文档库 最新最全的文档下载
当前位置:文档库 › 锂离子电池设计原理教材

锂离子电池设计原理教材

锂离子电池设计原理教材
锂离子电池设计原理教材

锂离子电池原理及设计教材

原理篇

电池原材料

化工类材料:正极:钴酸锂、锰酸锂、镍酸锂、磷酸铁锂、三元材料

负极:人造石墨、中间相碳微球(沥青基)、针状焦、改性天然石墨

其他:隔膜、电解液、导电剂、PVDF、NMP、草酸、SBR、CMC、高温胶纸、铜箔、铝箔等

五金类材料:钢壳、铝壳、盖帽、隔圈、铝带、镍带、铝镍复合带等、铝塑膜等电池原材料是决定电池性能的最重要的因素,电池性能的提升归根结底来自于电池材料的优化及更新。

锂离子电池反应机理

锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳其反应示意图如下所示:

电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。

根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2等,其中LiCoO2是一种层状结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li(1-X)CoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的电压及安全性能。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V。那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li 留在负极C6中,以保证下次充放电Li的正常嵌入,否则电芯的寿命很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。

锂离子电池的主要制造过程

Li-ion电池的工艺技术比较严格、复杂,这里只能简单介绍一下其中的几个主要工序。

1 配料

正极:钴酸锂94~94.5% 负极:石墨:92%

SP:1% KS-6:3%

S0:1% SP:0.6%

PVDF:3.5~4.0% PVDF:4.4% 目的:以NMP或水为溶剂,采用真空搅拌方式,将电极活性物质、导电剂、胶进行充分的物理混合,形成成分均匀的浆料。

2 涂布(拉浆)

目的:将电极浆料均匀地涂敷在基体(集流体)的表面并经过烘箱干燥,形成干燥、均匀的电极极片。

3 制片

目的:将涂布后的电极大片经过对辊、裁切,形成工艺标准所要求的电极小片(长度、宽度、厚度、刮粉位尺寸),将极耳焊接上去并进行相应的安全保护(贴胶纸)。

4 装配

目的:将制备好的极片与隔膜卷绕成型、压扁后套入/甩入壳体内,然后将极耳通过焊接与盖板连接起来并压合盖版。

5 激光焊

目的:通过激光将电池壳体与盖帽进行熔融焊接为一个整体,并形成一个密闭空间(除注夜孔处)。

6 注液

目的:将电解液通过真空注液机从注夜孔注入到电池内部。

7 预充

目的:用小电流对电池进行第一次充电,激活电池活性物质,释放第一次充电产生的废气;

8 化成

目的:用小电流进一步对电池充电,完成电极活化过程.

9 分容

目的:将老化后的电池进行第一次放电,根据电池放出容量进行等级划分。

设计篇

锂离子电池的标识和含义:

标识由三部分组成:

例如383562 3.7V 800mAh

电池规格表示:厚度为3.8mm 宽度35mm 长度为62 mm

额定容量800mAh

又如5048168 3.7V 3600mAh

电池规格表示:厚度为5.0mm 宽度48mm 长度为168 mm

额定容量3600mAh

电池结构

锂离子电池设计的基本原则

容量过量

由于生产因素等各种原因,可能导致电池实际容量达不到标称容量的要求,因此电池设计时,设计容量必须高出电池标称容量3%~5%(甚至7%)

负极过量

锂离子电池的基本原理为锂离子电池在正负极材料间的可逆嵌入和脱嵌,且材料量克容随着电池循环次数的增加而降低。若负极容量低于正极容量,当电池充电时,从正极过来的锂离子不能全部嵌入到负极材料中,便会在负极表面堆积形成不可逆容量,造成电池容量的急剧下降,且容易形成锂枝晶引起电池安全隐患,因此电池设计时,单位面积上的负极容量需高出正极容量3%~5%。

负极包住正极

同原则二,电池设计时必须保证有正极敷料的地方对应有负极敷料。

正、负极隔离

电池内部正、负极若直接接触,则在电池内部形成了一个无负载的回路,电池形成短路状态,若为微短路则引起自放电等现象,若短路情况严重,则引起爆炸等安全问题,因此电池设计时须保证正、负极的完全隔离。

a 隔离膜比负极片宽,卷绕时有重叠

b 容易引起短路或隔离膜损坏的地方用胶纸等进行保护

铝壳锂离子电池设计的内容

一、电池设计需确定的参数:

标称容量、设计容量、外壳、帽盖尺寸、正/负极片长度(宽度/厚度),隔膜长度(宽度/厚度)、注液量、极片刮粉位尺寸、卷针尺寸、正/负极耳长度、制片胶纸规格等

二、电池设计原则及步骤:

(外壳等五金结构件主要根据客户尺寸要求来设计)

1、确定容量(即确定了正极附料量)

