文档库 最新最全的文档下载
当前位置:文档库 › 生活中的材料力学

生活中的材料力学

生活中的材料力学
生活中的材料力学

生活中的材料力学

罗晖淼 051310712

摘要:在我们身边的每一个角落都运用到了材料力学的原理。学完材料力学之后,用另一个角度去剖析生活中的材料力学现象,别有一番风味。

关键字:应力集中,动载荷,稳定性

一:应力集中

大家可能都有过类似的体验,那就是有些零食的外包装非常平整美观,可是却不实用,它们经常因为撕不开而遭到我们的嫌弃。相反,有些小零食的包装袋上会有一排锯齿的形状,而当我们沿着锯齿的凹槽撕的时候,无论这个包装所用的材料多

么特殊,都能轻松地撕开一个大口子。这是为什么呢?这其实运

用到了圣维南原理。当我们沿着锯齿的凹槽撕的时候,手指所加

的力是垂直于包装袋的,因此切应力都集中在了凹槽处,即产生

应力集中现象。此时凹槽处的切应力会急剧增大,那么只要手指

稍稍用力,就很容易从这个凹槽将包装袋撕开。

这种应用应力集中的现象生活中还有很多。比如掰黄瓜,有

时候我们想把黄瓜掰成两段时,往往会先用指甲在

黄瓜中间掐一个小缝,然后双手用力一掰,黄瓜就

很容易被掰成两段。同样的,因为在小缝处应力集

中,黄瓜上作用的两个力矩使得缝隙处的切应力急

剧增大,于是黄瓜中间截面发生脆断。再比如撕布

条,如果一块完整的布条要将其撕成两半是很困难

的,除非有很大的力把它拉断,而我们一般人是没有那么大的力气的,怎么办呢?通常我们会用剪刀

在布条上剪出一个小缺口,然后沿着缺口撕开布条,其原理和食品包装袋是一样的。 既然应力集中给我们的生活带来了这么多的便利,那是不是应力集中越多越好呢?其实并不是,在工程上,基本都需要避免应力集中。像那些大桥,飞机,机床,建筑等大型工业结构,为了保证其坚固耐用寿命长,容易发生应力集中的地方如铆钉连接都需要特别地注意。所以工字钢并不是标准的工字型,在直角处都改造成了弧线形过度,就是为了防止工字钢因应力集中而断裂。

工程上的这些问题可比生活中的小问题严重得多,一个小问题都有可能导致重大的事故。曾经有一起飞行事故:飞机起落架里的一个小零件由于应力集中而发生断裂,卡在那里,导致起落架无法放下。不过还好,凭借飞行员高超的技术最终还是平安降落了。

二:动载荷

生活中其实有一个有趣的小现象:在称体重时,如果很缓慢

地站上去,体重计的示数也将慢慢增加,直至我们的真实体重,

而如果我们一下子跳上去,体重计会在一瞬间飙到一百多公斤,M M 体重计

然后再降回到我们的真实体重。这又是为什么呢?

这里其实运用到了冲击载荷的知识。自由落体冲击是的动荷因数为:

st

d h K ?++=211

假设我们突然站上体重计时h=0,那么动荷因数就为2,也就是说站上去的那一瞬间给体重计加的动载荷是我们正常体重的2倍,所以我们能看到体重计示数一下升到一百多公斤。不过,这样的动载荷其实并不好,如果经常这样称体重,容易损坏体重计。

同样的还有一个例子就是在乘电梯时也应该注意不要上下乱跳。有

时和小孩一起乘坐电梯的时候会看到调皮的小孩在电梯里乱跳,这时我

们会明显感觉到电梯剧烈地抖动,甚至还会害怕拉电梯的绳索崩断。可

是小孩并不是太重,为什么能让电梯有如此大的反应呢?我们通过上述

的动荷因数来分析一下:

假设是一个小学生,他的体重是30公斤,这时他已经跳起在半空

中,一个小学生大概跳0.2米。因为他在半空中,所以这时他对电梯的

作用载荷为0,落回电梯上时,动荷因数为2.007,也就是2。那么他将

给电梯带来600牛的动载荷,而起跳前向下蹬时也会给电梯带来这么多

的动载荷。电梯在相差600牛的两个载荷之间来回转换,对拉电梯的绳

索也是一次次的冲击力,假如这个电梯质量并不是非常好,绳索很容易就断了,那么就会造成惨重的人员伤亡和经济损失。因此我们乘坐电梯时应该安安静静地乘坐,不能在电梯里打闹,上蹿下跳,为了自己,也为了他人的安全。

