便。 关键词:耗能减震阻尼器工程应用 从动力学观点看,耗能装置的作用相当于增大结构的阻尼,从而减小结构的反应。由于其装置简单、材料经济、减振效果好、使用范围广等特点,在实际结构控制中具有广泛的应用前景。耗能减震装置的种类繁多,其常用的主要有:金属耗能阻尼器、摩擦耗能阻尼器、粘弹性阻尼器和粘滞阻尼器。 1金属耗能阻尼器 金属耗能阻尼器是利用金属不同形式的弹性滞回变形来消耗能量。由于金属在进入塑性状态后具有良好的滞回特性,并在弹塑性滞回变形过程中吸收大量能量,因而被用来制造不同类型和构造的耗能减震器。目前已开发和利用的主要有:扭转梁耗能器、弯曲梁耗能器、U行钢板耗能器、钢棒耗能器、圆环耗能器、双圆环耗能器、加劲圆环耗能器、X型和三角形耗能器等。 金属耗能阻尼器在实际工程中的应用:金属耗能阻尼器中的无粘结支撑在日本、台湾和美国都得到推广应用【1】。低屈服点钢耗能器、蜂窝状耗能器在日本多栋建筑中得到应用【2】。台湾金华休闲购物中心。本工程采用三角形加劲耗能装置,共270组。在地震(PGA=0.39)作用下,最大层间位移也未超过规范规定的0.014rad。潮汕星河大厦。大厦为地下一层,地上原设计为22层。后来在施工过程中业主要求增加3层。为了使加层后的结构满足抗震设防要求,安装了28组耗能阻尼器。装上阻尼器后,在大震作用下,结构的顶层位移和层间位移角均满足要求。2000年建成的日本新住友医院,采用低屈服点剪切板耗能器进行结构减震控制。结构在短边方向采用低屈服点剪切板耗能器,采用附加短柱的形式布置。在加入耗能器后,结构的层间位移减小30%,控制效果明显。 2摩擦阻尼器 摩擦阻尼器是应用较早和较广泛的阻尼器之一。摩擦阻尼器是一种位移相关型的阻尼器,它是利用两块固体之间相对滑动产生的摩擦力来耗散能量。其基本理论是建立在以下假设的基础上: (1)总的摩擦力不依赖于物体接触面的面积; (2)总的摩擦力与在接触面上的总的法向力成比例;

隧道工程课程设计(包含内力图和衬砌及内轮廓设计图)

目录 题目:隧道工程课程设计............................................................................................................. - 3 - 一、设计依据................................................................................................................................. - 3 - 二、设计资料................................................................................................................................. - 3 - 三、隧道方案比选说明................................................................................................................. - 3 - 1.平面位置的确定................................................................................................................... - 3 - 2.纵断面设计........................................................................................................................... - 4 - 3.横断面设计........................................................................................................................... - 4 - 四、二次衬砌结构计算................................................................................................................. - 4 - 1.基本参数............................................................................................................................... - 4 - 2.荷载确定............................................................................................................................... - 5 - 3.计算衬砌几何要素............................................................................................................... - 5 - 4.载位移—主动荷载在基本结构中引起的位移................................................................... - 7 - 5.外荷载在基本结构中产生的内力....................................................................................... - 8 - 6.主动荷载位移..................................................................................................................... - 10 - 7.载位移—单位弹性抗力及相应的摩擦力引起的位移..................................................... - 11 - 四、墙底(弹性地基梁上的刚性梁)位移............................................................................... - 14 - 五、解力法方程........................................................................................................................... - 15 - 六、计算主动荷载和被动荷载分别产生的衬砌内力............................................................... - 16 - 七、最大抗力值的求解............................................................................................................... - 17 - 八、计算衬砌总内力................................................................................................................... - 18 - 1.相对转角的校核................................................................................................................. - 19 - 2.相对水平位移的校核按下式计算..................................................................................... - 19 - 九、衬砌截面强度检算............................................................................................................... - 20 - 1.拱顶..................................................................................................................................... - 20 - 2.墙底偏心检查..................................................................................................................... - 20 - 十、内力图- 21 - (21) - 1 -

