文档库 最新最全的文档下载
当前位置:文档库 › 达林顿管B897

达林顿管B897

达林顿管B897

B897即2SB897,它是达林顿功率放大管,不是场效应管,参数:PNP、100V、10A、80W、β=5000、带阻尼。

代换型号:2SB1031、2SB1032、2SB1079、原来有人说用2SB887的,此管功率不足,只有70瓦,110V、10A在找不到合适管的情况下,音量调小点可以用。2SB1108参数120V、8A、50W。更不能用。

2SB1031参数100V、15A、100W、β=5000、带阻尼。

2SB1032参数120V、10A、80W、β=5000、带阻尼。

2SB1079参数100V、20A、100W、β=5000、

达林顿管说明

达林顿管就是两个三极管接在一起,极性只认前面的三极管。具体接法如下,以两个相同极性的三极管为例,前面为三极管集电极跟后面三极管集电极相接,前面为三极管射极跟后面三极管基极相接,前面三极管功率一般比后面三极管小,前面三极管基极为达林顿管基极,后面三极管射极为达林顿管射极,用法跟三极管一样,放大倍数是两个三极管放大倍数的乘积。 达林顿管原理 达林顿管又称复合管。它将二只三极管适当的连接在一起,以组成一只等效的新的三极管。这等于效三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+N PN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C= E2,B=B1,E=E1(即C2)。等效三极管极性,与前一三极管相同。即

为NPN型。 PNP+NPN的接法与此类同。 NPN PNP 同极型达林顿三极管 NPN PNP等效一只三极管 异极型达林顿三极管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD67 8)型PNP达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值与普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注

达林顿管的四种接法与常用型号

达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,和前一三极管相同。即为NPN型。 PNP+NPN的接法和此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN和PNP晶体管相互串接达成达林顿的特性。 同极型达林顿管 异极型达林顿管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP 达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值和普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意

大功率达林顿管MJ11016参数规格,电路图,功能应用原理

DESCRIPTION ·Collector-Emitter Breakdown Voltage :V (BR)CEO =120V(Min.)·High DC Current Gain-:h FE =1000(Min.)@I C =20A ·Low Collector Saturation Voltage-:V CE (sat)=3.0V(Max.)@I C =20A ·Complement to the PNP MJ11015 APPLICATIONS ·Designed for use as output devices in complementary general purpose amplifier applications. ABSOLUTE MAXIMUM RATINGS (T a =25℃) SYMBOL PARAMETER VALUE UNIT V CBO Collector-Base Voltage 120V V CEO Collector-Emitter Voltage 120V V EBO Emitter-Base Voltage 5V I C Collector Current-Continunous 30A I B Base Current-Continunous 1A P C Collector Power Dissipation @T C =25℃ 200W T j Junction Temperature 200℃T stg Storage Temperature Range -55~+200 ℃ THERMAL CHARACTERISTICS SYMBOL PARAMETER MAX UNIT R th j-c Thermal Resistance,Junction to Case 0.87 ℃/W

LDO的工作原理详细分析

LDO的工作原理详细分析 [导读]由于便携式设备的发展,人们对电源的要求越来越高,因次以前一直用开的电源目前来说不够用了,这就促使LDO的迅猛发展,今天给大家介绍一下LDO的工作原理。 随着便携式设备(电池供电)在过去十年间的快速增长,象原来的业界标准 LM340 和 LM317 这样的稳压器件已经无法满足新的需要。这些稳压器使用NPN 达林顿管,在本文中称其为NPN 稳压器(NPN regulators)。预期更高性能的稳压器件已经由新型的低压差 (Low-dropout)稳压器(LDO)和准LDO稳压器(quasi-LDO)实现了。 NPN 稳压器(NPN regulators) 在NPN稳压器(图1:NPN稳压器内部结构框图)的内部使用一个 PNP管来驱动 NPN 达林顿管(NPN Darlington pass transistor),输入输出之间存在至少1.5V~2.5V的压差(dropout voltage)。这个压差为: Vdrop = 2Vbe +Vsat(NPN 稳压器)(1) 图1 LDO 稳压器(LDO regulators) 在LDO(Low Dropout)稳压器(图2:LDO稳压器内部结构框图)中,导通管是一个PNP管。LDO的最大优势就是PNP管只会带来很小的导通压降,满载(Full-load)的跌落电压的典型值小于500mV,轻载(Light loads)时的压降仅有10~20mV。LDO的压差为:

