文档库 最新最全的文档下载
当前位置:文档库 › 翻译发动机

翻译发动机

翻译发动机
翻译发动机

Engine

The engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine: gasoline (also called a spark-ignition engine) and diesel (also called a compression-ignition engine). Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the transmission

All engines have fuel, exhaust, cooling, and lubrication systems. Gasoline engines also have an ignition system. The ignition system supplies the electric spark needed to ignite the air-fuel mixture in the cylinders. When the ignition switch is turned on, current flows from the 12-volt storage battery to the ignition coil. The coil boosts the voltage to produce the strong spark of 20,000 V needed to ignite the engine fuel.

The automobile supplies all the electricity it needs through its electrical system. For example, the electrical system supplies electricity for the ignition, horn, lights, heater, and starter. The electricity level is maintained by a charging circuit.

The fuel system stores liquid fuel and delivers it to the engine. The fuel is stored in the tank, which is connected to a fuel pump by a fuel line.

The cooling system removes excessive heat from the engine. The temperature in engine combustion chambers is about 2,000℉( 1,094℃). Since steel melts at around 2,500℉(1,354℃), this heat must be carried away to prevent engine damage. Air and a coolant are used to carry away the heat. The radiator is filled with a coolant. The water pump circulates this coolant through the hollow walls of the engine block and head. Constant circulation of the coolant through the engine and the radiator removes heat from the engine.

Heat also is removed by the radiator fan, which draws air through the narrow fins of the radiator. This system also supplies heat to the passenger compartment and the window defrosters.

The lubrication system is important in keeping the engine running smoothly. Motor oil is the lubricant used in the system. The lubrication system has four functions:

1. It cuts down friction by coating moving parts with oil.

2. It produces a seal between the piston rings and the cylinder walls.

3. It carries away sludge, dirt, and acids.

4. It cools the engine by circulating the motor oil.

To keep this system working efficiently, oil filters and motor oil must be changed regularly.

The automotive engine is essentially a heat engine. The heat engines used in automobiles are internal combustion engines.

1. Principle of Operation

The spark-ignition engine is an internal-combustion engine with externally supplied in ignition. The gasoline engine is a kind of spark-ignition engines.

The four-stroke-cycle gasoline engine cycle is spread over four piston strokes. The operation strokes are

The first stroke in your engine is called the intake stroke. Instead of opening the intake valve after you have drawn the piston down, you will find it better to open the intake valve as the piston starts down [1]. This allows the air to draw fuel in the entire time the piston is moving down. Remember, the intake stroke starts with the piston at the top of the cylinder (intake valve open and exhaust valve closed) and stops with the piston at the bottom of its travel [2]. This requires one-half turn of

the crankshaft

As the crankshaft continues to move, the piston is forced up through the cylinder. If you keep both valves closed, the fuel mixture will be squeezed, or compressed, as the piston reaches the top. This is called the compression stroke. It, too, requires a half turn of the crankshaft.

The compression stroke serves to break up the fuel into even smaller particles. This happens due to the sudden swirling and churning of the mixture as it is compressed.

When the air-fuel mixture is subjected to a sudden sharp compression force, its temperature rises. This increase in temperature makes the mixture easier to ignite and causes it to explode with greater force. As the piston reaches the top of its travel on the compression stroke, it has returned to the proper position to be pushed back down by the explosion.

Remember, the compression stroke starts with the piston at the bottom of the cylinder (both valves closed) and stops with the piston at the top of the cylinder. This requires an additional half turn of the crankshaft.

As the piston reaches the top of the compression stroke, the mixture is broken into tiny particles and heated up. When ignited, it will explode with great force. This is the right time to explode the mixture. A spark plug provides a spark inside the combustion chamber. The spark produced at the plug is formed by the ignition system.

Just imagine that a hot spark has been provided in the fuel mixture. The mixture will explode and, in turn, force the piston down into the cylinder. This gives the crankshaft a quick and forceful push. This is the power stroke. Both valves must be kept closed during the power stroke or the pressure of the burning fuel will squirt out through the valve pods. Remember, the power stroke starts with the piston at the top of the cylinder (both valves closed) and stops with the piston at the bottom of the cylinder. This requires another half turn of the crankshaft.

When the piston reaches the bottom of the power stroke, the exhaust valve opens. The spinning crankshaft forces the piston up through the cylinder, pushing burned gases out. This is the exhaust stroke.

Remember, the exhaust stroke starts with the piston at the bottom of the cylinder (exhaust valve open and intake valve closed). It stops with the piston at the top of the cylinder. This requires one more half turn of the crankshaft.

If you count the number of half turns in the intake, compression, power, and exhaust strokes, you will find you have a total of four. This gives you two complete turns, or revolutions, of the crankshaft. While the crankshaft is turning around twice, it is receiving power only during one half turn, or one fourth of the time.

Each complete cycle consists of four strokes of the piston, hence the name four-stroke cycle.

2. Main Engine Components

1)Engine block

The engine block serves as a rigid metal foundation for all parts of an engine. It contains the cylinders and supports the crankshaft and camshaft. In older engines, the valve seats, ports, and guides are built into the block. Accessory units and the clutch housing are bolted to it.

Blocks are made of either cast iron or aluminum. The lighter the block (providing it has sufficient strength), the better. The modern thin-wall casting process controls core size and placement much more accurately than the older casting process. This permits casting the block walls much thinner, reducing the weight of the block. Since the block wall thickness is more uniform, block distortion during service is less severe.

2)cylinder

The cylinder is a round hole formed in the block. It forms a guide for the piston and acts as a container for taking in, compressing, firing, and exhausting the air-fuel charge. Cylinders have been made of both steel and cast iron. Cast iron is by far the most popular.

When steel cylinders are desired in an aluminum block, they are installed in the form of cylinder sleeves (round, pipe-like liners), These sleeves may be either cast or pressed into the block. Some engines use removable cylinder sleeves. When the cylinder becomes worn, the old sleeves can be pulled out and new sleeves can be pressed in. The sleeves are pressed into oversize cylinder holes. Cylinder sleeves are widely used in heavy-duty truck and industrial engines. Sleeves can also be used to repair a worn or cracked cylinder in a cast iron block.

3)Pistons

The piston must move down through the cylinder to produce a vacuum to draw a fuel charge into the cylinder. It then travels up in the cylinder and compresses the mixture. When the mixture is fired, the pressure of the expanding gas is transmitted to the top of the piston. This drives the piston back down through the cylinder with great force, transmitting the energy of the expanding gas to the crankshaft. The piston then travels up through the cylinder and exhausts the burned fuel charge.

Pistons are usually made of aluminum. Often, aluminum pistons are tin-plated to allow proper break-in when the engine is started. Aluminum pistons can be forged, but they are more commonly cast. Cast iron is a good material for pistons used in a slow-speed engine. It has excellent wear characteristics and will provide good performance.

4)Connecting Rods

As the name implies, connecting rods are used to connect pistons to the crankshaft. The upper end of the rod oscillates (swings back and forth), while the lower, or big end, bearing rotates (turns).