阻尼 阻尼系数 阻尼比

阻尼阻尼系数阻尼比 阻尼(英语:damping)是指任何振动系统在振动中,由于外界作用和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 概述 在物理学和工程学上,阻尼的力学模型一般是一个与振动速度大小成正比,与振动速度方向相反的力,该模型称为粘性(或粘性)阻尼模型,是工程中应用最广泛的阻尼模型。粘性阻尼模型能较好地模拟空气、水等流体对振动的阻碍作用。本条目以下也主要讨论粘性阻尼模型。然而必须指出的是,自然界中还存在很多完全不满足上述模型的阻尼机制,譬如在具有恒定摩擦系数的桌面上振动的弹簧振子,其受到的阻尼力就仅与自身重量和摩擦系数有关,而与速度无关。 除简单的力学振动阻尼外,阻尼的具体形式还包括电磁阻尼、介质阻尼、结构阻尼,等等。尽管科学界目前已经提出了许多种阻尼的数学模型,但实际系统中阻尼的物理本质仍极难确定。下面仅以力学上的粘性阻尼模型为例,作一简单的说明。 粘性阻尼可表示为以下式子: 其中F表示阻尼力,v表示振子的运动速度(矢量),c是表征阻尼大小的常数,称为阻尼系数,国际单位制单位为牛顿·秒/米。 上述关系类比于电学中定义电阻的欧姆定律。 在日常生活中阻尼的例子随处可见,一阵大风过后摇晃的树会慢慢停下,用手拨一下吉他的弦后声音会越来越小,等等。阻尼现象是自然界中最为普遍的现象之一。 理想的弹簧阻尼器振子系统如右图所示。分析其受力分别有: 弹性力(k为弹簧的劲度系数,x为振子偏离平衡位置的位移): F s= ? kx 阻尼力(c为阻尼系数,v为振子速度): 假设振子不再受到其他外力的作用,于是可利用牛顿第二定律写出系统的振动方程:

隧道力学特征及数值模拟方法

2隧道力学特征及数值模拟方法 2.1隧道开挖生成的围岩二次应力场特征 岩体在开挖前处于初始应力状态,初始应力主要是由于岩体的自重和地质构造所引起的。在岩体进行开挖后改变了岩体的初始应力状态,使岩体中的应力状态重新分布,引起岩体变形甚至破坏。在这个时间工程中,地层应力是连续变化的,特别地,洞室开挖后在未加支护的情况下,地层应力所达到的新的相对平衡称为围岩的二次应力状态。 一般来说,二次应力场是三维场。在隧道施工过程中,横向的二次应力作用使得洞周围岩的应力状态和变形状态发生了显著的变化,可将洞周围岩从周边开始逐渐向深部分为4个区域: (1)松动区由于施工扰动(例如施工爆破),区内岩体被裂隙切割,越靠近洞室周围越严重,其内聚力趋近于零,内摩擦角也有所降低,强度明显削弱,基本无承载能力,在重力的作用下,产生作用在支护上的松动压力。 (2)塑性强化区这一区域是围岩产生变形的根源。隧道开挖后破坏了地层的原状力线,在洞体四周产生了很高的应力集中,此时,该处只存在切向应力和指向隧道中心的径向不平衡力,切向应力由承载拱承担,而对于径向应力,毛洞是无法承担的,所以要释放(在有支护的情况下一部分被初期支护承担)。这就造成了洞体开挖后四周的围岩向隧道中心发生位移,周边的径向应力逐渐趋向零,而切向应力随着径向位移而增大。这一应力状态的变化导致岩体从初始的二轴(这里只考察平面应力状态)受压状态转变为单轴受压状态,使得这一区域围岩处于非常不利的受力状态,当这一应力状态超过岩体的强度极限时,洞室周围出现了塑性区域或者破坏区域,产生塑性变形。如果洞室周围塑性区域扩展不大,随着径向位移的出现,地层塑性区域达到稳定的平衡状态,围岩没有达到承载能力的极限值;但是如果塑性区域继续扩展,则必须采取支护措施约束地层运动,才能保持洞室围岩处于稳定状态,这时为了阻止地层运动,就显出塑性变形压力。