Vdrop = Vsat (LDO 稳压器)(2) 图2 准LDO 稳压器(Quasi-LDO regulators) 准LDO(Quasi-LDO)稳压器(图3:准 LDO 稳压器内部结构框图)已经广泛应用于某些场合,例如:5V到3.3V 转换器。准LDO介于 NPN 稳压器和 LDO 稳压器之间而得名,导通管是由单个PNP 管来驱动单个NPN 管。因此,它的跌落压降介于NPN稳压器和LDO之间: Vdrop = Vbe +Vsat (3) 图3 稳压器的工作原理(Regulator Operation) 所有的稳压器,都利用了相同的技术实现输出电压的稳定(图4:稳压器工作原理图)。输出电压通过连接到误差放大器(Error Amplifier)反相输入端(Inverting Input)的分压电阻(Resistive Divider)采样(Sampled),误差放大器的同相输入端(Non-inverting Input)连接到一个参考电压Vref。参考电压由IC内部的带隙参考源(Bandgap Reference)

达林顿管和晶闸管的区别

达林顿管和晶闸管的区别 达林顿管的电路结构 1、 概述 达林顿管又称复合三极管。它是将两个三极管适当的连接在一起,以组成一个等效的新的三极管。这个新的三极管就是达林顿三极管。其放大倍数是两者放大倍数的乘ch éng 积j ī 。一般应用于功率放大器、稳压电源电路中。 2、 达林顿管的电路连接 达林顿三极管通常由两个三极管组成,这两个三极管可以是同型号的,也可以是不同型号的;可以是相同功率,也可以是不同功率。无论怎样组合连接,最后所构成的达林顿三极管的放大倍数都是二者放大倍数乘积。 达林顿管电路连接一般有四种接法:即NPN+NPN 、PNP+PNP 、NPN+PNP 、PNP+NPN 。 它们连接如图所示。 图a 、b 所示同极性接法;图c 、d 所示异极性接法。在实示应用中,用得最普遍是前两种同极性接法。通常,图a 接法达林顿三极管叫“NPN 达林顿三极管”;而图b 接法的达林顿三极管称为“PNP 达林顿管”。 两个三极管复合成一个新的达林顿管后,他的三个电极仍然叫: B →基极、 C →集电极、 E →发射极。 达林顿管有一个特点就是两个三极管中,前面三极管的功率一般比后面三极管的要小,前面三极管基极为达林顿管基极,后面三极管射极为达林顿管射极。所以达林顿管在电路中使用方法与单个普通三极管一样,只是放大倍数β是两个三极管放大倍数的乘积。 一、 达林顿管的特点与用途 1、 达林顿管的性能特点 (1) 放大倍数大(可达数百、数千倍); (2) 驱动能力强; (3) 功率大; (4) 开关速度快; (5) 可做成功率放大模块; (6) 易于集成化。 2、 达林顿管的主要用途 (1) 多用于大负载驱动电路; (2) 多用于音频功率放大器电路; (3) 多用于中、大容量的开关电路; (4) 多用于自动控制电路。 二、 达林顿管典型电路 1、 电子开关电路