Because there is very little bearing movement in the upper end, the bearing area can be reasonably small. The lower end rotates very fast, and the crankshaft bearing journal turns inside the connecting rod. This rotational speed tends to produce heat and wear. To make the rod wear well, a larger bearing area is required.

The upper end of the rod has a hole through it for the piston pin. The bottom of the large end of the connecting rod must be removed so the rod can be installed on the crankshaft journal. The section that is removed is called the connecting rod cap.

Connecting rods are normally made of alloy steel. They are drop-forged to shape and then machined.

5)Crankshaft

The engine crankshaft provides a constant turning force to the wheels. It has throws to which connecting rods are attached, and its function is to change the reciprocating motion of the piston to a rotary motion to drive the wheels. Crankshafts are made of alloy steel or cast iron.

The crankshaft is held in position by a series of main bearings. The maximum number of main bearings for a crankshaft is one more than the number of cylinders. It may have fewer main bearings than cylinders. Most engines use precision insert bearings that are constructed like the connecting rod bearings, but are somewhat larger. In addition to supporting the crankshaft, one of the main bearings must control the forward and backward movement.

6)flywheel

A heavy flywheel is attached to the rear of the crankshaft with bolts. The function of the flywheel is to smooth out engine speed and keep the crankshaft spinning between power strokes, in some engines, the flywheel also serves as a mounting surface for the clutch. The outer rim of the flywheel has a large ring attached with gear teeth cut into it. The teeth of the starter motor engage these teeth and spin the flywheel to crank the engine. When an automatic transmission is used, the torque converter assembly works with the flywheel.

7)Camshaft

The camshaft is used to open and close the valves. There is one cam on the camshaft for each valve in the engine. Generally only one camshaft is used in most engines. Newer engines are increasingly equipped with two or more camshafts

8)Valves

Each engine cylinder ordinarily has two valves. However, modern engines often use four valves per cylinder (two intake and two exhaust). A few engines used in smaller vehicles have three or five valves per cylinder: two intake valves and one exhaust valve or three intake valves and two exhaust valves.

Because the head of an exhaust valve operates at temperatures up to 1300℉(704℃), valves are made of heat-resistant metal. In order to prevent burning, the valve must give off heat to the valve seat and to the valve guide. The valve must make good contact with the seat and must run with minimum clearance in the guide.

9)Valve Lifters

Mechanical valve lifters are usually made of cast iron. The bottom part that contacts the camshaft is hardened. Some lifters are hollow to reduce weight. Most valve trains that contain mechanical lifters have some provision for adjusting clearance. Mechanical valve lifters were used in older engines.

Hydraulic valve lifters perform the same job as mechanical lifters. However, hydraulic lifters are self-adjusting, operate with no lifter-to-rocker arm clearance, and uses engine oil under pressure to operate. Hydraulic lifters are quiet in operation.

3. Engine Classification

1)Cycle Classification

Engines are often classified according to cycle. Most internal combustion piston engines use a two- or four-stroke cycle. All modern automobile engines use the four-stroke cycle engine.

The two-stroke cycle engine performs the intake, compression, firing, and exhaust sequence in one revolution of the crankshaft.

Cylinder Classification

The inline engine has its cylinders arranged one after the other in a straight line. They are in a vertical, or near vertical position. Most modern inline engines are four cylinders.

A V-type engine places two banks or rows of cylinders at an angle to each other—generally at 60°or 90°. The V-type engine has several advantages: short length, extra block rigidity, a short, heavy crankshaft, and low profile that is conducive to low hood lines. The shorter block permits a reduction in vehicle length with no sacrifice in 2)passenger room.

The horizontal opposed engine is like a V-type engine, except that both banks lie in a horizontal plane. The advantage here is an extremely low overall height, which makes this engine ideally suited to installations where space is limited.

Cooling Classification

As you have learned, engines are either liquid-cooled or air-cooled. Most vehicles use liquid-cooled engines. Air-cooled engines are used in limited numbers on modern vehicles.

3)Fuel Classification

Automobile engines can use gasoline, diesel fuel, gasohol (mixture of gasoline and alcohol), alcohol, LNG (liquefied natural gas), CNG (compressed natural gas), or LPG (liquefied propane gas). Gasoline powers the majority of vehicles, but diesel fuel is used in some vehicles. Gasohol, LNG, CNG, and LPG are beginning to see wider use. One of the principal differences in these engines is in method of fuel delivery and carburetion. Gasoline, LNG, CNG, and LPG utilize the same basic type of engine, but LNG, CNG, and LPG utilize a slightly different fuel delivery setup. Diesel engines do not use a carburetor or an ignition system.

1.发动机

发动机是汽车的动力装置。内燃机是最常见的动力装置,它使燃料在气缸内燃烧,从而获得动力。发动机有两种类型:汽油机(也叫做点燃式发动机)和柴油机(也叫做压燃式发动机)。这两种发动机均被称为热机。燃料的燃烧产生了热量,这将导致气缸内的气体压力的升高,从而带动与变速器相连接的一根轴旋转。

所有的发动机都设有燃料供给系统、排气系统、冷却系统和润滑系统。汽油机还设有点火系统。点火系统的作用是提供点燃气缸内的空气-燃油混合气必须的电火花。当点火开关接通时,电流从12V蓄电池流到点火线圈。点火线圈将电压提高,以便产生点燃燃料所必须的20000V的高电压。

汽车通过其电气系统提供它所需要的全部电流。例如,汽车电气系统要为点火系统、喇叭、车灯、加热器和起动机提供电流。电压的高低由充电系统来维持。

燃料系统贮存液体燃料,并将液体燃料输送给发动机。燃料贮存在燃油箱内,燃油箱通过燃油管与燃油泵相连。

冷却系统将多余的热量从发动机上搬走。发动机燃烧室内的温度约为2000℉(1094℃)。由于钢铁在大约2500℉(1354℃)时就会熔化,为了防止发动机损坏,必须将这些热量移走。散热器内充满冷却液,水泵将使这些冷却液反复通过发动机气缸体和气缸盖内的空心薄壁层。冷却液不停地流过发动机和散热器,从而将发动机的热量散发出去。也可以通过散热器风扇将热量散发掉,因为风扇能使空气从散热器叶片的狭小缝隙中穿过。冷却系统还能为乘客舱和车窗除霜器提供热量。

润滑系统对保持发动机平稳运转极为重要。该系统所用的润滑剂叫做机油。润滑系统有四个功能:

1)在运动部件表面涂覆机油,降低摩擦;

2)加强了活塞环与气缸壁之间的密封;

3)带走残渣、尘土和酸类物质;

4)使机油循环流动,以便对发动机进行冷却。

为了保持冷却系统工作具有高效率,必须定期更换机油滤清器和机油。

汽车发动机本质上是一种热力发动机。热发动机用于汽车内燃机。

1.发动机工作原理

点燃式发动机是一种采用外部点火的内燃机。汽油机是一种点燃式发动机。

四冲程循环汽油机工作循环包含四个活塞冲程。发动机的第一个冲程被称为进气冲程。在活塞下行之后,进气门不只是打开,而且会随活塞的下行,开度还在进一步增大。这样,可使空气在整个活塞下行期间能将燃料吸出来。