阻尼器,一手资源,网上很难找到

6.1 测试抽样个数 《行业标准》对出厂检验7.2 中C)中的出厂力学性能检测抽样规定“每批应按不低于20%的要求进行抽检,且每批不应少于3件”,要求合格率100%。这类产品检验,在美国ASSHTO等规范中均要求每个出厂的阻尼器都要作严格的静、动力两方面检验。这是因为,阻尼器的生产工艺和数据调整十分复杂困难,很容易控制不好。不能保证各项指标的产品就不能保证它的正常工作。也更是使用了阻尼器的结构在未来地震中不因阻尼器的失效而导致破坏的起码保证。 6.2 地震循环测试 行业标准中6.2.4.2阻尼器耐久测试中的疲劳性能试验方法提出:当以地震荷载控制为主时,施加1HZ的正弦力,选择加载60个循环。我们不得不非常遗憾地说,作为一个行业标准最重要的部分,阻尼器的测试部分,编制者和审查者自己似乎并没有完整的做过一遍,也没有仔细地推敲过别人试验的情况和结果。阻尼器的动力和疲劳测试主要有两种:一种为地震荷载的测试,也就是大地震荷载下的低周疲劳测试。另一种是最大风荷载下的高周疲劳测试。 实际阻尼器在大部分地震下达到最大振幅的情况都不到一个循环[13]。保守地说,如果有3-5次这种满负荷的循环试验,阻尼器在地震中的表现应该是可以保证的。因此,这种达到最大受力荷载的动力测试在一定周期下的循环次数并不需太多。美国土木工程协会HIETC中最多做过10次这样的循环,美国ASCE-7-05规范中要求作5次。再多,对于普通抗震用阻尼器没有必要。现在世界上生产的这种抗震阻尼器循环的次数多了,也会因阻尼器过热而受不了破坏。美国Enidine公司就在HITEC的10周循环试验中破坏了。破产的法国Jarret 阻尼器在三个动力循环后阻尼力就急速衰减达不到要求。据我们所知,目前世界上要想让阻尼器达到60次以上的产品只有美国泰勒公司设计生产的无摩擦金属密封阻尼器。它是一种阻尼器内部热量高度平衡的装置,价格昂贵[12]。 忽略了这一点就会产生错误。我国2001年“建筑设计规范”中对阻尼器的测试要求“阻尼器在最大设计允许位移情况下往复循环60圈后消能器性能衰减量不应小于10%”。这里没有说明循环振动的周期,是其含糊不清之处。新规范也应一并考虑。 美国ASCE-7-05抗震规范中对于该项最大地震荷载下的循环测试要求测试的频率按结构第一周期的倒数,循环次数取为5次。 6.3 风荷载循环试验 同是《行业标准》6.2.4.2阻尼器耐久测试中当以风振控制为主时的疲劳性能试验方法提出:输入位移风荷载疲劳循环测试,每次200次,累计10000次。该项试验主要是检验阻尼器 在连续循环试验中的散热能力和抗疲劳性能。间断多了就失去试验的目的。 6.4 频率相关测试 为了检测阻尼器在不同频率荷载的作用下的工作能力。阻尼器要作不同频率下的最大阻尼力的动力试验。《行业标准》6.2.4.3 中规定加载频率分别为0.1Hz ~ 2.5 Hz 中6个选项。这是没有反映结构自身的动力特性。我们知道,结构无论在风振和地震中主要的振动周期应该是结构的基本周期T1 。阻尼器的振动也主要按基本周期振动。国际规范中频率测试范围取在1/T1 ~ 2.5/T1,当然就科学多了。 况且,像《行业标准》的取值办法就很可能进入无法试验甚至无法生产的区域。如:云南昆明某重要建筑工程,设计的阻尼器是1500kN,±400mm,这样的参数,对一个大型隔震结构,是在合理的范围内。可是,如果我们按《行业标准》取2.5Hz 的频率测试,其测试速度V应该是: (2) 其中f为振动频率,A为振动幅值。 要知道,目前世界上最大能力的美国圣地亚哥大学动力测试设备也仅可达到1800mm/s[11],也足够用了。这种测试要求出在我们的国标中不是太离谱了吗? 下面我们还介绍阻尼器最重要的三个关键测试。《行业标准》中均未提到。 6.5 基本性能测试

连拱隧道中隔墙现浇混凝土模板体系

连拱隧道中隔墙现浇混凝土模板体系 关键词:弯道、橄榄形、异形、脚手架、模板、加固。 重庆市沙坪坝区马家岩立交工程位于石小路与天马路的交叉口 地方,该工程有一座复合式连拱隧道,对连拱隧道中隔墙的现浇混凝土模板支撑体系几点认识:主要涵盖有三大部分,一是脚手架支撑部分,二是模板组装部分,三为加固体系。重点要解决的难题上的几点思考:1.脚手架的弯道搭设与空间狭小的解决办法;2.曲线部分的曲墙模板使用的定型模板和组合模板形式与脚手架的关系; 3.模板加固问题上的思考(中隔墙的图形见支撑体系中的中隔墙图形)。并在施工过程中不断的摸索和改进,最终为了圆满解决连拱隧道的中隔墙施工质量。现在谈谈我对于这样一个“橄榄”形的模板支架的几点认识,望大家多指点,这样提高我的业务素质。 脚手架支撑问题 选用双排脚手架单管碗扣式钢管脚手架,钢管规格为48×3.5mm。比较常规脚手架便于安装主架,用底托和顶托控制高程。“橄榄”形空间的两侧纵向部分采用平托的能够有效控制宽度,并立于洞内基岩上面,下设c30混凝土垫层。立杆横距为0.6米,立杆纵距为0.9米,水平杆步距为 0.9米,水平横杆间距为0.6米,内立杆距墙0.3米;连墙件为两步三跨设置,连墙件采用48×3.5mm钢管,用加强形蝴蝶扣分别与脚手架和预埋锚杆钢筋连接。搭设高度为7.2~8.8m。