设计容量/标称容量=1.03~1.08(过量系数),过量系数一般根据材料稳定性、制程能力及电池实际空间来稍作调整。如材料稳定性较好、制程能力较高、电池空间隔较小的话过量系数可以稍小一些。根据设计容量、配比及材料克容量算出附料量。

2、确定极片/隔膜纸宽度

隔膜宽度=电池标称高度-3mm(盖帽厚度+立体隔圈厚度+壳底板厚度)

负极片宽度=隔膜宽度-2mm

正极片宽度=负极片宽度-1(2)mm

3、确定正/负极片长度、面密度(以铝壳电池为例)

卷针宽度(方)=铝壳内宽-铝壳内厚-2倍卷针厚度-C(系数)

卷针直径(圆)=卷针宽度(方)/1.57

正极片长度=(卷针宽度+铝壳内宽)×折数/2

负极片长度=正极片长度-铝壳内宽

隔膜长度=负极片长度×2 + 15~18mm

刮粉位尺寸:其中A、E、F是极耳位,因此宽度就等于极耳宽度

C位也是为负极耳位预留的位置,根据实际结构及考虑偏差,一般C=3~4倍A,A+B+C/2=卷针宽度。

实际上E不等于F,是由于刮粉工艺需要,若负极用涂布的话E就可以等于F了。极片示意图

正极片

负极片

现在就开始确定面密度了,首先将正极片的有效活性物质面积算出来,S=[L-(3A+C+D)/2]×H

面密度=附料量/S

算出来面密度应该在40~46之间,如果面密度偏大或偏小,则通过调整折数来获得最佳面密度

正极面密度出来了,接着负极面密度也出来了,一般按照负极容量与正极容量过量系数为1.03~1.08的原则:

负极面密度×负极活性物质含量×负极克容量=

正极面密度×正极活性物质含量×正极克容量×容量过量系数

极片厚度=面密度/材料压实密度+铜(铝)箔厚度

注液量设计有两种计算方法:

一种是空间系数法,另外一种是容量法,一般来说按容量来算是比较合理的。根据电解液厂家不同注液量会有一些不同,但设计中也可不考虑此因素。一般1g电解液=300~330mAh容量,可根据电池的循环性能及工序能力来进行稍微调整。

现在大功告成了,电池设计的主要参数都浮出水面了。下面接着就是一些辅助的工艺设计了。

铝壳电池,正、负极耳都一样,等于铝壳电池内部高度再加上焊接高度(一般2mm左右),比如053048A的铝壳外高是46.8再减去底板厚0.8为46,再加上焊接高度,因此053048A 的正负极耳长为48左右,可根据实际情况稍做调整。极耳不宜过长与过短,这样均会影响焊接质量与装配质量。尤其是铝壳电池负极耳,严重时还会影响电池的安全性能。

剩下就是一些胶纸类,极耳位胶纸是防止极耳焊接处出现毛剌的,只要把容易出现毛剌的地方都包起来,另外留一些焊接面积就OK了。在这里说明一点:铝壳电池负极耳外露的尺寸非常严格,如果不控制好的话就容易引起负极耳接触壳壁导致短路。

终止胶带:电芯卷绕收尾的地方,起固定作用。尺寸上工艺要求不是特别的严。

混凝土结构设计原理复习重点(非常好)

混凝土结构设计基本原理复习重点(总结很好) 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。 (3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土 立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(f cu,k为确定混凝土强度等级的依据) 1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。(f ck=0.67 f cu,k) 轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样; 一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低) 受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形抗弹性变形的能力) 体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型 混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量 3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因: 1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质 2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件 对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利) (2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。 影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大; 2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小; 4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。 对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。 措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。 混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋 光圆钢筋:HPB235 表面形状 带肋钢筋:HRB335、HRB400、RRB400 有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈服强度力学性能是主要的强度指标。 (软钢)

结构设计原理课后习题答案(第三版)