记住,进气行程在活塞位于气缸顶部(进气门开启,排气门关闭)时开始,在活塞到达气缸的底部时结束。这个行程需要曲轴转半圈。

随着活塞继续运动,活塞在气缸中向上运动。如果两个气门都保持关闭,当活塞到达顶部时,含有燃油的混合气就会受到挤压,即压缩。这个过程被称为压缩行程。这个行程也需要曲轴转半圈。

压缩行程用来将燃油粉碎成较小的颗粒。这是混合气受到压缩时,突然出现涡流运动和受到搅动的结果。

当混合气突然受到急剧增长的压缩压力时,其温度就会上升。这种温度的增长使混合气更容易点火,爆发力更大。当活塞到达其压缩行程的顶点时,它就回到了将要受到爆发力而被向下推动的适当位置。

记住,压缩行程在活塞位于气缸底部(两个气门均关闭)时开始,在活塞到气缸的顶部时结束。这个行程需要曲轴再转半圈。

当活塞到达压缩行程顶部时,混合气被粉碎成许多微小颗粒,温度升高。当点火时,混合气就会爆炸,产生极大的爆发力。这个时刻就是混合气爆炸性燃烧的最佳时机。火花塞能在燃烧室内产生火花。靠点火系统火花塞才能产生火花。

设想一下,在燃油空气混合气中有一个灼热的火花的情形。混合气将会爆炸,并将推动活塞沿气缸下行。这将对曲轴产生一个快速而有力的推动作用。这就是作功行程。在作功行程期间,两个气门必须保持关闭,否则,燃料燃烧的压力就会通过气门口产生泄漏。记住,作功行程在活塞位于气缸顶部(两个气门都关闭)时开始,在活塞到达气缸的底部时结束。这个行程需要曲轴再转半圈。

当活塞到达作功行程的底部时,排气门开启,旋转的曲轴迫使活塞向上运动,将燃烧废气驱赶出去。这个行程叫做排气行程。

记住,排气行程在活塞位于气缸底部(排气门开启,进气门关闭)时开始,在活塞到达气缸的顶部时结束。这个行程又需要曲轴转半圈。

如果你数着进气、压缩、作功和排气行程所经历的半圈的个数,你就会知道总共有4个半圈。也就是,曲轴正好转两圈。尽管曲轴转过两圈,但是只有半圈,即四分之一的时间,曲轴能够得到动力。

一旦活塞到达排气行程的顶部,它就会另一个进气、压缩、作功、排气循环。这个循环反复进行。每个完整的循环都是由四个活塞行程所组成,因而得名四冲程循环。

2.发动机主要部件

1)气缸体

气缸体是安装发动机所有部件的一个刚性金属基础件。它内含气缸,支承曲轴和凸轮轴。在老式发动机上,气门座、气道、气门导管均在气缸体上直接制成。一些附件总成和离合器壳用螺栓固定在气缸体上。

气缸体或由铸铁制成,或由铝制成。气缸体越轻(倘若具有足够的强度)越好。现代薄壁铸造工艺的型心尺寸精度和位置精度要比老式铸造工艺高得多,从而能够铸造出更薄的气缸体间隔层,降低了气缸体的重量。由于气缸体间隔层更均匀,维修期间的气缸体变形将会减轻。

2)气缸

气缸是在气缸体上加工形成的圆孔,它对活塞起导向作用的,同时用作一个容器,来

实现空气-燃油混合气的吸入、压缩、点火和排气。气缸既可以用钢也可以用铸铁来制造,到目前止,使用铸铁的最多。在铝气缸体内希望采用钢质气缸时,这些气缸就会以气缸套(圆管形)的形式安装在铝气缸体上。这些气缸套或者铸入或者压入气缸体。有些发动机采用可更换式气缸套。当气缸磨损时,可将旧气缸套拉出来,再压入新气缸套。这些气缸套要压入到加大尺寸的气缸孔中。气缸套广泛用于重型货车发动机和工业发动机。铸铁气缸体中的一个气缸磨损或者开裂,也可用气缸套进行修复。

3)活塞

活塞必须在气缸内向下运动,从而产生真空,将含燃油的混合气吸入气缸。然后再向上运动,压缩混合气。当混合气点火之后,膨胀气体的压力就作用于活塞顶上,在这个强大的压力下活塞向下运动,从而将膨胀气体的能量传递给曲轴。然后,活塞再在气缸内向上运动,是燃烧废气排出去。

通常,活塞由铝制成。铝活塞的表面常常镀锡,以便在发动机开始运转阶段能进行适当的磨合。铝活塞可以用锻造的方法制成,但常用的制造方法是铸造。铸铁活塞是制造低速发动机活塞的好材料。它具有优异的耐磨性,因而具有良好的可靠性。

4)连杆

顾名思义,连杆用于连接活塞与曲轴。连杆的上端来回运动(上下来回摆动),而下端(即大端)轴承转动。

上端轴承运动量小,因此轴承表面积可以适当减小。下端转动非常快,并且曲轴轴颈在连杆内转动。这种转动的速度往往会产生热量和磨损。为了使连杆磨损不能过大,需要较大的轴承表面积。

连杆的上端有一个孔,用于安装活塞销。必须将连杆大端的底部移走,才能使连杆安装到曲轴轴颈上。被移走的部分叫做连杆盖。

通常,连杆是由合金钢制成。制造时,先将连杆进行锤锻成型,然后再进行机加工。

5)曲轴

发动机的曲轴连续不断地为车轮提供旋转力。曲轴上有用于连接连杆的曲柄。曲轴的作用是将活塞的往复运动转变成驱动车轮的旋转运动。曲轴用合金钢或铸铁制成。

曲轴的位置通过一系列的主轴承来保持。曲轴主轴承的最大数目要比气缸数目多一个。曲轴主轴承数可以比气缸数少。大多数发动机使用精密的轴瓦,其结构与连杆轴承一样,只是更大些。除了制成曲轴外,主轴承中有一个必须能够控制曲轴的前后运动。

6)飞轮

曲轴的后端用螺栓固定一个重重的飞轮。飞轮的作用是使发动机转速均匀并在做功行程之间维持曲轴转动,在有些发动机上,飞轮还用作离合器的安装表面。飞轮的外缘装有一个上面制有齿轮牙齿的大圈。起动机的牙齿与这些齿啮合,因而带动飞轮旋转,使发动机起动。当采用自动变速器时,液力变矩器总成与飞轮一起工作。

7)凸轮轴

凸轮轴用于打开和关闭气门。在发动机上每个气门对应着凸轮轴的一个凸轮。大多数发动机一般只有一根凸轮轴。新型发动机越来越多地采用两根甚至更多的凸轮轴。

8)气门

一般,发动机的每个气缸具有两个气门。然而,现代发动机常常采用每缸四气门(两个进气门,两个排气门)。有些小型汽车采用的发动机采用每缸三个或五个气门:两个进气门和一个排气门,或者三个进气门和二个排气门。