达林顿管原理

达林顿管 编辑本段简介 达林顿管就是两个三极管接在一起,极性只认前面的三极管。具体接法如下,以两个相同极性的三极管为例,前面三极管集电极跟后面三极管集电极相接,前面三极管发射极跟后面三极管基极相接,前面三极管功率一般比后面三极管小,前面三极管基极为达林顿管基极,后面三极管发射极为达林顿管发射极,用法跟三极管一样,放大倍数是两个三极管放大倍数的乘积。 编辑本段原理 达林顿管原理 达林顿管又称复合管。为共基组合放大器,以组成一只等效的新的三极管。这等效于三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 编辑本段作用 达林顿管是一重复合三极管,他将两个三极管串联,第一个管子的发射极接第2个管子的基极,所以达林顿管的放大倍数是两个三极管放大倍数的乘积。所以它的特点是放大倍数非常高,达林顿管的作用一般是在高灵敏的放大电路中放大非常微小的信号。如大功率开关电路[1]。 编辑本段相关 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP 为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,与前一三极管相同。即为NPN型。PNP+NPN的接法与此类同。 NPN PNP

同极型达林顿三极管 NPN PNP 等效一只三极管 异极型达林顿三极管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be 结的正反向阻值与普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近,容易误判断为坏管,请注意。 4、判断达林顿管等效为何种类型的三极管: 首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,与第二只无关!更加重要的是,要判断两个晶体管能否形成达林顿管关键要看电流,如果工作电流冲突,则不能构成达林顿管结构。也可以根据PNP或者NPN管的标志来判断,其实本质上三极管上所标的箭头也是其工作电流的流向。

电源供电以及电机驱动原理与电路分析

电源供电以及电机驱动原理与电路分析 第一部分:供电电路原理 供电部分原理图如图1-1所示: 图1-1 从图1-1中可知道供电有+5V、+3.3V、+1.5V三种,其中每个电源均有0.1μF的旁路电容,将电源中的高频串扰旁路到地,防止高频信号通过电源串扰到其它模块中。同时还能将电源本身的工频干扰滤除。 值得注意的是:在布线的时候,经退藕电容退藕后的电源输出点应该尽量紧靠芯片的电源引脚进行供电,过长的引线有可能重新变成干扰接收天线,导致退藕效果消失。如果无法让每个退藕后的电源输出点均紧靠芯片的电源引脚,那么可以采用分别退藕的方法,即分别尽量紧靠每个芯片的电源引脚点接入退藕电容进行退藕,这也解释了为什么图1-1的3.3V电源有两个退藕输出点。

第二部分:电机驱动电路原理 电机驱动电路原理如图2-1所示: 图2-1 图2-1中Header 4X2为4排2列插针,FM0~3为FPGA 芯片I/O 输出口,加入的插针给予一个可动的机制,在需要使用时才用跳线帽进行相连,提高I/O 口的使用效率。RES5是五端口排阻,内部集成了4个等阻值且一端公共连接的电阻,PIN 1是公共端,PIN2~5为排阻的输出端,排阻原理图如图2-2所示: 图2-2 该排阻公共端接电源,即上拉电阻形式,作用是增强FPGA 芯片I/O 口(以下简称I/O 口)的驱动能力,实际上就是增加I/O 输出高电平时输出电流的大小。当I/O 输出高电平时,+5V 电源经排阻与IN1~4相连,相当于为I/O 提供一个额外的电流输出源,从而提高驱动能力。当I/O 输出低电平时,可将I/O 近似看做接地,而IN1~4因与I/O 由导线直接相连,因此直接接受了I/O 的低电平输出信号。此时,+5V 电源经排阻R 、I/O 内部电路(电阻近似为零)后接地,因此该路的电流不能大于I/O 的拉电流(i I )最大值,有公式2-1: i I R V ≤+5(公式2-1) 即 i I V R 5+≥(公式2-2) 由公式2-2可以得出排阻的取值范围。 该上拉电阻除了提高驱动能力外,还有一个作用,就是进行电平转换。经查,ULN2003的接口逻辑为:5V-TTL, 5V-CMOS 逻辑。而在3.3V 供电的情况下,I/O 口可以提供3.3V-LVTTL , 3.3V-LVCMOS ,3.3V-PCI 和SSTL-3接口逻辑电平。因此,需要外接5V 的上拉电阻将I/O 电平规格变成5V 电平逻辑。