曾经看过一个电视节目,上面有一个游戏,让参与者把一枚鸡蛋抛过头顶,然后用一个陶瓷盘子接住鸡

蛋,但不能让鸡蛋破碎。当时很多人都是把鸡蛋往上一

扔,傻傻地站在那等,结果无一例外,鸡蛋全都碎了。

最后有一个聪明的观众站出来,他把鸡蛋往上一扔,手

里的盘子也随鸡蛋移动,当鸡蛋下落时,手拿着盘子也按着鸡蛋的轨迹慢慢下落,逐渐停稳鸡蛋,成功了。

这里利用的就是减小动载荷的原理。其他人选择直接接住鸡蛋,h 很大,导致动荷因数大,鸡蛋自然经受不住那么大的动载荷。而那位观众让鸡蛋从刚下落时就开始作用动载荷,但每次h 都几乎为0,动荷因数几乎都为2。鸡蛋势能转换为许许多多次动载荷做的功,于是鸡蛋就不会因为瞬间巨大的冲击力而破碎。

然而这些只是防止动载荷方面的一些例子,生活中还有

很多地方恰恰利用了动载荷的特点,从而帮助人们更加省力,

我们最熟悉的就是用锤子敲钉子了。想要把钉子深深插入墙

壁中,如果用手去按钉子,那就算花很大的力也不一定能实

现要求,而且手会很疼。我们通常是借用锤子来实现,用力

挥动锤子,砸在钉子上,将产生很大的水平冲击力,可以将

钉子敲入墙壁。水平冲击的动荷因数为:

v

st d g v K ?=

2

可见,挥动锤子的速度越大,给钉子的动载荷就越大,就越容易将钉子敲入墙壁中。同样的道理还有打桩机,打桩机利用的是垂直冲击,实现将木桩深深打入地基里。 三:稳定性

稳定性的应用可以说是无处不在。

好多同学都有一把小铁尺,平时课间时会拿出来玩。当我们给铁尺两端加压时,按道理钢铁是非常坚硬的,不应该被我们压坏。然而事实却是,稍微加大一点力,铁尺就会被我们压弯甚至掰断。究其原因,我们可以把这个过程简化为两段铰支受压的模型。这时铁尺失稳的临界压力公式为: 22

l EI

F cr π=

铁尺的l 和E 是固定的,所以临界压力取决于I 。但是铁尺是厚度很小的板状物,从那个最小截面看过去,I 是很小的。因此铁尺沿那个方向失稳的临界压力很小,我们也就可以轻松地掰弯它。

江湖上有一种名叫“钢枪刺喉”的骗人把戏,那些自称刀枪不入的人,表演时由助手将一根长枪刺向他们的喉咙并挤压,最终长枪断了,他的喉咙却安然无恙。没有什么文化的老

百姓看了会觉得很神奇并花钱拜他们为大师,希望传授点秘

诀。然而这些所谓的气功大师并没有什么特别之处,钢枪刺

喉也只是一个很普通的把戏。下面来分析一下这里面的原

理。

首先那种钢枪必须得自己准备,枪头必须是钝的,或者

说到不足以刺穿人的皮肤的程度即可。而且表演时并不是顶

在喉咙部位,而是顶在喉咙下方的胸骨上,这样就避开了喉部这样的脆弱的部分。不过最重要的部分就是长枪的柄了,他们准备这个柄的时候肯定是找那些弹性模量特别小的材料,并且做出来的柄也是又细又长。整个过程也可以简化为两段铰支的模型,而根据上面的公式,他们在准备时增大了l ,且减小了E 和I ,大大减小了失稳的临界压力,这样一来,江湖骗子们轻轻松松地就可以把长枪压断。其实只要是枪柄选择合理,我们每一个人都可以做到。 以上只是一些普通的失稳现象,而现实生活中,为了保持结构的稳定,我们都需要采取一些措施来防止失稳。