由于排气门的头部的工作温度高达1300℉(704℃),因此排气门由耐热钢制成。为了防止烧蚀,气门必须将热量传给气门座和气门导管。气门与气门座之间必须接触良好,与导管之间具有最小间隙。

9)气门挺杆

机械式气门挺杆通常由铸铁制成,并且与凸轮轴接触的底部经过淬火而变硬。有些挺杆制成空心结构,以便降低重量。大多数采用机械式挺杆的配气机构都设有调节气门间隙的某种机构。机械式气门挺杆用于老式发动机上。

液力式气门挺杆的作用于机械式气门挺杆相同。然而,液力式气门挺杆能够自行调节功能,工作时挺杆与摇臂之间无间隙,并且利用发动机润滑油压力来工作。液力挺杆工作时噪声小。

3. 发动机分类

1)按照工作循环进行分类

发动机常常按照工作循环予以分类。大多数活塞式内燃机采用二冲程循环或四冲程循环。所有现代汽车发动机均采用四冲程循环发动机。

二冲程循环发动机在曲轴旋转一圈内即可完成进气、压缩、作功和排气过程。

2)按照气缸布置进行分类

直列式发动机的各个气缸排成一条直线。这些气缸处于垂直位置或接近垂直位置。大多数现代直列式发动机都是四缸发动机。

V型发动机将两列气缸布制成具有相互之间具有一定的夹角(一般为60°或90°)。V 型发动机具有若干优点:长度缩短,气缸体刚度增大,曲轴短而重,发动机外廓尺寸小,有助于降低发动机罩轮廓线。气缸体长度缩短有助于缩短汽车长度,而不损害乘客舱空间。

水平对置式发动机与V型发动机是一样的,只不过是两列气缸在同一个水平面内。这样,水平对置式发动机的优点是发动机总高度特别小,因而非常适合于空间受到限制的场合。

3)按照冷却方式进行分类

正如你所学过的那样,发动机或采用水冷,或采用风冷。大多数车辆采用水冷式发动机。在现代汽车上,风冷式发动机只获得了有限的应用。

美国大学校名英文缩写

美国大学校名英文缩写 英文缩写英文全称中文全称 AAMU Alabama A&M 阿拉巴马农业机械大学ADELPHI Adelphi University 艾德菲大学AMERICAN American University 美国大学 ANDREWS Andrews University 安德鲁大学 ASU Arizona State University 亚利桑那州立大学AUBURN Auburn University 奥本大学 -B- BAYLOR Baylor University 贝勒大学 BC Boston College 波士顿学院 BGSU Bowling Green State University 博林格林州立大学BIOLA Biola University 拜欧拉大学BRANDEIS Brandeis University 布兰迪斯大学BROWN Brown University 布朗大学 BSU Ball State University 波尔州立大学 BU* Boston University 波士顿大学 BU SUNY Binghamton 纽约州立大学宾厄姆顿分校BYU Brigham Young Univ. Provo 百翰大学 *BU通常意义上指Boston University -C- CALTECH California Institute of Technology 加州理工大学 CAU Clark Atlanta University 克拉克亚特兰大大学 CLARKSON Clarkson University 克拉逊大学CLARKU Clark University 克拉克大学CLEMSON Clemson University 克莱姆森大学 CMU* Carnegie Mellon University 卡耐基梅隆大学CMU Central Michigan University 中央密歇根大学COLUMBIA Columbia University 哥伦比亚大学CORNELL Cornell University 康奈尔大学CSU* Colorado State 科罗拉多州立大学 CSU Cleveland State University 克里夫立大学CU* University of Colorado Boulder 科罗拉多大学波德分校 CU University of Colorado Denver 科罗拉多大学丹佛分校 CUA Catholic University of America 美国天主教大学 CWRU Case Western Reserve Univ. 凯斯西储大学*CMU 通常意义上指 Carnegie Mellon University *CSU 通用 *CU 通用

实用文档之汽车发动机的发展历程

实用文档之" 汽车发动机的发展历程" 摘要:汽车在现代社会生产生活中发挥着重要作用,而汽车发动机更是其核心部分;可以说汽车发动机的发展历程在一定程度上就是汽车的完善过程。本文阐述了汽车发动机的构造及原理,并讲述了汽车发动机的发展历程。而且笔者还对汽车发动机未来的发展趋势进行了合理预测。 【关键字】汽车发动机原理发展历程新技术 自从第二次工业革命以来,汽车得到迅猛发展。如今,汽车已经渗透到人类社会的各个方面。每天,数以千万计的汽车行驶在大大小小的公路上,而汽车生产所需的零件更是数以亿计。其广阔的市场使得汽车成为各种高科技应用的载体。汽车发动机为汽车提供动力,更是汽车的核心。汽车发动机的发展能极大地促进汽车的发展。在环境日益恶化的今天,传统发动机面临这巨大挑战。 1.发动机的类别 发动有很多种类,按不同划分方法有不同的类型。 按发动机所使用燃料来划分,发动机主要可分为汽油发动机、柴油发动机、天然气发动机、液化石油气发动机、混合动力发动机;根据发动机可分为四冲程发动机和二冲程发动机;按照气缸数,发动机可分为单缸发动机、两缸发动机、多缸(三缸以上)发动机;按照冷却方式不同,发动机可分为水冷式发动机(见图1)和风冷式发动机(见图2);根据排列方式,发动机可分为直列L型发动机、H型发动机、W型发动机、V型发动机等;按照发动机在车身上的布局不同,发动机可分为前置发动机,中置发动机和后置发动机。

2.发动机构造及原理 发动机是一个热能转换机构,通过在密封汽缸内燃烧汽油(柴油)或天然气,使气体膨胀并推动活塞做往复运动,从而使物质的内能转

化为机械能。发动机是一种有许多机构和系统组成的复杂的机械设备。无论是哪种类型的发动机,要想完成热能转化为机械能的能量转化过程,实现工作循环,保证发动机能持续正常工作,都离不开发动机中各个机构和系统之间的配合。 汽油机是由五大系统和两大连杆组成,即曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成。 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 在汽油机中,气缸内的可燃混合气是K电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。

发动机原理复习资料

此答案仅供参考,如有错误,请大家相互改正; 发动机原理复习资料 注意:考试试题类型有三种:填空题,选择题,名词解释,简答题,计算题。 1.发动机的示功图是什么?代表什么?参数有哪些? P-V图上曲线所包围的面积表示工质完成一个实际循环所做的有用功2,根据加热方式不同,发动机有三种基本空气标准循环,柴油机,汽油机近似

为哪种循环? 汽油机的理想循环:等容加热循环 ; 低速柴油机的理想循环:等压加热循环高速柴油机的理想循环:混合加热循环 定容加热混合加热定压加热 3. 实际循环与理论循环之间的差别由哪几项损失引起? ? 1.实际工质的影响 ? 2.换气损失 ? 3.燃烧损失 ? 4.传热损失 ? 5.缸内流动损失 ? 6.其他几项损失

4. 影响充气效率的因素包括哪几项? 影响ηv的因素有: ?进气(或大气〕的状态(ps、Ts) ?进气终了时气体压力(pa) ?进气终了的气体温度(Ta) ?残余废气系数(γ) ?压缩比(ε) ?气门正时(ξ) 5. 评定柴油自燃性好坏的指标,汽油抗爆性的指标是什么? 十六烷值辛烷值 6.预混合燃烧的燃烧过程实质是一个什么样的过程? 火焰在预混合气体中传播的过程 7. 四冲程发动机换气过程有哪些?