达林顿晶体管

达林顿晶体管DT(Dar1ington Transistor)亦称复合晶体管。它采用复合过接方式,将两只或更多只晶体管的集电极连在一起,而将第一只晶体管的发射极直接耦合到第二只晶体管的基极,依次级连而成,最后引出E、B、C三个电极。 图1是由两只NPN或PNP型晶体管构成达林顿管的基本电路。假定达林顿管由N 只晶体管(TI-Tn)组成,每只晶体管的放大系数分别这hFE1、hFE2、hFEn。则总放大系数约等于各管放大系数的乘积: hFE≈hFE1·hFE2……hFEn 因此,达林顿管具有很高的放大系数,值可以达到几千倍,甚至几十万倍。利用它不仅能构成高增益放大器,还能提高驱动能力,获得大电流输出,构成达林顿功率开关管。在光电耦合器中,也有用达林顿管作为接收管的。达林顿管产品大致分成两类,一类是普通型,内部无保护电路,另一类则带有保护电路。下面分别介绍使用万用表检测这两类达林顿管的方法。 1.普通达林顿管的检测方法 普通达林顿管内部由两只或多只晶体管的集电极连接在一起复合而成,其基极B 与发射极E之间包含多个发射结。检测时可使用万用表的R×1k或R×10k档来测量。 测量达林顿管各电极之间的正、反向电阻值。正常时,集电极C与基极B之间的正向电阻值(测NPN管时,黑表笔接基极B;测PNP管时,黑表笔接集电极C)值与普通硅晶体管集电结的正向电阻值相近,为3~10kΩ之间,反向电阻值为无穷大。而发射极E与基极B之间的的正向电阻值(测NPN管时,黑表笔接基极B;测PNP管时,黑表笔接发射极E)是集电极C与基极B之间的正、反向电阻值的 2~3倍,反向电阻值为无穷大。集电极C与发射极E之间的正、反向电阻值均应接近无穷大。若测得达林顿管的C、E极间的正、反向电阻值或BE极、BC极之间的正、反向电阻值均接近0,则说明该管已击穿损坏。若测得达林顿管的BE极或BC 极之间的、反向电阻值为无穷大,则说明该管已开路损坏。

达林顿管的四种接法及常用型号.docx

达林顿电路有四种接法:NPN+NPN, PNP+PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1 为B, C1C2 为 C, E1B2接在一起,那么 E2 为 E。这里也说一下异极性接法。以 NPN+PNP为例。设前一三极 管 T1 的三极为 C1B1E1,后一三极管 T2 的三极为 C2B2E2。达林顿管的接法应为: C1B2 应接一起,E1C2应接一起。等效三极管 CBE的管脚, C=E2,B=B1, E=E1(即 C2)。等效三极管极性,和前一 三极管相同。即为 NPN型。 PNP+NPN的接法和此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下 一级的基极,当作下级的输入。「同极型达林顿」连接, 是使用相同类型的晶体管. 而「异极 型达林顿」连接,是使用NPN和 PNP晶体管相互串接达成达林顿的特性。 同极型达林顿管 异极型达林顿管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用 CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内 是小功率 NPN达林顿管 FN020。 3、驱动 LED智能显示屏 LED矩阵板作显示的系统,可用来显示各种文LED智能显示屏是由微型计算机控制, 以 字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2 是用 BD683(或 BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或 BD678)型 PNP 8 8LED() 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时, be 结的正反向阻 值和普通三极管不同。对于高速达林顿管,有些管子的前级 be 结还反并联一只输入二极管,这时测 出 be 结正反向电阻阻值很接近;容易误判断为坏管,这个请注意

达林顿管的四种接法与常用型号

达林顿管的四种接法 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1 C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。 设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,和前一三极管相同。即为NPN型。 PNP+NPN的接法和此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN和PNP晶体管相互串接达成达林顿的特性。 同极型达林顿管

异极型达林顿管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型P NP达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。