结构设计原理课后习题答案 1 配置在混凝土截面受拉区钢筋得作用就是什么? 混凝土梁得受拉能力很弱,当荷载超过c f 时,混凝土受拉区退出工作,受拉 区钢筋承担全部荷载,直到达到钢筋得屈服强度。因此,钢筋混凝土梁得承载能 力比素混凝土梁提高很多。 2解释名词: 混凝土立方体抗压强度:以边长为150mm 得混凝土立方体为标准试件,在规定温 度与湿度下养护28天,依照标准制作方法,标准试验方法测得得抗压强度值。 混凝土轴心抗压强度:采用150*150*300得混凝土立方体为标准试件,在规定温 度与湿度下养护28天,依照标准制作方法与试验方法测得得混凝土抗压强度值。 混凝土抗拉强度:采用100*100*150得棱柱体作为标准试件,可在两端预埋钢筋, 当试件在没有钢筋得中部截面拉断时,此时得平均拉应力即为混凝土抗拉强度。 混凝土劈裂抗拉强度:采用150mm 立方体试件进行劈裂抗拉强度试验,按照规定得试验方法操作,按照下式计算A F A F 673.02f ts ==π 3 混凝土轴心受压得应力—应变曲线有何特点?影响混凝土轴心受压应力—应 变曲线有哪几个因素? 完整得混凝土轴心受压得应力-应变曲线由上升段OC ,下降段CD,收敛段DE 组成。 0~0、3fc 时呈直线;0、3~0、8fc 曲线偏离直线。0、8fc 之后,塑性变形 显著增大,曲线斜率急速减小,fc 点时趋近于零,之后曲线下降较陡。D 点之后, 曲线趋于平缓。 因素:混凝土强度,应变速率,测试技术与试验条件。 4 什么叫混凝土得徐变?影响徐变有哪些主要原因? 在荷载得长期作用下,混凝土得变形随时间增长,即在应力不变得情况下, 混凝土应变随时间不停地增长。这种现象称为混凝土得徐变。 主要影响因素:混凝土在长期荷载作用下产生得应力大小,加载时龄期,混 凝土结构组成与配合比,养生及使用条件下得温度与湿度。 5 混凝土得徐变与收缩变形都就是随时间而增长得变形,两者有与不同之处? 徐变变形就是在长期荷载作用下变形随时间增长,收缩变形就是混凝土在凝 结与硬化得物理化学反应中体积随时间减小得现象,就是一种不受外力得自由变 形。 6 普通热轧钢筋得拉伸应力-应变关系曲线有什么特点?《公路桥规》规定使用 得普通热轧钢筋有哪些强度级别?强度等级代号分别就是什么? 答:屈服钢筋从试验加载到拉断共四个阶段:弹性阶段,屈服阶段,强化阶 段,破坏阶段 按屈服强度分为:235MPa ,300MPa ,335MPa ,400MPa ,500MPa 代号:HPB235(R235),HRB335,HRB400,RRB400(KL400) 7 什么就是钢筋与混凝土之间粘结应力与粘结强度?为保证钢筋与混凝土之间 有足够得粘结力要采取哪些措施? (1)由于变形差(滑移)沿混凝土与钢筋接触面上产生得剪应力称为粘结应力。 (2)在拔出试验失效时得最大平均应力作为粘结强度。dl πτF = (3)主要措施:提高混凝土强度,调整钢筋布置位置,调整钢筋间距,增加保

锂离子电池的工作原理

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了

困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。 其使用有一定要求:充电温度:0℃~45℃;保存温度:-20℃~+60℃。锂离子电池不适合大电流充放电。一般充电电流不大于1C,放电电流不大于2C(C 是电池的容量,如C=950mAh,1C的充电率即充电电流为950mA)。充电、放电在20℃左右效果较好,在负温下不能充电,并且放电效果差[4],(在-20℃放电效果最差,不仅放电电压低,放电时间比20℃放电时的一半还少)。 锂离子电池的充放电特性 锂离子电池的标称电压为3.6V,充满电压为4.2V,对过充电和过放电都比较敏感。为了最大限度减少锂离子电池易受到的过充电、深放电以及短路的损害,单体锂离子电池的充电电压必须严格限制。其充放电特性如图2-3 锂离子电池的充电特性 锂电池在充电中具有如下的特性: 1.在充电前半段,电压是逐渐上升的; 2.在电压达到4.2V后,内阻变化,电压维持不变; 3.整个过程中,电量不断增加; 4.在接近充满时,充电电流会达到很小的值。 经过多年的研究,已经找到了较好的充电控制方法: 1.涓流充电达到放电终止电压 2. 7V ; 2.使用恒流进行充电,使电压基本达到4.2V。安全电流为小于0.8C; 3.恒流阶段基本能达到电量的80% ;

结构设计原理复习重点.

第一章 1.钢筋混凝土梁比素混凝土梁,有哪些改善? (1)钢筋混凝土梁充分利用了钢筋和混凝土各自的材料特点,使二者结合,共同工作。(2)提高构件的承载能力 (3)改善构件的受力性能 2.钢筋和混凝土共同工作机理? (1)钢筋和混凝土之间有着良好的粘结力,在荷载作用下能很好的共同变形。 (2)钢筋和混凝土的线膨胀系数接近,当温度改变时,两者变形接近,不会产生较大的相对变形而破坏二者之间的粘结。 (3)混凝土作为保护层,保护钢筋不发生锈蚀。 3.钢筋混凝土结构的优点? (1)钢筋被混凝土包裹不致锈蚀,有较好的耐久性。 (2)充分发挥了混凝土和钢筋两种材料的特点,形成的构件有较大的承载力和刚度。(3)可模性好,可以根据需要浇筑成各种结构形状和尺寸的结构。 (4)所用原材料大部分为砂石,便于就地取材。 (5)现浇钢筋混凝土结构整体性较好,设计合理时有良好的抗震、抗爆和抗振动性能。(6)耐火性较好,钢筋混凝土结构与钢结构相比具有较好的耐火性。 4.钢筋混凝土结构的缺点? (1)自重大,使得结构很大一部分承载力消耗在承受自重上。 (2)抗裂性能较差,往往是带缝工作。 (3)施工受气候条件影响较大。 (4)检测、加固、拆除比较困难。 5.混凝土强度的3个指标(基本代表值)?