自由排气、强制排气、进气、气门叠开 8.四行程发动机换气过程的图是怎么样的?图上的内容表示什么?(以书本为准) (P23) 气缸压力p、排气管压力pr随曲轴转角的变化曲线

9.内燃机三种理想循环,在加热量和最高压力相同时,定容加热循环热效率、定压加热循环热效率和混合加热循环热效率的关系是怎么样的? ?循环总加热量相同时 定容加热循环热效率>混合加热循环热效率>定压加热循环热效率 ?最高压力相同时 定压加热循环热效率>混合加热循环热效率>定容加热循环热效率 10. 提高发动机升功率的措施有哪些? 提高平均有效压力(Pme)和转速(n) ,p mm怎么样变化?(答案自己找) 11.怠速工况时,Pe ,Pi,Pm,η m 12. 当其他条件不变,汽油发动机转速上升时,机械损失功率(Pm),机械效率,Pa,充气效率怎么变化? 机械损失功率增加、机械效率增加、充气效率提高 13. 本田公司的汽车技术VTEC指的是什么?英文名字是什么? VTEC系统全称是可变气门正时和升程电子控制系统 Variable Valve Timing and Lift Electronic Control System 14. 右图所示为Audi v6发动机的进气系统,其设计的依据原理什么? 15.什么是表面点火? 在汽油机中,凡是不靠电火花点火,而由燃烧室内炙热表面(排气门头部、火花塞绝缘体或零件表面炙热的沉积物)点燃混合气的现象,称为表面点火。 16.当发动机压缩比增加时,汽油机爆震倾向,柴油机工作粗暴情况变化如何?

汽车发动机原理课后答案

第一章 1简述发动机的实际工作循环过程。 答: 2画出四冲程发动机实际循环的示功图,它与理论示功图有什么不同?说明指示功的概念和意义。 理论循环中假设工质比热容是定值,而实际气体随温度等因素影响会变大,而且实际循环中还存在泄露损失.换气损失燃烧损失等,这些损失的存在,会导致实际循环放热率低于理论循环。指示功时指气缸内完成一个工作循环所得到的有用功Wi,指示功Wi反映了发动机气缸在一个工作循环中所获得的有用功的数量。 4什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。强化系数PmeCm. 第二章

1为什么发动机进气门迟后关闭.排气门提前开启?提前与迟后的角度与哪些因素有关/ 答:进气门迟后关闭是为了充分利用高速气流的动能,从而实现在下止点后继续充气,增加进气量。排气门提前开启是由于配气机构惯性力的限制,若在活塞到下止点时才打开排气门,则在排气门开启的初期,开度极小,废弃不能通畅流出,缸内压力来不及下降,在活塞向上回行时形成较大的反压力,增加排气行程所消耗的功。在发动机高速运转时,同样的自由排气时间所相当的曲轴转角增大,为使气缸内废气及时排出,应加大排气提前角。 2四冲程发动机换气过程包括哪几个阶段,这几个阶段时如何界定的? 答:1)自由排气阶段:从排气门打开到气缸压力接近于排气管内压力的这个时期。 强制排气阶段:废气是由活塞上行强制推出的这个时期。 进气过程:进气门开启到关闭这段时期。 气门重叠和燃烧室扫气:由于排气门迟后关闭和进气门提前开启,所以进.排气门同时

汽车发动机的发展史.docx

发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽 车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济 性、环保性。简单讲发动机就是一个能量转换机构,即将汽油 ( 柴油 ) 的热能,通过在密封气缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发 动机伴随着汽车走过了 100 多年的历史,无论是在设计上、制造上、工艺上 还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一 个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融 为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近 乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。 发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 往复活塞式四冲程汽油机是德国人奥托在大气压力式发动机基础上,于 1876 年发明并投入使用的。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。 1892年德国工程师狄塞尔发明了压燃式发动机( 即柴油机) ,实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当 时其他发动机又提高了 1 倍。1956 年,德国人汪克尔发明了转子式发动机, 使发动机转速有较大幅度的提高。1964 年,德国NSU公司首次将转子式发 动机安装在轿车上。 1926 年,瑞士人布希提出了废气涡轮增压理论,利用发动机排出的废 气能量来驱动压气机,给发动机增压。50 年代后,废气涡轮增压技术开始 在车用内燃机上逐渐得到应用,使发动机性能有很大提高,成为内燃机发 展史上的第三次重大突破。 1967 年德国博世公司首次推出由电子计算机控制的汽油喷射系统,开 创了电控技术在汽车发动机上应用的历史。经过30 年的发展,以电子计算

发动机原理

一、发动机性能 1.发动机性能评价的主要指标: 动力性指标: 功率P、转矩T tq、转速n、平均有效压力p e 经济性指标:燃油消耗率b、(润滑油消耗率) 环保性指标:有害排放物(CO、HC、NO x微粒)、噪声、振动 使用性指标:可靠性、耐久性、维修方便性 2.循环: 理想工质:①理想气体:空气 ②物性参数不随着压力、温度的变化而变化 理想循环:①封闭系统 ②进排气门的关闭看作瞬时的过程 ③压缩、膨胀看作绝热等熵过程 加热过程:方式:①等容放热过程:等容 ②等压 ③混合 a图:说明定容加热的热效率最高 b图:说明汽柴油机在Q1相同、最高压力相同下,汽油机热效率比柴油机热效率低,而且实际中P zmax柴>P zmax汽,所以汽油机热效率比柴油机热效率就更低了。 3. 理论循环分析的指导意义 指出了改善发动机动力性、经济性的基本原则和方向 a.在允许的条件下,尽可能提高压缩比ε b.合理组织燃烧,提高循环加热等容度(减少预膨胀比ρ和合理选择燃烧始点) c.保证工质具有较高的绝热指数K 4.自然吸气四冲程发动机pv 图废气涡轮增压四冲程发动机pv 图