施工荷载qk=4kn/m2。木脚手板自重标准值qp1=0.35kn/m2,栏木、挡脚板自重标准值qp2=0.14kn/m。 计算脚手架的强度、稳定性等不用验算,完全满足要求。 见附图: 根据施工作业常规的浇筑方法,分层分段方式,将模板体系分为标准段和渐变段进行分析,主要模板从纵向或者端头都是异形,加工制作难度特别大 1.计算标准断面浇筑高度第一节浇筑高度为:1.12m 第二节为4.34-1.12m=3.24m第三节为 2.82m 计算变截面浇筑高度为:第一节0.982m~1.98第二节3.24~4.04m 第三节为2.82m 根据墙侧模板的简易计算公式:采用组合钢模板,板长度为 900mm,断头为u形扣连接,取值600~1050mm,由于模板断面尺寸小,取值为450mm。 确定内楞和外楞的间距 求墙模受到的侧压力为: u/t=2(m/h)/20(°c)=0.1>0.035 h=1.53+3.8u/t=1.53+3.8*0.1=1.91m pm=kγch=1*25*1.91=47.8kpa 考虑振动荷载4kn/m2,则总侧压力: p=47.8+4.0=51.8kn/m2

新型软钢阻尼器的减震性能研究_李钢

振动与冲击 第25卷第3期J OURNAL OF V IBRAT I ON AND SHOCK Vo.l25No.32006 新型软钢阻尼器的减震性能研究 基金项目:大连市建委科技项目 收稿日期:2005-02-18修改稿收到日期:2005-04-15第一作者李钢男,博士生,1979年生李钢李宏男 (大连理工大学海岸及近海工程国家重点实验室,大连116023) 摘要提出了设计软钢阻尼器的新思路:利用钢板平面内受力提高初始刚度,并通过改变钢板平面几何形状增加变形耗能能力。通过对具有不同几何形状的软钢阻尼器模型进行拟静力往复加载试验研究,验证了此种软钢阻尼器具有良好的塑性耗能性能。数值计算表明,在地震动作用下装有新型软钢阻尼器框架体系具有良好的减震效果。 关键词:软钢阻尼器,结构控制,减震性能,参数研究 中图分类号:P315文献标识码:A 0引言 近年来,国内外的研究者在工程结构的隔震、减振与振动控制方面进行了大量的研究工作,取得了丰硕的成果[1-6]。传统的抗震设计是通过增强结构本身的抗震性能来抵御地震作用,即利用结构本身储存和消耗地震能量以满足结构抗震设防标准:小震不坏,中震可修,大震不倒。而这种抗震方式缺乏自我调节能力,在不确定的地震作用下,很可能不满足安全性的要求。而结构振动控制技术为结构抗震提供了一条合理有效的途径。其中,耗能减震作为一种被动控制措施是将输入结构的地震能量引向特别设置的机构和元件加以吸收和耗散,从而能够保护主体结构的安全。 软钢阻尼器是目前国内外广泛研究的各种耗能器中,构造简单、造价低廉、力学模型明确的一种被动耗能装置,屈服后在反复循环荷载作用下仍具有稳定的滞回特性。1972年,Ke lly等[3]在提出耗能减概念时就采用了软钢屈服耗能器,其中包括扭转梁、弯曲梁、U 型钢等形式。W h ittaker等[4]和Tsa i等[5]分别研究了X 型钢板和三角形钢板耗能器平面外的特性。日本Ka j-i m a公司提出了一种蜂窝状的软钢屈服耗能器,可安装在墙中或梁内。国内学者对此也做了相应的研究工作,欧进萍等[6]对组合钢板耗能器进行了研究,这种耗能器消除了软钢阻尼器中薄膜效应的影响。邢书涛等[7]提出了一种纵截面为中空菱形的矩形钢板阻尼器。目前,软钢阻尼器已应用于建筑结构中,如新西兰的六层政府办公大楼,其预制墙板的斜撑中采用了钢管耗能器[8];美国旧金山的非延性钢筋混凝土结构的抗震加固和墨西哥的一些建筑中[9]。 上述软钢阻尼器均是利用阻尼钢板平面外等厚度处同时屈服的特性来实现耗能作用,其优越性在于塑性变形较大,滞回性能稳定;不足之处在于这类软钢阻尼器初始刚度较小,承载能力低。若增大初始刚度,则需要增加阻尼器钢板的数量,这使得实际工程应用中存在着经济性与可行性问题。而采用钢板平面内受力方式,则可以在很大程度上提高其初始刚度及屈服力。1997年M ito等[10]通过试验研究了一种矩形剪切板阻尼器,但这种阻尼器由于平面内受力,钢板的四个角点处应力集中,在水平位移很小时就出现断裂现象,使得变形耗能能力相对较差。2003年T irca等[11]提出了一种平面内受力形式的钢阻尼器,并对装有此种阻尼器的中高层结构进行了性能分析,证明此阻尼器具有很好的耗能减震能力。 软钢阻尼器一般安装于梁与支撑的节点处,在正常使用状态下整个耗能体系不发挥作用,只有在地震作用下,阻尼器才通过塑性变形来消耗地震能量。然而,在小震作用下,目前设计的建筑物能够满足抗震设防要求,一般不需要阻尼器工作;在大震或偶然发生超过设防烈度的地震(因地震难以预测)作用下,需要阻尼器耗能以减小结构地震反应。这样,目前利用钢板平面外变形耗能的软钢阻尼器难以满足这种要求。为了最大程度发挥耗能体系的作用,阻尼器应该同时具备初始刚度大和屈服后具有良好变形耗能能力两个特点。针对上述阻尼器中存在的不足,本文提出了一类新型软钢阻尼器,试验和理论计算均表明,所提出的阻尼器满足这种要求。 1新型软钢阻尼器及模型试验 阻尼器钢板平面外受力时具有较强的变形能力,但初始刚度较低。为避免这一现象本文采用钢板平面内受力形式,此种受力方式同时存在一定的缺陷,通常是局部屈服更容易引发应力集中现象,变形能力较差。如何提高变形能力,避免应力集中现象则成为关键问题。通过改变钢板平面几何形状使其出现多点屈服,在屈服后形成若干塑性屈服点的方法来实现更好的