(1)混凝土立方体抗压强度fcu:边长为150mm的立方体标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准制作方法和试验方式测得的抗压强度值。(立方体抗压强度标准值fcuk,具有95%的强度保证率,是混凝 土强度等级分级的根据。) (2)混凝土轴心抗压强度fc(棱柱体抗压强度):以150mm×150mm×300mm的 标准试件,按照与立方体试件相同条件和试验方法,所得棱柱体抗压强度值称为混凝土轴心抗压强度。 (3)混凝土轴心抗拉强度ft:通过劈裂试验测定混凝土劈裂抗拉强度fts,再乘换算系数 0.9,得到混凝土轴心抗拉强度。 6.徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为徐变。 7.减小徐变的手段? 降低水灰比,减少水泥用量;增大集料的体积比;适当提高混凝土养生的温度和湿度,使得水泥水化更充分。 8.徐变的好处与坏处? 好处:(1)有利于结构构件产生应力重分布,减少应力集中现象(2)减小大体积混凝土的温度应力 坏处:(1)引起预应力损伤(2)在长期高应力作用下会导致破坏 9.混凝土的收缩:在混凝土凝结和硬化的物理化学过程中体积随时间推移而减小的现象。10:热轧钢筋的强度限值为什么取屈服强度? 热轧钢筋受拉达到屈服点后,有比较大的流幅,构件会出现很大的变形和过宽的裂缝而不能正常使用,因此以屈服强度作为钢筋强度的限值。 对于硬钢,没有明显的流幅,一般取残余应变为0.2%时对应的应力作为其强度限值,称为条件屈服强度。 11.光圆钢筋与混凝土粘结机理? (1)钢筋与混凝土中水泥胶体的胶结力 (2)钢筋与混凝土接触面上的摩擦力

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

锂离子电池基础知识

电池基础知识培训资料 、锂离子电池工作原理与性能简介: 1、电池的定义:电池是一种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能,电池 即是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能源。 2、锂离子电池的工作原理:即充放电原理。Li-ion的正极材料是氧化钻锂,负极是碳。当对电池进行 充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放 电过程中,锂离子处于从正极一负极一正极的运动状态。Li-ion就象一把摇椅,摇椅的两端为电池的两 极,而锂离子就象运动员一样在摇椅两端来回奔跑。所以,Li-i on又叫摇椅式电池。 通俗来说电池在放电过程中,负极发生氧化反应,向外提供电子;在正极上进行还原反应,从外电路接收电子,电子从负极流到正极,而电流方向正好与电子流动方向相反,故电流经外电路从正极流向负极。电解质是离子导体,离子在电池内部的正负极之间定向移动而导电,阳离子流向正极,阴离子流向负极。整个电池形成了一个由外电路的电子体系和电解质的离子体系构成的完整放电体系,从而产生电能。 正极反应:LiCoO2==== Li i-x CoO + xLi + + xe 负极反应:6C + xLi + + xe - === Li x C6 电池总反应:LiCoO2 + 6C ==== Li1-xCoO2 + LixC6 3、电池的连接: 根据电池的电压与容量的需求,可以把电池做串联、并联及混连连接 a、串联:电压升高,容量基本不变; b、并联:电压基本不变,容量升高; c、混联:电压与容量都会升高; 4、化学电池的种类: 锂离子电池按电池外形来分类,可分为圆柱形、方形、钮扣形和片状形等。

锂离子电池工作原理

锂离子电池工作原理

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越

快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

结构设计原理

结构设计原理 交卷时间:2016-11-05 15:53:42一、单选题 1. (2分)钢筋屈服状态指 得分: 2 知识点:结构设计原理作业题 答案B 解析 考查要点: 试题解答: 2. (2分)地震荷载属于()

得分: 2 知识点:结构设计原理作业题 答案D 解析 考查要点: 试题解答: 3. (2分)下列对结构的分类不属于按受力特征分类的是:() 得分: 2 知识点:结构设计原理作业题 答案A 解析 考查要点: 试题解答: 4. (2分) 直径300mm的轴心受压柱,由C25混凝土(f cd=11.5Mpa),HPB300(f sd=270Mpa)钢筋制作,要它能够承担1400kN的压力,最好选直径25mm的钢筋()根。

得分: 2 知识点:结构设计原理考试题 答案C 解析 考查要点: 试题解答: 5. (2分)梁内抵抗弯矩的钢筋主要是() 得分: 2 知识点:结构设计原理作业题 答案A 解析 考查要点: 试题解答: 6. (2分)事先人为引入内部应力的混凝土叫()。

得分: 2 知识点:结构设计原理作业题 答案C 解析 考查要点: 试题解答: 7. (2分)下列描述是适筋梁的是() 得分: 2 知识点:结构设计原理考试题 答案C 解析 考查要点: 试题解答: 8. (2分)拉伸长度保持不变,钢筋中的应力随时间而减小的现象叫()。

得分: 2 知识点:结构设计原理作业题 答案D 解析 考查要点: 试题解答: 9. (2分)针对地震荷载的计算属于() 得分: 2 知识点:结构设计原理考试题 答案D 解析 考查要点: 试题解答: 10.