比如对于一些小树苗,它们的树干还不成熟,不够粗壮,也许被大雪一压或者大风一吹,树干就会因失稳而折断。因此在树木成长的初期,我们通常会在树木周围架起支撑架来保护树木,这个现象在城市里特别普遍,到处都能看到。由于是一端固定,一端自由,其临界压力为:

F

2

24l EI

F cr π=

这里支撑架的存在就使得l 减小了很多,从而大大提

高了它的临界压力,树木便不那么容易倒。

还比如工程上面常见的脚手架和塔吊。随着楼房的增

高,这些工具也必须随着楼房一起升高,而升得越高,l

越大,失稳的临界压力就越小,危险性也不断增大。因此,

在工程上通常都是每隔几层楼就将塔吊或脚手架和建筑

物本身连在一起,将l 控制在安全范围之内。

四:心得体会

上学期的理论力学让我明白的多个物体相互作用时各个点力的大小。而经过一学期材料力学的学习,我对研究对象的内力有了更深的理解。

首先是一个单独对象的内力。根据所受力和力矩方向的不同可以分为拉力,压力,剪力,扭矩,弯矩。再由截面法可以画出杆件的内力图,为后面的研究提供了极大地便利。可是为了进一步研究这些内力给对象带来了什么样的影响,又引出了应力,应变,变形,位移等概念,利用这些关系就可以列出受力对象之间的变形关系,从而可以解决理论力学无法解决的超静定问题。再后来又学习了对应力应变的一些分析方法以及稳定性和动载荷的分析研究。

有了这些知识做基础,我对生活中或者工程上的一些问题现象就有了更深的理解,也能通过合理运用这些知识来解释那些现象。从这门课我真的有学到一些有用的知识,相信在以后工作中定能受益。

在看完材料力学漫谈系列讲座之后,更是对生活中的许多原来不懂的现象有了新一层次的认识。老师在短短六集的讲座中列举了50几个例子,从古代兵器到现代雕刻,从自然生物到房屋建筑,从先秦栈道到工程大桥,从安全事故到保护措施,几乎涵盖了生活的方方面面。而且讲课风格也很风趣严谨,引人深思。

感谢材料力学,人类的进步和材料力学息息相关。

南京航空航天大学

2015.6.17

材料力学复习题讲解

《材料力学复习题》 考试形式:开卷。 1.构件在外荷载作用下具有抵抗破坏的能力为材料的();具有一定的抵抗变形的能力为 材料的();保持其原有平衡状态的能力为材料的()。 答案:强度、刚度、稳定性。 2.图示圆截面杆件,承受轴向拉力F作用。设拉杆的直径为d,端部墩头的直径为D,高度 为h,试从强度方面考虑,建立三者间的合理比值。已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa。 解:由正应力强度条件 由切应力强度条件 由挤压强度条件 式(1):式(3)得 式(1):式(2)得 故D:h:d=1.225:0.333:1 3.轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是()。

答案:截面法。 4.工程构件在实际工作环境下所能承受的应力称为(),工件中最大工作应力不能超过 此应力,超过此应力时称为()。 答案:许用应力,失效。 5.所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是()。 (A)强度低,对应力集中不敏感; (B)相同拉力作用下变形小; (C)断裂前几乎没有塑性变形; (D)应力-应变关系严格遵循胡克定律。 答案:C 6.现有三种材料的拉伸曲线如图所示。分别由此三种材料制成同一构件,其中:1)强度 最高的是();2)刚度最大的是();3)塑性最好的是();4)韧性最高,抗冲击能力最强的是()。 答案:A,B,C,C 7.试计算图示各杆的轴力,并指出其最大值。 答案 (a)F NAB=F,F NBC=0,F N,max=F (b)F NAB=F,F NBC=-F,F N,max=F (c)F NAB=-2 kN, F N2BC=1 kN,F NCD=3 kN,F N,max=3 kN (d)F NAB=1 kN,F NBC=-1 kN,F N,max=1 kN