隧道力学数值方法

第一章 1、 隧道力学:是岩土力学的一个重要组成部分。其所采用的数值方法与结构物的周围环境、 施工方法等因素息息相关。 研究范围:隧道围岩的工程地质分级;隧道和地下结构物的静力分析和动力分析;现场测试和室内模型试验与数值方法的相互验证及参数获取;岩土物理力学性质和本构关系的研究 2、 隧道与地下结构设计模型:经验法、收敛—约束法、结构力学法、连续介质法 第二章 相应减少,同时还能够保证较高的计算精度1、对原结构可采用不规则单元,真实模拟复杂的边界形状。2、建立一基准单元:通过简单变化,能代表各类曲边、曲面单元,且完全不影响单元的特性计算;或不规则单元变换为规则单元,从而容易构造位移模式。3、引入数值分析方法,对积分做近似计算。在基准单元上实现规则化的数值积分,可使用标准数值计算方案,形成统一程序。等参变换条件:如果坐标变换和未知函数(如位移)插值采用相同的节点,并且采用相同的插值函数。 第三章 1.非线性问题:采用数值方法分析结构时,离散化后得到代数方程组:KU+F=0,当总刚度矩阵K 中的元素k ij 为常量时,所代表的的问题为线性问题,当k ij 为变量时,则式为非线性方程组,它所描述的问题为非线性问题。材料非线性:指的是当应力超过某一限值后,应力与应变的变化不成线性关系,但应变与位移的变化仍成线性关系。几何非线性:指的是当应变或应变速率超过某一限值以后,应变与位移的变化不成线性关系,但应力与应变的变化仍成线性关系。 有些情况下,非线性问题即包括材料非线性又包括几何非线性的特征。 2.非线性问题的四种求解方法 直接迭代法 :① 给定初值0x 、计算精度; ② 用迭代格式()1k k x g x +=进行迭代计算; ③ 判断迭代结果是否满足收敛判据,如果满足,终止计算并输出结果,否则返回步骤②。 特点:适用于求解很多场的问题,但不能保证迭代过程的收敛。 牛顿法—切线刚度法:使用函数f(x )的泰勒级数的前面几项来寻找方程f(x) = 0的根。 其最大优点是在方程f(x) = 0的单根附近具有平方收敛 。特点:如果初始试探解误差较大,则迭代过程也可能发散。只要初始刚度矩阵式对称的,则切线刚度矩阵将始终保持对称,而在大变形下割线刚度矩阵则不一定能保持这种对称性。 修正的牛顿法—初始刚度法 :每条线均为平行,均采用初始刚度,显然不用每次迭代都计算刚度矩阵,迭代次数增多,但计算时间不一定多。特点:对于材料应变软化以及体系中塑性区域发展范围较大的情况,采用初始刚度矩阵仍能取得迭代求解的收敛,而在这种情况下采用切线刚度法则难以甚至不能达到收敛。 混合法该法为切线刚度法与初始刚度法联合使用的方法。为此必须采用增量加荷的方式,将总荷载分成几级,逐级加荷。在每一级荷载作用下采用一种初始刚度进行迭代运算,达到收敛后再施加下一级荷载,并采用新的切线刚度矩阵[]r K 进行迭代运算。 3.岩土材料的弹塑性应力应变关系即本构关系四个组成部分:1.屈服条件和破坏条件,确定材料是否塑性屈服和破坏。