达林顿管参数选型指南

型号极性 P CM I C BV CBO BV CEO BV EBO Min Max V CE(sat) 封装形式(mW)(mA)(V)(V)(V)(V) 2SD2142NPN2003004032125000 1.4SOT-23 BC516PNP6251000403010300001TO-92 BCV27NPN300500403010200001SOT-23 BCV47NPN300500806010100001SOT-23 BST52NPN50050090802000 1.3SOT-89-3L CZT122NPN10005000100100510004SOT-223 CZT127PNP10005000100100510004SOT-223 KSD1692NPN125030001501008200020000 1.2TO-126 MJD112NPN1000200010010051000120003TO-252-2L(4R) MJD112NPN1000200010010051000120003TO-251-3L MJD117PNP1750200010010051000120003TO-252-2L(4R) MJD117PNP1750200010010051000120003TO-251-3L MJD122NPN1500800010010051000120002TO-252-2L(4R) MJD122NPN1500800010010051000120002TO-251-3L MJD127PNP1500800010010051000120004TO-252-2L(4R) MJD127PNP1500800010010051000120004TO-251-3L MMBTA13NPN30030030301010000 1.5SOT-23 MMBTA14NPN30030030301020000 1.5SOT-23 SHENZHEN LIYOU TECHNOLOGY CO.,LTD

检测达林顿管的方法

铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说, 绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对 蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研 究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。 实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电 池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了 快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下: 很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的

达林顿管的典型应用、分类检测及常用参数

达林顿管的典型应用、分类检测及常用参数 达林顿管又称复合管。它将二只三极管适当的连接在一起,以组成一只等效的新的三极管。这等于效三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 达林顿管的四种接法 ?达林顿电路有四种接法:NPN+NPN,PNP +PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。 以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,与前一三极管相同。即为NPN型。 PNP+NPN的接法与此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN与PNP晶体管相互串接达成达林顿的特性。 达林顿管的典型应用 ?1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。 虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP达林顿管作行驱动器,控制 8×8LED矩阵板上相应的行(或列)的像素发光。

达林顿管的四种接法与常用型号

达林顿管的四种接法 ?达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,和前一三极管相同。即为NPN型。 PNP+NPN的接法和此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN和PNP晶体管相互串接达成达林顿的特性。 同极型达林顿管 异极型达林顿管

达林顿管的典型应用 ?1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP 达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值和普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意 4、判断达林顿管等效为何种类型的三极管: 首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,和第二只无关!更加重要的是要看看这两只管构成的达林顿管能不能正常工作,如果工作电流冲突,则直接否定这只管。 达林顿管的分类检测 ?1.普通达林顿管的检测方法 普通达林顿管内部由两只或多只晶体管的集电极连接在一起复合而成,其基极B和发射极E之间包含多个发射结。检测时可使用万用表的R×1k或R×10k档来测量。 测量达林顿管各电极之间的正、反向电阻值。正常时,集电极C和基极B之间的正向电阻值(测NPN管时,黑表笔接基极B;测PNP管时,黑表笔接集电极C)值和普通硅晶体管集电结的正向电阻值相近,为3~10kΩ之间,反向电阻值为无穷大。而发射极E和基极B 之间的的正向电阻值(测NPN管时,黑表笔接基极 B;测PNP管时,黑表笔接发射极E)是集电极C和基极B之间的正、反向电阻值的2~3倍,反向电阻值为无穷大。集电极C和发射