结构设计原理复习重点

立方体抗压强度fcu>轴心抗压强度fc>轴心抗拉强度ft ;fcu 和试验方法、实验尺寸有关。试验尺寸越小,强度值越大。(1)双向受压时,一向混凝土强度随另一向压应力增加而增加;(2)双向受拉时,双向抗拉强度接近单向抗拉强度(3)一侧受拉一侧受压,强度均低于单向受力强度。 影响砌体抗压强度主要因素:块材的强度、尺寸和形状,砂浆的物理力学性能,砌筑质量 分为荷载作用下的变形和体积变形(收缩)。徐变:在荷载长期作用下,混凝土变形随时间增加而增加,应力不变的情况下,应变随时间增加。 (1)混凝土强度越高,应力应变曲线下降越剧烈,延性越差。(2)应变速率小,峰值应力fc 降低,峰值应变增大,下降段曲线显著减缓(3)测试技术和实验条件 后者与前者相比,后者没有明显的流服或屈服点。同时其强度很高,但延伸率大为减少, 塑性性能降低。 软钢:有物理屈服点。以屈服点处的强度值作为计算承载力时的强度极限。 硬钢:无物理屈服点。设计上取相应残余应变为0.2%的应力作为假定屈服强度 结构功能:(1)结构应能承受在正常施工和正常使用期间出现的各种荷载、外加变形、约束变形的作用(2)结构在正常使用条件下具有良好的工作性能(3)结构在正常使用和正常维护条件下,具有足够的耐久性(4)在偶然荷载作用下或偶然事件发生时、发生后,结构仍能保持整体稳定性,不发生倒塌。 功能函数:Z=R-S ≥0结构处于可靠、极限状态。 (1)适筋梁破坏;钢筋先屈服后混凝土被压碎,属延性破坏。 (2)超筋梁破坏;混凝土先被压碎,钢筋不屈服,属脆性破坏。 (3)少筋梁破坏;混凝土一开裂,钢筋马上屈服而破坏,属脆性破坏 (1)平截面假设:混凝土平均应变沿截面高度按直线分布。(2)不考虑混凝土的抗拉强度。拉力全部由钢筋承担。(3)纵向钢筋应力应变方程:s s =s y E f σε≤(纵向钢筋的极限拉应变取0.01) (4)混凝土受压应力应变曲线方程按规定取用 优点:提高了截面承受弯矩的能力;提高截面的延性。 缺点:钢筋用量增多,不经济 若超过400,则混凝土破坏时钢筋未达到屈服强度,适用高强度钢筋不经济。 梁:纵向受拉钢筋(主钢筋)、弯起钢筋或斜拉钢筋、箍筋、架立钢筋和水平纵向钢筋。梁内

混凝土结构设计原理(第五版)课后习题答案

《混凝土结构设计原理》 思考题及习题 (参考答案) 苏州科技学院 土木工程系 2003年8月 第1章绪论 思考题 1.1钢筋混凝土梁破坏时的特点是:受拉钢筋屈服,受压区混凝土被压碎,破坏前变形较大,有 明显预兆,属于延性破坏类型。在钢筋混凝土结构中,利用混凝土的抗压能力较强而抗拉能力很弱,钢筋的抗拉能力很强的特点,用混凝土主要承受梁中和轴以上受压区的压力,钢筋主要承受中和轴以下受拉区的拉力,即使受拉区的混凝土开裂后梁还能继续承受相当大的荷载,直到受拉钢筋达到屈服强度以后,荷载再略有增加,受压区混凝土被压碎,梁才破坏。 由于混凝土硬化后钢筋与混凝土之间产生了良好的粘结力,且钢筋与混凝土两种材料的温度线膨胀系数十分接近,当温度变化时,不致产生较大的温度应力而破坏二者之间的粘结,从而保证了钢筋和混凝土的协同工作。 1.2钢筋混凝土结构的优点有:1)经济性好,材料性能得到合理利用;2)可模性好;3)耐久 性和耐火性好,维护费用低;4)整体性好,且通过合适的配筋,可获得较好的延性;5)刚度大,阻尼大;6)就地取材。缺点有:1)自重大;2)抗裂性差;3)承载力有限;4)施工复杂;5)加固困难。 1.3本课程主要内容分为“混凝土结构设计原理”和“混凝土结构设计”两部分。前者主要讲述 各种混凝土基本构件的受力性能、截面设计计算方法和构造等混凝土结构的基本理论,属于专业基础课内容;后者主要讲述梁板结构、单层厂房、多层和高层房屋、公路桥梁等的结构设计,属于专业课内容。学习本课程要注意以下问题:1)加强实验、实践性教学环节并注意扩大知识面;2)突出重点,并注意难点的学习;3)深刻理解重要的概念,熟练掌握设计计算的基本功,切忌死记硬背。 第2章混凝土结构材料的物理力学性能 思考题 2.1①混凝土的立方体抗压强度标准值f cu,k是根据以边长为150mm的立方体为标准试件,在 (20±3)℃的温度和相对湿度为90%以上的潮湿空气中养护28d,按照标准试验方法测得的具有95%保证率的立方体抗压强度确定的。②混凝土的轴心抗压强度标准值f c k是根据以