实验三 弹簧阻尼器机构的动力学模拟

实验三 弹簧阻尼器机构的动力学模拟 一、实验目的 1.掌握多体动力学分析软件ADAMS 中实体建模方法; 2.掌握ADAMS 中施加约束和驱动的方法; 3.计算出弹簧阻尼机构运动时,弹簧振子的位移、速度、加速度和弹簧位移与弹簧力的对应关系。 二、实验设备和工具 1.ADAMS 软件; 2.CAD/CAM 机房。 三、实验原理 按照弹簧阻尼器机构的实际工况,在软件中建立相应的几何、约束及驱动模型,即按照弹簧阻尼器机构的实际尺寸,建立弹簧、阻尼器和质量块的几何实体模型;质量块的运动为上下作自由衰减运动,可以理论简化为在质量块与大地之间建立平动副,弹簧、阻尼器共同连接到连接大地和质量块上;然后利用计算机进行动力学模拟,从而可以求得质量块在弹簧阻尼器连接下任何时间、任何位置所对应的位移、速度加速度,以及弹簧中位移和弹性恢复力之间的对应关系等一系列参数,变换弹簧、阻尼器和质量块的参数可以进行多次不同状态下的模拟。 四、实验步骤 1.问题描述 图3-1为弹簧阻尼器机构简图,M 为振子,质量为187.224kg ;弹簧刚度K =5N/mm ,阻尼器阻尼为C =0.05N/mm ,弹簧空载长度为400mm ,求当弹簧阻尼机构振动时,铰接点A 处的支撑力。 2. 启动 ADAMS M :187.224Kg K :5.0N/mm C :0.05N-sec/mm L0:400mm F0:0 图3-1 弹簧阻尼器机构示意图

2.1 运行ADAMS2005,在欢迎界面中,选择Create a new model, Model name 输入spring_mass; 2.2 确认Gravity(重力)文本框中是Earth Normal(-Global Y),Units (单位)文本框中是MMKS(mm,kg,N,s,deg)。 3. 建立几何模型 3.1单击F4显示坐标窗口; 3.2在主工具箱中选择Box 工具按钮建立一质量块,用默认尺寸即可; 3.3 在屏幕任意位置点击鼠标创建质量块; 3.4 右键点击质量块,选择part_2,然后选择Rename,更名为mass; 3.5 右键点击质量块,选择mass,然后选择Modify。在打开的对话框中修改Define mass by 项为User Input,在Mass栏输入187.224; 3.6 选择右视图按钮查看质量块的位置,进行调整栅格位于质量块的中心。选择Edit菜单下的Move项,在对话框中选择Relocate the项为Part,右键点击右侧文本框选择Part,出现Guesses然后选择mass ,如图3-2所示。 图3-2 选择移动质量块 3.7 在Translate下方的数字栏中输入-100,或者输入100再单击前面的按钮,如图3-3所示; 图3-3 移动对话框

粘滞阻尼器产品介绍

产品名称:粘滞阻尼器(Fluid Viscous Damper) 详细介绍: 一、概述 粘滞阻尼器一般由缸筒、活塞、阻尼通道、阻尼介质(粘滞流体)和导杆等部分组成。当工程结构因振动而发生变形时,安装在结构中的粘滞阻尼器的活塞与缸筒之间发生相对运动,由于活塞前后的压力差使粘滞流体从阻尼通道中通过,从而产生阻尼力耗散外界输入结构的振动能量,达到减轻结构振动响应的目的。 我公司与同济大学工程抗震与减震研究中心合作,开发了线性粘滞阻尼器、非线性粘滞阻尼器、可控式粘滞阻尼器、拟摩擦粘滞阻尼器。通过对所研制的阻尼器的缩尺和足尺模型的性能试验,深入研究了阻尼器各种参数之间的关系,掌握了该类阻尼器的基本力学性能,建立了双出杆型粘滞阻尼器的理论计算公式,并通过大量的阻尼器力学性能实验,对其进行了修正。研究表明,该类阻尼器结构合理,受力机理明确,性能稳定,耗能能力强。 二、示意图 (朱)

三、代号表示法 四、主要特点 1. 外形简洁,结构对称、紧凑,安装便捷,安装空间小; 2. 摩擦阻力小,一般低于额定载荷的1%~2%; 3. 阻尼器的长度设计了±25mm的调节量,方便现场的安装; 4. 耗能效率高,达到90%以上; 5. 阻尼器两端可安装关节轴承,利于施工安装和工作时的摆动(允许工作摆角±5°); 6. 液压介质使用稳定、抗燃、耐老化的硅油;密封件使用与介质相容性好的橡胶材料。 五、使用要求 1、路博粘滞流体阻尼器在保管、运输、存放过程中,对所有的零部件和产品本身应采用有效地防护包装,防止发生锈蚀、污染、划伤等不良现象的发生; 2、路博粘滞流体阻尼器外表面为镀硬铬保护层,相关动配合处均采用多种手段加固密封。因此,如需在其周围进行焊接等作业应采取严格的遮挡保护措施,不允许明火 烘烤及重力敲砸等不良现象发生; 3、路博粘滞流体阻尼器是精度和技术含量较高的产品,对装配和测试的操作技能,环 境条件,使用工具等都有很高的要求,施工现场不准拆卸和修理;