5.指示指标 1)指示功(kJ) W i (一个实际循环工质对活塞所做的有用功,即净指示功,相当于示功图面积A1±A3) 2)平均指示压力(MPa) p mi=W i/ V s 3)平均指示功率(kw) P i = p mi V s in/30τ 4)指示热效率ηi=W i/Q1 =3.6/ b i hμ 5)指示燃料消耗率(g/(kw·h) ) b i=B/P i(单位指示功的耗油量)B—每小时耗油量(kg/h) 6.有效指标: 动力性指标: (1)有效功率(kJ) P e (曲轴输出功)= P i - P m (2)平均有效压力(MPa) p me=W e/ V s (3)有效功率(kw) P e= p me V s in/30τ (4)有效扭矩(N.m) P e= 2πnT tq/60*1000 = T tq n/9550 (5)转速n(转/min)和活塞平均速度C m (m/s)C m = Sn/30 经济性指标 (6)有效热效率ηe=We/Q1 =3.6/ behμ (7)有效燃料消耗率(g/(kw·h) ) be=B/Pe 发动机的强化指标 (1)升功率P L(kw.L)和比质量m e (kg/kw) P L = P e/V s i= p me V s in/30V s iτ = p me n/30τm e = m/ P e m—发动机的干质量,不含冷却水和润滑油的发动机质量 (2)强化系数p me C m p me C m越高,发动机的热负荷和机械负荷越大,发动机的发展趋势是强化系数的提高,故p me C m的提高也标志了技术的进步。 7.机械损失: (1) 组成与份额: Pm(机械损失功):指示功率不能完全对外输出,功在发动机内部传递过程中,不可避免有以下损失: 内部运动零件的摩擦损失;驱动附属机构的损失;泵气损失 a.发动机内部运动零件的摩擦损失(占P m的62~75%) 活塞组件与缸壁的摩擦(45~60% ) 、曲柄连机组轴承的摩擦、 (15~20% )气阀机构的摩擦(2~3% )等。 b.驱动附件的损失(占P m的10~20%) c.水泵、水箱风扇、机油泵、柴油机喷油泵、空调、转向助力泵等 泵气损失(占P m的10~20%) A3+A2 (2) 测量方法: a.示功图法 b.倒拖法:发动机按测试工况运行到正常稳定状态(水温、油温正常) ,断油或切断点火,立即将测功机转为电 动机运行,反拖发动机到同样转速,则测得的反拖功率即为机械损失功率。显然,这种测试方法必 然将泵气损失功包含在内了。 误差:(a)无燃烧,缸内压力低,活塞与缸套间隙加大;润滑油粘度加大,摩擦损失增加 (b)缸内工质温度低,工质密度大,排气压力加大,泵气损失增加。 (汽油机压缩比小,所以误差小,柴油机则误差较大。) c.灭缸法:用于多缸机 设N缸发动机正常运转时,测出有效功率Pe。然后第i缸灭火(停止供油或点火),在相同转速下 测定工作的N-1个气缸的有效功率(Pe)-i, 此时认为总的Pm 不变,则灭缸后所减少的输出功 率量为被灭缸的指示功率P i 误差:灭缸后进排气波动效应会影响各缸进气的均匀性,从而引起额外的测试误差。

中外高校校名国内研究所中文全称和英文缩写对照

中外高校校名国内研究所中文全称和英文缩写 对照 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

中文全称英文缩写 浙江大学ZHEJIANG UNIV 中国科学院CHINESE ACAD SCI 清华大学TSINGHUA UNIV 东南大学SOUTHEAST UNIV 大连理工大学DALIAN UNIV TECHNOL 南京大学NANJING UNIV 四川大学SICHUAN UNIV 上海交通大学SHANGHAI JIAO TONG UNIV 中山大学SUN YAT SEN UNIV 华中科技大学HUAZHONG UNIV SCI TECHNOL 北京大学PEKING UNIV 山东大学SHANDONG UNIV 复旦大学FUDAN UNIV 南开大学NANKAI UNIV 北京邮电大学BEIJING UNIV POSTS TELECOMMUN 中国科学技术大学UNIV SCI TECHNOL CHINA 吉林大学JILIN UNIV 西安交通大学XI AN JIAO TONG UNIV 哈尔滨工业大学HARBIN INST TECHNOL 天津大学TIANJIN UNIV 兰州大学LANZHOU UNIV 华南理工大学S CHINA UNIV TECHNOL 武汉大学WUHAN UNIV 湖南大学HUNAN UNIV 华南师范大学S CHINA NORMAL UNIV 北京航天航空大学BEIJING UNIV AERONAUT ASTRONAUT 东北大学NORTHEASTERN UNIV 电子科技大学UNIV ELECT SCI TECHNOL CHINA 华东科技大学 E CHINA UNIV SCI TECHNOL 中南大学CENT S UNIV 西安电子科技大学XIDIAN UNIV 同济大学TONGJI UNIV 厦门大学XIAMEN UNIV 北京交通大学BEIJING JIAOTONG UNIV 东吴大学SOOCHOW UNIV 安徽大学ANHUI UNIV 北京理工大学BEIJING INST TECHNOL 香港城市大学CITY UNIV HONG KONG 湘潭大学XIANGTAN UNIV 北京师范大学BEIJING NORMAL UNIV

汽车发动机分类以及各大系统结构详细介绍

汽车发动机分类以及各大系统结构详细介绍 一.分类 内燃机的分类方法很多,按照不同的分类方法可以把内燃机分成不同的类型,下面让我们来看看内燃机是怎样分类的。 (1)按照所用燃料分类 内燃机按照所使用燃料的不同可以分为汽油机和柴油机。使用汽油为燃料的内燃机称为汽油机;使用柴油机为燃料的内燃机称为柴油机。汽油机与柴油机比较各有特点;汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。 (2)按照行程分类 内燃机按照完成一个工作循环所需的行程数可分为四行程内燃机和二行程内燃机。把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,完成一个工作循环的内燃机称为四行程内燃机;而把曲轴转一圈(360°),活塞在气缸内上下往复运动两个行程,完成一个工作循环的内燃机称为二行程内燃机。汽车发动机广泛使用四行程内燃机。 (3)按照冷却方式分类 内燃机按照冷却方式不同可以分为水冷发动机和风冷发动机。水冷发动机是利用在气缸体和气缸盖冷却水套中进行循环的冷却液" target=_blank>冷却液作为冷却介质进行冷却的;而风冷发动机是利用流动于气缸体与气缸盖外表面散热片之间的空气作为冷却介质进行冷却的。水冷发动机冷却均匀,工作可K,冷却效果好,被广泛地应用于现代车用发动机。 (4)按照气缸数目分类 内燃机按照气缸数目不同可以分为单缸发动机和多缸发动机。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发动机。 (5)按照气缸排列方式分类 内燃机按照气缸排列方式不同可以分为单列式和双列式。单列式发动机的各个气缸排成一列,一般是垂直布置的,但为了降低高度,有时也把气缸布置成倾斜的甚至水平的;双列式发动机把气缸排成两列,两列之间的夹角<180°(一般为90°)称为V型发动机,若两列之间的夹角=180°称为对置式发动机。 (6)按照进气系统是否采用增压方式分类 内燃机按照进气系统是否采用增压方式可以分为自然吸气(非增压)式发动机和强制进气(增压式)发动机。汽油机常采用自然吸气式;柴油机为了提高功率有采用增压式的。 二.基本构造 发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。 (1)曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由