达林顿管的检测方法和参数

达两只管的 图管(于各 hF 因此成高合器无保1. 普极E 测阻值管集之间是集发射电阻林顿2. 大 大路,达林顿晶体管只或更多只晶的基极,依次1是由两只(TI-Tn )组成各管放大系数FE ≈hFE1·hF 此,达林顿管高增益放大器器中,也有用保护电路,另一普通达林顿管普通达林顿管之间包含多测量达林顿管值(测NPN 管集电结的正向间的的正向电集电极C 与基射极E 之间的阻值或BE 极、顿管的 BE 极大功率达林顿大功率达林顿在测量时应管DT (Dar1i 晶体管的集电次级连而成,NPN 或PNP 成,每只晶体数的乘积: FE2……hFEn 管具有很高的器,还能提高达林顿管作一类则带有保管的检测方法管内部由两只多个发射结。管各电极之间管时,黑表笔向电阻值相近电阻值(测N 基极B 之间的的正、反向电、BC 极之间极或BC 极之间顿管的检测 顿管在普通达应注意这些元ngton Trans 电极连在一起最后引出E 、P 型晶体管构体管的放大系 放大系数,值驱动能力,获为接收管的。保护电路。下法 只或多只晶体检测时可使间的正、反向笔接基极B ;近,为3~10k ?NPN 管时,黑的正、反向电电阻值均应接的正、反向间的、反向电 达林顿管的基元器件对测量sistor )亦称,而将第一只B 、C 三个构成达林顿管系数分别这h 值可以达到几获得大电流输。达林顿管产面分别介绍使体管的集电极使用万用表的向电阻值。正测PNP 管时之间,反向黑表笔接基极电阻值的2~3近无穷大。若电阻值均接近电阻值为无穷基础上增加了数据的影响称复合晶体管只晶体管的发个电极。 管的基本电路hFE1、hFE2几千倍,甚至输出,构成达产品大致分成使用万用表检极连接在一起R×1k 或R×正常时,集电时,黑表笔接向电阻值为无极 B ;测PN 3倍,反向电若测得达林顿近0,则说明穷大,则说明由续流二极管。 。它采用复合发射极直接耦路。假定达林、hFEn 。则总至几十万倍。达林顿功率开成两类,一类检测这两类达起复合而成,×10k 档来测电极C 与基极接集电极C )值无穷大。而发P 管时,黑表电阻值为无穷顿管的C 、E 明该管已击穿明该管已开路管和泄放电阻合过接方式,耦合到第二只顿管由N 只总放大系数约利用它不仅开关管。在光类是普通型,达林顿管的方其基极B 与量。 极B 之间的正值与普通硅晶发射极E 与基表笔接发射极穷大。集电极极间的正、穿损坏。若测路损坏。 阻组成的保护,将晶体晶体约等能构电耦内部方法。 发射正向电晶体基极B 极E )C 与反向得达护电

达林顿管

简介 达林顿管就是两个三极管接在一起,极性只认前面的 三极管。具体接法如下,以两个相同极性的三极管为例,前面三极管集电极跟后面三极管集电极相接,前面三极管射极跟后面三极管基极相接,前面三极管功率一般比后面三极管小,前面三极管基极为达林顿管基极,后面三极管射极为达林顿管射极,用法跟三极管一样,放大倍数是两个三极管放大倍数的乘积。 编辑本段原理 达林顿管原理达林顿管又称复合管。为共基组合放大器,以组成一只等效的新的三极管。这等效于三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 编辑本段相关 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN.前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,与前一三极管相同。即为NPN型。PNP+NPN的接法与此类同。NPN PNP同极型达林顿三极管NPN PNP 等效一只三极管异极型达林顿三极管达林顿管的典型应用1、用于大功率开关电路、电机调速、逆变电路。2、驱动小型继电器利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。3、驱动LED智能显示屏LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值与普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近,容易误判断为坏管,请注意。4、判断达林顿管等效为何种类型的三极管:首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,与第二只无关!更加重要的是,要判断两个晶体管能否形成达林顿管关键要看电流,如果工作电流冲突,则不能构成达林顿管结构。也可以根据PNP或者NPN管的标志来判断,其实本质上三极管上所标的箭头也是其工作电流的流向。