阻尼综述——阻尼模型、阻尼机理、阻尼分类和结构阻尼建模方法

阻尼 1 引言 静止的结构,一旦从外界获得足够的能量(主要是动能),就要产生振动。在振动过程中,若再无外界能量输入,结构的能量将不断消失,形成振动衰减现象。振动时,使结构的能量散失的因素的因素称为结构的阻尼因素。 索罗金在其论著中将结构振动时的阻尼因素概括为几种类型,即界介质的阻尼力;材料介质变形而产生的内摩擦力;各构件连接处的摩擦及通过地基散失的能量。百多年来,不同领域的专家,均根据自身研究的需要,着重研究某种阻尼因素,如外阻尼、摩擦阻尼、材料阻尼及辐射阻尼等。 对于材料阻尼的物理机制,文献[82]、[126]、[127]等分别做了简要描述。 材料阻尼是一个机制比较复杂的物理量,由多种基本的物理机制组合而成。如金属材料中的热弹性、晶体的粘弹性、松弛效应、旋转流效应、电子效应等对阻尼均有贡献。对一般的非金属材料(如玻璃、各种聚合物等),电子效应对能量的损失影响较小。温度、绝热系数等也是影响阻尼的重要因素。一般来说,非金属材料的能量损失比金属大。此外地质岩石由不同种固体微粒组成,且有空隙体积,因此,其阻尼特性与一般材料不同。岩石中能量损失主要由三个物理机制构成:岩石内部微粒间的粘性=岩石的内摩擦及较大的塑性变形,而岩石的内摩擦与岩石内部微粒间接触处的位错及塑性变形有关。 如献[82]所述, 为了计算、分析结构在外界载荷作用下产生的反应,人们建立了描述固体材料应力应变关系的物理模型。最简单的物理模型是单参数模型,即材料只产生弹性应力或只产生粘滞应力,但这两种模型不能代表材料中真实存在的粘弹性。人们又建立了双参数线性模型,即Maxwell及Kelvin模型。其中Maxwell模型由线性粘滞体和线弹性体串联而成,Kelvin模型是此二者并联而成的。若设线粘滞体的应变为

隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数 一、一般规定 在公路勘察设计过程中,是根据周边岩体或土体的稳定特性进行围岩分级的。围岩分Ⅰ~Ⅵ级,由于每级间范围较大,施工阶段对Ⅲ、Ⅳ、Ⅴ基本级别,再进行亚级划分。在公路隧道按土质特性和工程特性分:岩质围岩分级——Ⅰ~Ⅴ级;土质围岩分级Ⅳ~Ⅵ级。对岩质围岩和土质围岩分别采用不同的指标体系进行评定:岩质围岩基本指标为岩质的坚硬程度和完整程度,修正指标为地下水状态,主要软弱结构面产状及初始地应力状态。 土质围岩分级指标体系宜根据土性差异而组成,粘土质围岩基本指标为潮湿程度。沙质土围岩基本指标为密实程度。修正指标潮湿程度。碎石土围岩基本指标为密实程度。至于膨胀土、冻土作为专门研究,这里暂不述。围岩分级指标体系中可用定性分析,也可用定量分析,但由于工地施工条件时间等因素,一般我们仅采用定性分析。下面我讲定性分析来确定围岩级别。 1、确定岩性及风化程度。 2、结构面发育,主要结构面结合程度,主要结构面类型,甚至产状倾角、走向结构面张开度,张裂隙。 3、水的状况涌水量等。 二、岩石坚硬程度的定性划分 1、坚硬岩:锤击声清脆、震手、难击碎,有回弹感,浸水后大多无吸水反应,如微风化的花岗岩——正长岩,闪长岩,辉绿岩,玄

武岩,安山岩,片麻岩,石英片麻岩,硅质板岩,石英岩,硅质胶结的砾岩,石英砂岩,硅质石灰岩等等。 2、较坚硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,浸水后有轻微吸水反应。如未风化~微风化的熔结凝灰岩、大理岩、板岩、白云岩、石灰岩、钙质胶结的砂岩等。 3、较软岩:锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻击印痕。如未风化~微风化的凝灰岩,砂质泥岩,泥灰岩,泥质砂岩,粉砂岩,页岩等。 4、软岩:锤击声哑,无回弹,有凹痕,多击碎,手可掰开。如强风化的坚硬岩,弱风化~强风化的较坚硬岩,弱分化的较软岩,未风化的泥岩等。 5、极软岩:锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团,如全风化的各种岩类,各种半成岩。Rc——岩石单轴饱和抗压强度、定性质与岩石的对应关系,一般Rc>60MPa——坚硬岩,Rc=60~30 MPa为较坚硬岩;Rc=3 0~15MPa为较软岩;Rc=15~5MPa软岩;Rc<5Mpa极软岩。也可用Rc=22.82Is(50),Is(50)——岩石点荷载强度指数。这里不多说。 三、岩质围岩的完整度的定性划分 这是根据岩体的结构状况来定性划分 1、完整:节理裂隙,不发育,节理裂隙1-2组,平均间距>1.0m 层面结合好,一般。 2、较完整:节理裂隙,不发育,节理裂隙1-2组,平均间距1.0m