结构设计原理教学大纲

《结构设计原理(2)》教学大纲 第一部分教学大纲说明 一、课程的性质与任务 1.《结构设计原理》(2)是中央广播电视大学工科土建类土木工程专业(专升本)本科一门必修课程。本课程针对中央广播电视大学土木工程专业(专科)学生具有钢筋混凝土结构基本知识,在此基础上,理解结构设计理论,掌握构件计算方法。本课程的主要任务是:1)理解结构设计理论,掌握构件设计计算方法。2)了解现行《公路桥规》对结构构件计算的有关规定。 2.《结构设计原理》课程是在已开设的《建筑材料学》、《材料力学》、《结构力学》等先修课程的基础上设置的专业基础课,后续课程是《桥梁工程》。 3.《结构设计原理》课程内容包括:钢筋混凝土结构、预应力混凝土结构、混凝土与砌体结构、钢结构、钢—混凝土组合结构。 二、课程的目的与要求 1.《结构设计原理》课程研究各种结构构件的设计计算理论、截面应力应变、承载力计算方法。通过对材料力学性能、截面受力性能的分析、结合试验,给出截面承载力计算方法,应力、位移、裂缝计算方法。本课程要求学生重点掌握:结构设计计算理论、截面受力分析、承载力计算方法。 2.《结构设计原理》课程,在了解材料力学性能、本构关系、掌握受力分析的基础上,要求学生了解结构试验方法、观察试验过程、能将试验结果应用到承载力计算中。 3.《结构设计原理》课是一门实践性较强的课程。一方面各种构件计算方法都有试验分析作为基础,同时截面设计要考虑构造要求;另一方面设计计算为工程实际服务。要求学生加强实践性环节:如观摩受弯构件正截面试验分析、受压构件强度试验、预应力施工技术等。了解《公路桥规》有关构造要求。 4.通过习题练习加深对所学内容的理解。 三.课程教学要求层次 教学环节中,基本概念、定义、截面性质、受力性能等概念,由低到高分为“知道、了解、掌握”三个层次。有关截面承载力计算、应力计算、连接计算、变形、裂缝计算等公式及其设计计算方法,由低到高分为“会、掌握、熟练掌握”三个层次。 第二部分媒体使用与教学过程建议 一.学时分配与学分 1.学时分配 本课程共72个学时(具体课时分配如下表)。

《结构设计原理》复习资料-crl

二、复习题 (一)填空题 1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压。 2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。 3、混凝土的变形可分为两类:受力变形和体积变形。 4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性, 同时还要求与混凝土有较好的粘结性能。 5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。 6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原 因是:钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混 凝土对钢筋起保护作用。 7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形。其中混凝土的徐变 属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。 (二)判断题 1、素混凝土的承载能力是由混凝土的抗压强度控制的。 ...................... [X] 2、混凝土强度愈高,应力应变曲线下降愈剧烈,延性就愈好。...................... [X] 3、线性徐变在加荷初期增长很快,一般在两年左右趋以稳定,三年左右徐变即告基本终止。......................................................................... [V] 4、水泥的用量愈多,水灰比较大,收缩就越小。................................... [X] 5、钢筋中含碳量愈高,钢筋的强度愈高,但钢筋的塑性和可焊性就愈差。............. 【V] (三)名词解释 1、混凝土的立方体强度------- 我国《公路桥规》规定以每边边长为150mm勺立方体试件,在20C± 2C的温度和相对湿度在90%^上的潮湿空气中养护28天,依照标准制作方法和试验方法测得的抗压极限强度值(以MPa计)作为混凝土的立方体抗压强度,用符号f cu表示。 2、混凝土的徐变 ----- 在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为混凝土的徐变。 3、混凝土的收缩 ----- 混凝土在空气中结硬时体积减小的现象称为混凝土的收缩。 (四)简答题 2、简述混凝土发生徐变的原因? 答:在长期荷载作用下,混凝土凝胶体中的水份逐渐压出,水泥石逐渐粘性流动,微细 空隙逐渐闭合,细晶体内部逐渐滑动,微细裂缝逐渐发生等各种因素的综合结果。 第二章结构按极限状态法设计计算的原则 三、复习题 (一)填空题 1、结构设计的目的,就是要使所设计的结构,在规定的时间内能够在具有足够可靠性性 的前提下,完成全部功能的要求。 2、结构能够满足各项功能要求而良好地工作,称为结构可靠,反之则称为失效,结 构工作状态是处于可靠还是失效的标志用极限状态来衡量。 3、国际上一般将结构的极限状态分为三类:承载能力极限状态、正常使用极限状态和“破坏