材料力学扭转实验

§1-2 扭转实验 一、实验目的 1、测定低碳钢的剪切屈服点τs,抗扭强度τb。 2、测定铜棒的抗扭强度τb。 3、比较低碳钢和铜棒在扭转时的变形和破坏特征。 二、设备及试样 1、伺服电机控制扭转试验机(自行改造)。 2、0.02mm游标卡尺。 3、低碳钢φ10圆试件一根,画有两圈圆周线和一根轴向线。 4、铜棒铁φ10圆试件一根。 三、实验原理及方法 塑性材料试样安装在伺服电机驱动的扭转试验机上,以6-10o/min的主动夹头旋转速度对试样施加扭力矩,在计算机的显示屏上即可得到扭转曲线(扭矩-夹头转角图线),如下图为低碳钢的部分扭转曲线。试样变形先是弹性性的,在弹性阶段,扭矩与扭转角成线性关系。 弹性变形到一定程度试样会出现屈服。扭转曲线 扭矩首次下降前的最大扭矩为上屈服扭矩T su; 屈服段中最小扭矩为下屈服扭矩T sl,通常把下 屈服扭矩对应的应力值作为材料的屈服极限τs, 即:τs=τsl= T sl/W。当试样扭断时,得到最大 扭矩T b,则其抗扭强度为τb= T b/W 式中W为抗扭截面模量,对实心圆截面有 W=πd03/16。 铸铁为脆性材料,无屈服现象,扭矩 -夹头转角图线如左图,故当其扭转试样 破断时,测得最大扭矩T b,则其抗扭强 度为:τb= T b/W 四、实验步骤 1、测量试样原始尺寸分别在标距两端 及中部三个位置上测量的直径,用最小直 径计算抗扭截面模量。 2、安装试样并保持试样轴线与扭转试验机转动中心一致。 3、低碳钢扭转破坏试验,观察线弹性阶段、屈服阶段的力学现象,记录上、下屈服点扭矩值,试样扭断后,记录最大扭矩值,观察断口特征。 4、铜棒扭转破坏试验,试样扭断后,记录最大扭矩值,观察断口特征。 五、实验数据处理 1、试样直径的测量与测量工具的精度一致。 2、抗扭截面模量取4位有效数字。 3、力学性能指标数值的修约要求同拉伸实验。 六、思考题 1、低碳钢扭转时圆周线和轴向线如何变化?与扭转平面假设是否相符?

材料力学阶段练习一及答案讲解学习

材料力学阶段练习一 及答案

华东理工大学 网络教育学院材料力学课程阶段练习一 一、单项选择题 1.如图所示的结构在平衡状态下,不计自重。对于CD折杆的受力图,正确的是( ) A. B. C. D.无法确定 2.如图所示的结构在平衡状态下,不计自重。对于AB杆的受力图,正确的是( )

A. B. C. D.无法确定 3.如图所示悬臂梁,受到分布载荷和集中力偶作用下平衡。插入端的约束反力为( )

A.竖直向上的力,大小为qa qa 2;逆时针的力偶,大小为2 qa B.竖直向上的力,大小为qa 2;顺时针的力偶,大小为2 qa C.竖直向下的力,大小为qa 2;逆时针的力偶,大小为2 qa D.竖直向下的力,大小为qa 2;顺时针的力偶,大小为2 4.简支梁在力F的作用下平衡时,如图所示,支座B的约束反力为( ) A.F,竖直向上 B.F/2,竖直向上 C.F/2,竖直向下 D.2F,竖直向上 5.简支梁,在如图所示载荷作用下平衡时,固定铰链支座的约束反力为( )

A.P,竖直向上 B.P/3,竖直向上 C.4P/3,竖直向上 D.5P/3,竖直向上 6.外伸梁,在如图所示的力和力偶作用下平衡时,支座B的约束反力为( ) A.F,竖直向上 B.3F/2,竖直向上 C.3F/2,竖直向下 D.2F,竖直向上 7.如图所示的梁,平衡时,支座B的约束反力为( ) A. qa,竖直向上 B. qa,竖直向下 C. qa 2,竖直向上 D. qa 4,竖直向上 8.关于确定截面内力的截面法的适用范围有下列说法,正确的是( )。