整理公路双连拱隧道中隔墙施工技术

公路双连拱隧 整理人尼克 道中隔墙施工

附件 电力建设工法评审办法 (2016版) 第一章总则 第一条为适应电力建设创新驱动新常态,提升电力建设科技创新能力,规范电力建设工法管理,根据住建部《工程建设工法管理办法》(建质〔2014〕103号),制定本办法。 第二条本办法适用于电力建设工法的研发、申报、评审、管理、推广使用和推荐申报国家级工法。 第三条电力建设工法是以工程为对象,以量化的工艺流程为核心,运用系统工程原理,将先进技术和科学管理相结合,经过工程实践形成的相对成熟的综合配套的施工方法;其关键技术和管理水平具有显著的先进性、创新性,并经中国电力建设企业协会(以下简称中电建协)审定发布的工法。 第四条工法应符合国家法律、法规和国家现行标准的规定,保证工程质量和安全、有效节约资源、减少环境污染、提高施工效率。 第五条工法的研发和应用应适应电力建设创新驱动新常态,鼓励企业积极采用新技术、新工艺、新流程、新装备、新材料,提高企业施工技术水平和技术积累。 第六条工法分为国家级、省部(行业)级和企业级,电力建设工法为省部(行业)级工法。

1. 国家级工法是指省部(行业)级主管部门择优推荐申报,住房和城乡建设部审定发布的工法。 2. 省部(行业)级工法是指企业自愿申报,省部(行业)级主管部门审定发布的工法。 3. 企业级工法是指企业根据工程管理、科研发展和市场需求所编写的施工方法,并经企业审定发布的工法。 第七条电力建设工法分土木工程和设备安装工程两类。 第八条推荐采用“三维视频工法”的方式,进行工法编制,以促进工法的推广应用。 第二章申报 第九条电力建设工法遵循企业自愿申报原则,每项工法应由一家单位申报,主要完成人的名额不应大于6人。 第十条工法的编写与申报应符合“电力建设工法编写与申报指南”(见附件1)的规定。 第十一条工法申报应提交下列资料(相关证明文件提供扫描件): 1. 电力建设工法申报表(见附件2)。 2. 工法文本(包括:前言、特点、适用范围、工艺原理、工序流程及操作要点、材料与设备、质量控制、安全措施、环保措施、效益分析、应用实例等11项内容)。 3.企业级工法批准文件。 4.技术情报部门出具的查新报告(关键技术属国内外首创的提供)。 5.工程应用实例证明2项(建设单位或监理单位出具)。

弹簧-质量-阻尼模型

弹簧-质量-阻尼模型

弹簧-质量-阻尼系统 1 研究背景及意义 弹簧-质量-阻尼系统是一种比较普遍的机械振动系统,研究这种系统对于我们的生活与科技也是具有意义的,生活中也随处可见这种系统,例如汽车缓冲器就是一种可以耗减运动能量的装置,是保证驾驶员行车安全的必备装置,再者在建筑抗震加固措施中引入阻尼器,改变结构的自振特性,增加结构阻尼,吸收地震能量,降低地震作用对建筑物的影响。因此研究弹簧-质量-阻尼结构是很具有现实意义。 2 弹簧-质量-阻尼模型的建立 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型, 不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示,

图2.1 弹簧-质量-阻尼系统简图 其中1 m ,2 m 表示小车的质量,i c 表示缓冲器的粘滞摩擦系数,i k 表示弹簧的弹性系数,i F (t )表示小车所受的外力,是系统的输入即i U (t )=i F (t ),i X (t)表示小车的位移,是系统的输出,即i Y (t )=i X (t),i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中1m =1kg ,2 m =2kg ,1k =3k =100N/cm ,2k =300N/cm ,1c =3 c =3N ?s/cm ,2 c =6N ?s/cm 。 由图 2.1,根据牛顿第二定律,,建立系统的动力学模型如下: 对1 m 有: (2-1) 对2 m 有: (2-2) 3 建立状态空间表达式 令3 1421122 ,,,x x x x u F u F ====,则原式可化为:

相关文档
相关文档 最新文档