(第二版)结构设计原理课后习题答案

第四章 4-1钢筋混凝土受弯构件沿斜截面破坏的形态有几种?各在什么情况下发生? 答:斜拉破坏,发生在剪跨比比较大(3>m )时; 剪压破坏,发生在剪跨比在31≤≤m 时; 斜压破坏,发生在剪跨比1

锂离子电池原理、常见不良项目及成因、涂布方法汇总

锂离子电池原理、常见不良项目及成因、涂布方法汇总2011-08-12 15:38:29| 分类:默认分类| 标签:|字号大中小订阅 本文引用自典锋《ZT 锂离子电池原理、常见不良项目及成因、涂布方法汇总》 锂离子电池原理、常见不良项目及成因、涂布方法汇总 一般而言,锂离子电池有三部分构成:1.锂离子电芯;2.保护电路(PCM);3.外壳即胶壳。 分类 从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA998,8088,NOKIA的大部分机型 1.外置电池 外置电池的封装形式有超声波焊接和卡扣两种: 1.1超声波焊接 外壳 这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有:MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该 是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了. 超声波焊塑机焊接 有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂 情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲. 1.2卡扣式 卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66. 2.内置电池 内置电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起) 超声波焊接的电池主要有:NOKIA 8210,8250,8310,7210等. 包标的电池就很多了,如前两年很浒的MOTO998 ,8088了. 锂离子电池原理及工艺流程 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极 电芯的构造 电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。 根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V

混凝土结构设计原理名词解释[重点]演示教学

混凝土结构设计原理名词解释[重点]