A.适用于等截面直杆 B.适用于直杆承受基本变形 C.适用于不论基本变形还是组合变形,但限于直杆的横截面 D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况 9.下列结论中正确的是( )。 A.若物体产生位移,则必定同时产生变形 B.若物体各点均无位移,则该物体必定无变形 C.若物体无变形,则必定物体内各点均无位移 D.若物体产生变形,则必定物体内各点均有位移 10.材料力学根据材料的主要性能作如下基本假设,错误的是( )。 A.连续性 B.均匀性 C.各向同性 D.弹性 11.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为( ) A.连续性 B.均匀性 C.各向同性 D.小变形 12.如图所示的单元体,虚线表示其受力的变形情况,则单元体的剪应变γ=( )。 A.α B.2α

材料力学讲解作业(2)

1、 轴向拉伸的等直杆,杆内任一点处最大剪应力的方向与轴线成 ___________。 2、 一空心圆截面直杆,其内、外径之比为α=0.8,两端承受轴向拉 力作用,如将内、外径增加一倍,则其抗拉刚度将是原来的________倍。 3、 在减速箱中,转速低的轴的直径比转速高的轴_____________。 4、 若梁上某段内的弯矩值全为零,则该段的剪力值为 _____________。 5、 梁的截面为对称的空心矩形,如图1所示,这时,梁的抗弯截面 模量W 为_______________。 6、 在梁的变形中挠度和转角之间的关系是____________。 7、 减小梁变形的主要途径有:_______________ 、 __________________ 、_________________。 8、 二向应力状态(已知x σ,y σ ,xy τ)的应力圆圆心的 横坐标值为_____________________,圆的半径为_____________。 9、与图2所示应力圆对应的单元体是____________向应力状态。 图1 图2 10、 将圆截面压杆改成面积相等的圆环截面压杆,其它条件不变,其柔度将 ________,临界应力将________。 工程上通常把延伸率δ>________的材料称为塑性材料。 b b h h 1 2

低碳钢经过冷作硬化处理后,它的_________极限得到了明显的提高。 图1正方形单元体ABCD ,变形后成为AB `C`D`。单元体的剪应变为_________。 简支梁全梁上受均布荷载作用,当跨长增加一倍时,最大剪力增加一倍,最大弯矩增加了_______________倍。 如图2所示截面的抗弯截面模量Wz =_________________。 运用叠加原理求梁的变形时应满足的条件是:___________________________。 已知梁的挠曲线方程为)3(6)(2 x l EI Px x y -= ,则该梁的弯矩方程是______________________。 图1 图2 单向受拉杆,若横截面上的正应力为σ0,则杆内任一点的最大正应力为_______,最大剪应力为____________。 图3应力圆,它对应的单元体属______________________应力状态。 细长杆的临界力与材料的____________________有关, 为提高低碳钢压杆的稳定性,改用高强刚不经济,原因是 _______________________________。 图3 z h b d τ σ

材料力学作业习题讲解

第二章 轴向拉伸与压缩 1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。 (1) (2) 2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2 。如以α表示斜截面与横 截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。 3、一木桩受力如图所示。柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。如不计柱的自重,试求: (1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱的总变形。 4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的 线应变d ε。 (2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。 (3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。试求: (1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律); (2) 钢丝在C点下降的距离?; (3) 荷载F的值。 6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组 [σ=170MPa。试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力] 条件? 7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。 ] E

材料力学金属扭转实验报告

材料力学金属扭转实验报告 【实验目的】 1、验证扭转变形公式,测定低碳钢的切变模量G。测定低碳钢和铸铁的剪切强度极限弋握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能; 2、绘制扭矩一扭角图; 3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异; 4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。 【实验仪器】 【实验原理和方法】 1. 测定低碳钢扭转时的强度性能指标 试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩M es,低碳钢的扭转屈服应力为 式中:W p二「d3/16为试样在标距内的抗扭截面系数。 在测出屈服扭矩T s后,改用电动快速加载,直到试样被扭断为止。这时测矩盘上的从动 指针所指示的外力偶矩数值即为最大力偶矩M eb,低碳钢的抗扭强度为 对上述两公式的来源说明如下: 低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的M e-'图如图 1-3-2所示。当达到图中A点时,M e与「成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s,如能测得此时相应的外力偶矩M ep,如图1-3-3a所示,则扭转屈服应力为