汽车发动机原理课本总结

汽车发动机原理 一、发动机实际循环与理论循环的比较 1.实际工质的影响 理论循环中假设工质比热容是定值,而实际气体比热是随温度上升而增大的,且燃烧后生成CO2、H2O等气体,这些多原子气体的比热又大于空气,这些原因导致循环的最高温度降低。加之循环还存在泄漏,使工质数量减少。实际工质影响引起的损失如图中Wk所示。这些影响使得发动机实际循环效率比理论循环低。 2.换气损失 为了使循环重复进行,必须更换工质,由此而消耗的功率为换气损失。如图中Wr所示。其中,因工质流动时需要克服进、排气系统阻力所消耗的功,成为泵气损失,如图中曲线rab’r 包围的面积所示。因排气门在下止点提前开启而产生的损失,如图中面积W所示。 3.燃烧损失 (1)非瞬时燃烧损失和补燃损失。实际循环中燃料燃烧需要一定的时间,所以喷油或点火在上止点前,并且燃烧还会延续到膨胀行程,由此形成非瞬时燃烧损失和补燃损失. (2)不完全燃烧损失。实际循环中会有部分燃料、空气混合不良,部分燃料由于缺氧产生不完全燃烧损失。 (3)在高温下,如不考虑化学不平衡过程,燃料与氧的燃烧化学反应在每一瞬间都处在化学动平衡状态,如2H2O=2H2+O2等,由左向右反应为高温热分解,吸收热量。但在膨胀后期及排气温度较低时,以上各反应向左反应,同时放出热量。上述过程使燃烧放热的总时间拉长,实质上是降低了循环等容度而降低了热效率。 (4)传热损失。实际循环中,汽缸壁和工质之间始终存在着热交换,使压缩、膨胀线均脱离理论循环的绝热压缩、膨胀线而造成的损失。 (5)缸内流动损失。指压缩及燃烧膨胀过程中,由于缸内气流所形成的损失。体现为,在压缩过程中,多消耗压缩功;燃烧膨胀过程中,一部分能量用于克服气流阻力,使作用于活塞上做功的压力减小。 二、充量系数 衡量不同发动机动力性能和进气过程完善程度的重要指标;定义为每缸每循环实际吸入气缸的新鲜空气质量与进气状态下计算充满气缸工作容积的空气质量的比值。 影响因素: 1.进气门关闭时缸内压力Pa 2.进气门关闭时缸内气体温度Ta 3.残余废气系数 4.进排气相位角 5.压缩比 6.进气状状态 提高发动机充量系数的措施 1.降低进气系统阻力 发动机的进气系统是由空气滤清器、进气管、进气道和进气门所组成。减少各段通路对气流的阻力可有效提高充量系数。(1)减少进气门处的流动损失1)进气马赫数M 不超过0.5受气门大小、形状、升程规律、进气相位等因素影响2)减少气门处的流动损失增大气门相对通过面积,提高气门处流量系数以及合理的配气相位是限制M值、提高充量系数的主要方法。增大进气门直径可以扩大气流通路面积;增加气门数目;改进配气凸轮型线,适当增加气门升程,在惯性力容许条件下,使气门开闭尽可能快;改善气门处流体动力性能。(2)减少进气道、进气管和空气滤清器的阻力

汽车发动机原理课后习题答案

第二章发动机的性能指标 1.研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化? 答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径 2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力 3.有利于分析比较发动机不同循环方式的经济性和动力性 简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化 2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程 3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。 2.简述发动机的实际工作循环过程。 四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么? 有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高。负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小。 4.发动机的实际循环与理论循环相比存在哪些损失?试述各种损失

形成的原因。 答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换 2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失 3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失 4.涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。分隔式燃烧室,工质在主副燃烧室之间流进、流出引起节流损失 5.泄露损失活塞环处的泄漏无法避免 5.提高发动机实际工作循环效率的基本途径是什么?可采取哪些措施? 答:减少工质比热容、燃烧不完全及热分解、传热损失、提前排气等带来的损失。措施:提高压缩比、稀释混合气等 6.为什么柴油机的热效率要显著高于汽油机? 柴油机拥有更高的压缩比, 7.什么是发动机的指示指标?主要有哪些? 以工质在气缸内对活塞做功为基础,评定发动机实际工作循环质量的

南京高校中英文校名集锦

南京大学Nanjing University 东南大学Southeast University 南京航空航天大学Nanjing University of Aeronautics and Astronautics 南京理工大学Nanjing university ofscience &technology 南京工业大学Nanjing tech university 南京邮电大学Nanjing University of Posts and Telecommunications 南京林业大学Nanjing forestry university 南京信息工程大学Nanjing University of Information Science & Technology 南京农业大学Nanjing Agricultural University 南京医科大学Nanjing medical university 南京中医药大学Nanjing university of Chinese medicine 中国药科大学China Pharmaceutical University 南京师范大学Nanjing Normal University 南京财经大学Nanjing University Of Finance & Economics 江苏警官学院Jiangsu police institute 南京体育学院Nanjing Sport Institute 南京艺术学院Nanjing University of the Arts 三江学院Sanjiang university 南京工程学院Nanjing institute of technology 南京审计大学Nanjing audit university 南京晓庄学院Nanjing xiaozhuang university 南京特殊教育师范学院Nanjing Normal University Of Special Education 南京森林警察学院Nanjing forest police college 东南大学成贤学院southeast university chengxian college 金陵科技学院jinling institute of technology 南京大学金陵学院Nanjing university jinling college 南京理工大学紫金学院Nanjing University of Science and Technology ZiJin College 南京航空航天大学金城学院 nanhang Jincheng college 中国传媒大学南广学院Communication University of China, Nanguang College

汽车发动机的发展史修订版

汽车发动机的发展史修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

汽车发动机的发展史 发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封气缸 内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机 所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无 论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理 仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发 动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完 善的程度,各世界着名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。 发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 往复活塞式四冲程汽油机是德国人奥托在大气压力式发动机基础上,于1876 年发明并投入使用的。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大 气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。 1892 年德国工程师狄塞尔发明了压燃式发动机(即柴油机),实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当时其他发动机又提高了1