精品文档 收集于网络,如有侵权请联系管理员删除 名词解释: 1结构的极限状态: 当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 2结构的可靠度: 结构在规定的时间内,在规定的条件下,完成预定功能的概率。包括结构的安全性,适用性和耐久性。 3混凝土的徐变: 在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为混凝土的徐变。 4混凝土的收缩:混凝土在空气中结硬时体积减小的现象称为混凝土的收缩。 5剪跨比 m : 是一个无量纲常数,用 0Vh M m = 来表示,此处M 和V 分别为剪压区段中某个竖直截面的弯矩和剪力,h 0为截面有效高度。 6抵抗弯矩图: 抵抗弯矩图又称材料图,就是沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵抗弯矩图,即表示个正截面所具有的抗弯承载力。 7弯矩包络图:沿梁长度各截面上弯矩组合设计值的分布图。 9预应力度λ: 《公路桥规》将预应力度定义为由预加应力大小确定的消压弯矩 0M 与外荷载产生的弯矩s M 的比值。 10消压弯矩:由外荷载产生,使构件抗裂边缘预压应力抵消到零时的弯矩。 11钢筋的锚固长度:受力钢筋通过混凝土与钢筋的粘结将所受的力传递给混凝土所需的长度。 12超筋梁:是指受力钢筋的配筋率大于于最大配筋率的梁。破坏始自混凝土受压区先压碎,纵向受拉钢筋应力尚小于屈服强度,在钢筋没有达到屈服前,压区混凝土就会压坏,表现为没有明显预兆的混凝土受压脆性破坏的特征。 13纵向弯曲系数:对于钢筋混凝土轴心受压构件,把长柱失稳破坏时的临界压力与短柱压坏时的轴心压力的比值称为纵向弯曲系数。 14直接作用:是指施加在结构上的集中力和分布力。 15间接作用:是指引起结构外加变形和约束变形的原因。 16混凝土局部承压强度提高系数:混凝土局部承压强度与混凝土棱柱体抗压强度之比。 17换算截面:是指将物理性能与混凝土明显不同的钢筋按力学等效的原则通过弹性模量比值的折换,将钢筋换算为同一混凝土材料而得到的截面。 18正常裂缝:在正常使用荷载作用下产生的的裂缝,不影响结构的外观和耐久性能。 19混凝土轴心抗压强度:以150mm ×150mm ×300mm 的棱柱体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的 潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值,用符号c f 表 示。 20混凝土立方体抗压强度:以每边边长为150mm 的立方体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值,用符号cu f 表示。 21混凝土抗拉强度:采用100×100×500mm 混凝土棱柱体轴心受拉试验,破坏时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强度。 22混凝土劈裂抗拉强度:采用150mm 立方体作为标准试件进行混凝土劈裂抗拉强度测定,按照规定的试验方法操作,则混凝土劈 裂抗拉强度ts f 按下式计算:20.637 ts F F f A ==πA 23张拉控制应力:张拉设备(千斤顶油压表)所控制的总张拉力Np,con 除以预应力筋面积Ap 得到的钢筋应力值。 24后张法预应力混凝土构件:在混凝土硬结后通过建立预加应力的构件。 预应力筋的传递长度:预应力筋回缩量与初始预应力的函数。 25配筋率:筋率是指所配置的钢筋截面面积与规定的混凝土有效截面面积的比值。 26斜拉破坏: m >3 时发生。斜裂缝一出现就很快发展到梁顶,将梁劈拉成两半,最后由于混凝土拉裂而破坏 27剪压破坏:1≤m≤3时发生。斜裂缝出现以后荷载仍可有一定的增长,最后,斜裂缝上端集中荷载附近混凝土压碎而产生的破坏。 28斜压破坏: m <1时发生。在集中荷载与支座之间的梁腹混凝土犹如一斜向的受压短柱,由于梁腹混凝土压碎而产生的破坏。 29适筋梁破坏:当纵向配筋率适中时,纵向钢筋的屈服先于受压区混凝土被压碎,梁是因钢筋受拉屈服而逐渐破坏的,破坏过程较长,有一定的延性,称之为适筋破坏 30混凝土构件的局部受压:混凝土构件表面仅有部分面积承受压力的受力状态。 31束界:按照最小外荷载和最不利荷载绘制的两条ep 的限值线E1和E2即为预应力筋的束界。 32预应力损失:钢筋的预应力随着张拉、锚固过程和时间推移而降低的现象。 33相对界限受压区高度:当钢筋混凝土梁界限破坏时,受拉区钢筋达到屈服强度开始屈服时,压区混凝土同时达到极限压应变而破坏,此时受压区混凝土高度1b=2b*h0,2b 即称为 相对界限受压区高度。 34控制截面:在等截面构件中是指计算弯矩(荷载效应)最大的截面;在变截面构件中则是指截面尺寸相对较小,而计算弯矩相对较大的截面。 35最大配筋率 m ax ρ:当配筋率增大到使钢 筋屈服弯矩约等于梁破坏时的弯矩时,受拉钢筋屈服与压区混凝土压碎几乎同时发生,这种破坏称为平衡破坏或界限破坏,相应的配筋率称为最大配筋率。 36最小配筋率 min ρ:当配筋率减少,混凝 土的开裂弯矩等于拉区钢筋屈服时的弯矩时,裂缝一旦出现,应力立即达到屈服强度,这时的配筋率称为最小配筋率。 37钢筋松弛:钢筋在一定应力值下,在长度保持不变的条件下,应力值随时间增长而逐渐降低。反应钢筋在高应力长期作用下具有随时间增长产生塑性变形的性质。 38预应力混凝土:就是事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的应力抵消到一个合适程度的配筋混凝土。 39预应力混凝土结构:由配置预应力钢筋再通过张拉或其他方法建立预应力的结构。 40T 梁翼缘的有效宽度:为便于计算,根据等效受力原则,把与梁肋共同工作的翼缘宽度限制在一定范围内,称为翼缘的有效宽度。 41混凝土的收缩:混凝土凝结和硬化过程中体积随时间推移而减小的现象。(不受力情况下的自由变形) 42单向板:长边与短边的比值大于或等于2的板,荷载主要沿单向传递。 42双向板:当板为四边支承,但其长边2 l 与短边1l 的比值2/12 ≤l l 时,称双 向板。板沿两个方向传递弯矩,受力钢筋应沿两个方向布置。 43轴向力偏心距增大系数:考虑再弯矩作用平面内挠度影响的系数称为轴心力偏心距增大系数。 44抗弯效率指标: u b K K h ρ+= , u K 为上核心距,b K 为下核心距, h 为梁得全截面高度。 45第一类T 型截面:受压高度在翼缘板厚度内,x < /f h 的T 型截面。 46持久状况:桥涵建成以后,承受自重、车辆荷载等作用持续时间很长的状况。 47截面的有效高度:受拉钢筋的重心到受压边缘的距离即h 0=h -a s 。h 为截面的高度,a s 为纵向受拉钢筋全部截面的重心到受拉边缘的距离。 48材料强度标准值:是由标准试件按标准试验方法经数理统计以概率分布的0.05分位值确定强度值,即取值原则是在符合规定质量的材料强度实测值的总体中,材料的强度的标准值应具有不小于95%的保证率。 49全预应力混凝土:在作用短期效应组合下控制的正截面受拉边缘不容许出现拉应力的预应力混凝土结构,即λ≥1。 50混凝土结构的耐久性:是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要 花费大量资金加固处理而保持安全、使用功能和外观要求的能力。

相关文档
相关文档 最新文档