达林顿三极管原理

达林顿三极管原理 达林顿管 达林顿三极管又称复合三极管,它将二只三极管组合在一起,以组成一只等效的新的三极管。达林顿三极管的放大倍数是二只三极管放大倍数之积。达林顿三极管可以看作是一种直接耦合的放大器,三极管间以直接方式串接,没有加上任何耦合元件。这样的晶体管串接型式最大的作用是:提供高电流放大增益。 达林顿的特性: 1. 高电流增益 2. 电压增益约等于1(小于1) 3. 高输入阻抗 4. 低输出阻抗 5. 放大倍数等于两管之积,漏电流影响极大,造成电路不稳定 两只三极管同为NPN型,将前级三极管的射极电流直接引入下一级的基极,当作下级的输入。这种使用相同类型的三极管组成的达林顿管称为同极型达林顿管。 同极型达林顿三极管: NPN

PNP 使用不同类型的三极管组成的达林顿管称为异极性达林顿管。异极型达林顿三极管: NPN PNP 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN. PNP+NPN的接法与此类同。 NPN PNP 等效一只三极管是异极型达林顿三极管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器

3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值与普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意 4、判断达林顿管等效为何种类型的三极管: 首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,与第二只无关!

什么是达林顿管

什么是达林顿管? 达林顿管又称复合管。他将两个三极管串联,以组成一只等效的新的三极管。这只等效三极管的放大倍数是原二者之积,因此它的特点是放大倍数非常高。达林顿管的作用一般是在高灵敏的放大电路中放大非常微小的信号,如大功率开关电路。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。达林顿管的接法达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN.前二种是 同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C1B2应接一起,E1C2应接一起。 等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等 效三极管极性,与前一三极管相同。即为NPN型。PNP+NPN 的接法与此类同。如下图所示,两级放大器元件同为NPN 型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN与PNP晶体管相互串接达成达林顿的特性。同极型达林顿管异极型达林顿管典型应用1、用于大功率开关电路、电机调速、逆变电

路。2、驱动小型继电器利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。3、驱动LED智能显示屏LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。图2是用 BD683(或BD677)型中功率NPN达林顿管作为列驱动器, 而用BD682(或BD678)型PNP达林顿管作行驱动器,控制 8×8LED矩阵板上相应的行(或列)的像素发光。应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值与普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意4、判断达林顿管等效为何种类型的三极管:首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,与第二只无关!更加重要的是要 看看这两只管构成的达林顿管能不能正常工作,如果工作电流冲突,则直接否定这只管。

达林顿管 简单的解释 资料

一、 达林顿管的电路结构 1、 概述 达林顿管又称复合三极管。它是将两个三极管适当的连接在一起,以组成一个等效的新的三极管。这个新的三极管就是达林顿三极管。其放大倍数是两者放大倍数的乘ch éng 积j ī 。一般应用于功率放大器、稳压电源电路中。 2、 达林顿管的电路连接 达林顿三极管通常由两个三极管组成,这两个三极管可以是同型号的,也可以是不同型号的;可以是相同功率,也可以是不同功率。无论怎样组合连接,最后所构成的达林顿三极管的放大倍数都是二者放大倍数乘积。 达林顿管电路连接一般有四种接法:即NPN+NPN 、PNP+PNP 、NPN+PNP 、PNP+NPN 。 它们连接如图所示。 图a 、b 所示同极性接法;图c 、d 所示异极性接法。在实示应用中,用得最普遍是前两种同极性接法。通常,图a 接法达林顿三极管叫“NPN 达林顿三极管”;而图b 接法的达林顿三极管称为“PNP 达林顿管”。 两个三极管复合成一个新的达林顿管后,他的三个电极仍然叫: B →基极、 C →集电极、 E →发射极。 达林顿管有一个特点就是两个三极管中,前面三极管的功率一般比后面三极管的要小,前面三极管基极为达林顿管基极,后面三极管射极为达林顿管射极。所以达林顿管在电路中使用方法与单个普通三极管一样,只是放大倍数β是两个三极管放大倍数的乘积。 二、 达林顿管的特点与用途 1、 达林顿管的性能特点 (1) 放大倍数大(可达数百、数千倍); (2) 驱动能力强; (3) 功率大; (4) 开关速度快; (5) 可做成功率放大模块; (6) 易于集成化。 2、 达林顿管的主要用途 (1) 多用于大负载驱动电路; (2) 多用于音频功率放大器电路; (3) 多用于中、大容量的开关电路; (4) 多用于自动控制电路。 三、 达林顿管典型电路 1、 电子开关电路