发动机原理简答)考试资料

一、名词解释题 指示功:气缸完成一个工作循环所得到的有用功。 有效热效率:实际循环的有效功与为得到此有效功所消耗的热量的比值。 热值:单位重量(或体积)的燃料完全燃烧时所放出的热量。 充量系数:每缸每循环实际吸入气缸的新鲜空气质量与进气状态下理论计算充满气缸工作容积的空气质量比值。 发动机的运行特性:冷启动性能、噪音和排气品质。 有效转矩:发动机工作时,由功率输出轴输出的转矩。 平均机械损失压力:发动机单位汽缸工作容积一个循环所损失的功 指示功率:发动机单位时间内所做的指示功。 残余废气系数:进气过程结束时气缸内残余废气量与进入气缸中新鲜空气的比值。 负荷特性:当转速不变时,发动机的性能指标随负荷而变化的关系。 指示热效率:发动机实际循环指示功与所消耗的燃料热量的比值。 有效性能指标:以曲轴输出功为计算基准的指示称为有效性能指标。 升功率:发动机每升工作容积所发出的有效功率。 过量空气系数:燃烧1kg燃料所实际供给的空气质量与全燃烧1kg燃料所需的理论空气质量之比。 柴油机的燃烧放热规律:瞬时放热速率和累积放热百分比随曲轴转角的变化关系。(瞬时放热速率是指在燃烧过程的某一时刻,单位时间内或1°曲轴转角内燃烧的燃油所放出的热量;累积放热百分比是指燃烧过程开始至某一时刻为止已经燃烧的燃油与循环供油量的比值。) 平均有效压力:发动机单位气缸工作容积输出的有效功。 增压度:发动机在增压后增长的功率与增压前的功率之比。 速度特性:发动机在油量调节机构(油量调节齿轮、拉杆或节气门开度)保持不变的情况下,主要性能指标(转矩、油耗、功率、排气温度、烟度等)随发动机转速的变化规律。 有效燃料消耗率:每小时单位有效功率所消耗的燃料。 平均指示压力:单位气缸容积一个循环所做的指示功。 比质量:发动机的质量与所给定的标定功率之比。 增压比:增压后气体的压力与增压前气体的压力之比。 发动机的特性:动力性(功率、转矩、转速);经济性(燃料及润滑油消耗率);运转性(冷启动性能、噪音、排气品质)等。 汽油性能指标:挥发性,抗爆性,安定性,防腐性,清洁性。燃烧过程:着火落后期,明显燃烧期,补燃期。 柴油性能指标:低温流动性,发火性,挥发性,黏度,安定性,防腐性,清洁性。燃烧过程:滞燃期,速燃期,缓燃期,后燃期。 二、问答题 1、简述提高充量系数的措施。 答:①.降低进气系统阻力:减少节气门处的流动损失;减少进气道、进气管和空气滤清器的阻力。②.减少对进气充量的加热。③.降低排气系统的阻力。④.合理选择进、排气相位角。⑤.利用进气管的动态效应:谐振进气和可变进气支管。 2、发动机实际循环与理论循环的差别由哪些损失引起? 答:①实际工质的影响:理论循环中假设工质的比热容为定值,而实际气体比热是随温度上升儿增大的,而产生的CO2 、H2O 等气体这些多原子气体的比热容又大于空气导致循环的最高温度降低,加之实际循环的工工质的泄露,工质数量减少; ②换气损失:为使循环重复进行,更换工质时而消耗的功;③燃烧损失:非燃烧损失和补燃损失,不完全燃烧损失,在温度降低时,受化学平衡的影响反应时间加长,传热损失,缸内流动损失。 3、醇类燃料作为代用燃料有什么特点? 答:醇类燃料通常指甲醇和乙醇,是相对分子质量较小的单质,燃烧产物中基本上没有碳烟,NOx排放浓度很低,是一种低污染燃料,且其来源稳定,能稳定生产。其具体特点如下:①、化学成分及燃烧产物:醇类燃料含氧、碳、氢比较多,燃烧时产生较多的水和较少的二氧化碳,但当启动或者暖机,缸内温度不高时,易在缸壁上生成冷凝物,使酸性物质的生产及磨损的加剧。②沸点凝点:相对于汽油,醇类燃料的沸点低,有助于与空气混合,但缺乏高挥发性组分,对启动不利,但点低。③、热值:为优质汽油的50%左右。④、汽化潜热:醇分子间有强氢键,汽化潜热大,形成混合气降温大,妨碍了在运行温度下的完全汽化,使其雾化、汽化困难,难形成良好、均匀的混合气,其次在压缩终了时缸内温度降低,压燃着火延迟期变长,影响启动性能,但高汽化潜热可降低压缩负功,提高充气效率。⑤、辛烷值:醇类燃料辛烷值高,是点燃式内燃机好的代用燃料,也可作为提高汽油辛烷值的优良添加剂。⑥、十六烷值:醇类燃料的十六烷值低,在压燃式内燃机中使用醇类燃料很困难。⑦、着火极限:醇类燃料的着火上下限都比石油宽,能在稀混合气区工作,有利于排气进化和降低油耗,也利于空燃比的控制。⑧、着火延迟期:由于十六烷值低,着火性差,着火延迟

汽车发动机机体组全面介绍

机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。 一. 气缸体(图2-1) 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其腔为曲轴运动的空间。在气缸体部铸有多加强筋,冷却水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。(图2-2)

(1) 一般式气缸体其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装便;但其缺点是刚度和强度较差 (2) 龙门式气缸体其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。 (3) 隧道式气缸体这种形式的气缸体曲轴的主轴承为整体式,采用滚动轴承,主轴承较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不便。 为了能够使气缸表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却法有两种,一种是水冷,另一种是风冷(图2-3)。水冷发动机的气缸围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套不断循环,带走部分热量,对气缸和气缸盖起冷却作用。

现代汽车上基本都采用水冷多缸发动机,对于多缸发动机,气缸的排列形式决定了发动机外型尺寸和结构特点,对发动机机体的刚度和强度也有影响,并关系到汽车的总体布置。按照气缸的排列式不同,气缸体还可以分成单列式,V型和对置式三种(图2-4)。 (1) 直列式

发动机原理.pdf

10) 自由排气、强制排气 11) 滚流、挤流、湍流 12) 表面点火、爆燃 16) 当汽油机油门位置一定,转速变化时,过量空气系数 17) 当柴油机转速不变,负荷减小时,柴油机工作柔和。

23) 内燃机的扭矩储备系数指特性上最大扭矩与标定扭矩之比。 24) 机油的粘度越大,内燃机的机械损失越小。 25) 汽油机的压缩比提高,对汽油机的辛烷值要求也提高。 26) 内燃机油门位置一定,转速增加时,泵气损失增加。 27) 汽油机排气中 C O浓度最大的工况是加速工况。 28) 与汽油机相比,柴油机的升功率小,占比量大。 29) 轿车柴油机大多采用涡流式燃烧室。 30) 内燃机转速一定,负荷增加时,内燃机的机械效率增加。 31) 当汽油机转速一定,负荷增加时,最佳点火提前角减小。 32) 增压柴油机比非增压柴油机气门叠开角大。 34) 内燃机的扭矩储备系数指外特性上最大扭矩与标定扭矩之比。 35) 当汽油机油门位置一定,转速变化时,过量空气系数 36) 当汽油机油门位置一定,转速变化时,过量空气系数 47) 内燃机转速一定,负荷减少时,内燃机的机械效率减少。 48) 当汽油机负荷一定,转速减少时,最佳点火提前角增加。 49) 增压柴油机比非增压柴油机气门叠开角通常要大。 60) 除GDI发动机外,汽油机是量调节,柴油机是质调节。

_ ,机械损失测定方法有_ 四种。 _ , 经济性能指标有___

16. 减小进气门处的流动损失来提高充量系数的措施主要有 22. 发动机转速一定,负荷增加时,汽油机的充气效率 23. 发动机转速一定,负荷增加时,发动机平均机械损失压力

汽车发动机发展史

汽车发动机发展史 汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。 十佳发动机VQ35 汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。 回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。 汽油机之前的摸索阶段

18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。 蒸汽机汽车 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 N.J.Cugnot 1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。 1892年,德国工程师狄塞尔根据定压热功循环原理,研制出压燃式柴油机,并取得了制造这种发动机的专利权。

相关文档
相关文档 最新文档