达林顿管的四种接法与常用型

达林顿管的四种接法与 常用型 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

达林顿管的四种接法 达林顿电路有四种接法:NPN+NPN,PNP+PNP,NPN+PNP,PNP+NPN. 前二种是同极性接法,后二种是异极性接法。NPN+NPN的同极性接法:B1为B,C1C2为C,E1B2接在一起,那么E2为E。这里也说一下异极性接法。以NPN+PNP为例。设前一三极管T1的三极为C1B1E1,后一三极管T2的三极为C2B2E2。达林顿管的接法应为:C 1B2应接一起,E1C2应接一起。等效三极管CBE的管脚,C=E2,B=B1,E=E1(即C2)。等效三极管极性,和前一三极管相同。即为NPN型。 PNP+NPN的接法和此类同。 如下图所示,两级放大器元件同为NPN型晶体管,将前级晶体管的射极电流直接引入下一级的基极,当作下级的输入。「同极型达林顿」连接,是使用相同类型的晶体管.而「异极型达林顿」连接,是使用NPN和PNP晶体管相互串接达成达林顿的特性。 同极型达林顿管 异极型达林顿管 达林顿管的典型应用 1、用于大功率开关电路、电机调速、逆变电路。 2、驱动小型继电器 利用CMOS电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示。虚线框内是小功率NPN达林顿管FN020。 3、驱动LED智能显示屏 LED智能显示屏是由微型计算机控制,以LED矩阵板作显示的系统,可用来显示各种文字及图案。该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管。

图2是用BD683(或BD677)型中功率NPN达林顿管作为列驱动器,而用BD682(或BD678)型PNP达林顿管作行驱动器,控制8×8LED矩阵板上相应的行(或列)的像素发光。 应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值和普通三极管不同。对于高速达林顿管,有些管子的前级be结还反并联一只输入二极管,这时测出be结正反向电阻阻值很接近;容易误判断为坏管,这个请注意 4、判断达林顿管等效为何种类型的三极管: 首先看看第一只管是什么类型的,第一只管是什么类型的,那么这只达林顿管就是什么类型的,和第二只无关!更加重要的是要看看这两只管构成的达林顿管能不能正常工作,如果工作电流冲突,则直接否定这只管。 达林顿管的分类检测 1.普通达林顿管的检测方法 普通达林顿管内部由两只或多只晶体管的集电极连接在一起复合而成,其基极B和发射极E之间包含多个发射结。检测时可使用万用表的R×1k或R×10k档来测量。 测量达林顿管各电极之间的正、反向电阻值。正常时,集电极C和基极B之间的正向电阻值(测NPN管时,黑表笔接基极B;测PNP管时,黑表笔接集电极C)值和普通硅晶体管集电结的正向电阻值相近,为3~10kΩ之间,反向电阻值为无穷大。而发射极E和基极B之间的的正向电阻值(测NPN管时,黑表笔接基极 B;测PNP管时,黑表笔接发射极E)是集电极C和基极B之间的正、反向电阻值的2~3倍,反向电阻值为无穷大。集电极C和发射极E之间的正、反向电阻值均应接近无穷大。若测得达林顿管的C、E极间的正、反向电阻值或BE极、BC极之间的正、反向电阻值均接近0,则说明该管已击穿损坏。若测得达林顿管的 BE极或BC极之间的、反向电阻值为无穷大,则说明该管已开路损坏。 2. 大功率达林顿管的检测 大功率达林顿管在普通达林顿管的基础上增加了由续流二极管和泄放电阻组成的保护电路,在测量时应注意这些元器件对测量数据的影响。

相关文档