(3)将扭角测量装置的转动臂的距离调好,转动转动臂,使测量辊压在卡盘上。

4、开始试验:按“扭转角清零”按键,使电脑显示屏上的扭转角显示值为零。按“运行”键,开 始试验。 5、记录数据:试件断裂后,取下试件,观察分析断口形貌和塑性变形能力,填写实验数据和计算 结果。 6、试验结束:试验结束后,清理好机器,以及夹头中的碎屑,关断电源。 、铸铁 1、试件准备:在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值, 再从三个平均值中取最小值作为试件的直径d o在低碳钢试件表面画上一条纵向线和两条圆周线,以便观察扭转变形。 2、试验机准备:按试验机一计算机一打印机的顺序开机,开机后须预热十分钟才可使 用。根据计算机的提示,设定试验方案,试验参数。 3、装夹试件:启动扭转试验机并预热后,将试件一端固定于机器,按"对正"按钮使两夹 头对正后,推动移动支座使试件头部进入钳口间? 4、开始试验:按“扭转角清零”按键,使电脑显示屏上的扭转角显示值为零。按“运行”键,开 始试验。 5、记录数据:试件断裂后,取下试件,观察分析断口形貌和塑性变形能力,填写实验数据和计算 结果。 6试验结束:试验结束后,清理好机器,以及夹头中的碎屑,关断电源。 【实验数据与数据处理】 一.低碳钢扭转 低碳钢直径测量 注:第二次实验修正标距为 3.线性阶段相关数据 当处于线性阶时,有

材料力学习题答案讲解学习

第二章 轴向拉伸与压缩 2-1 试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴 F N (kN) F N1= -2kN F N2 = 0kN F N3= 2kN (a (b ) 2-2 图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。 解: 1.轴力 由截面法可求得,杆各横截面上的轴力为 kN 14N -=-=F F 2.应力 4 201014311N 11??-==--A F σMPa 175-=MPa ()4 10201014322N 2 2?-?-==--A F σMPa 350-=MPa

2-3 图示桅杆起重机,起重杆AB 的横截面是外径为mm 20、内径为mm 18的圆环,钢丝绳BC 的横截面面积为2mm 10。试求起重杆AB 和钢丝绳 =2kN 解: 1.轴力 取节点B 为研究对象,受力如图所示, 0=∑x F : 045cos 30cos N N =++οοF F F AB BC 0=∑y F : 045sin 30sin N =--οοF F AB 由此解得: 83.2N -=AB F kN , 04.1N =BC F kN 2.应力 起重杆横截面上的应力为 () 223 N 18204 1083.2-??-= =πσAB AB AB A F MPa 4.47-=MPa 钢丝绳横截面上的应力为 10 1004.13N ?==BC BC BC A F σMPa 104=MPa 2-4 图示由铜和钢两种材料组成的等直杆,铜和钢的弹性模量分别为GPa 1001=E 和GPa 2102=E 。若杆的总伸长为 mm 126.0Δ=l ,试求载荷F 和杆横截面上的应力。 解: 1.横截面上的应力 由题意有 ???? ??+=+= ?+?=?221 1221121E l E l A E Fl A E Fl l l l σ 由此得到杆横截面上的应力为 33221110210400 10100600126 .0?+?= + ?=E l E l l σMPa 9.15=MPa 2.载荷 2404 9.15??==π σA F N 20=kN

材料力学讲解作业(2)

1、 轴向拉伸的等直杆,杆任一点处最大剪应力的方向与轴线成 ___________。 2、 一空心圆截面直杆,其、外径之比为α=0.8,两端承受轴向拉力 作用,如将、外径增加一倍,则其抗拉刚度将是原来的________倍。 3、 在减速箱中,转速低的轴的直径比转速高的轴_____________。 4、 若梁上某段的弯矩值全为零,则该段的剪力值为_____________。 5、 梁的截面为对称的空心矩形,如图1所示,这时,梁的抗弯截面 模量W 为_______________。 6、 在梁的变形中挠度和转角之间的关系是____________。 7、 减小梁变形的主要途径有:_______________ 、 __________________ 、_________________。 8、 二向应力状态(已知x σ,y σ ,xy τ)的应力圆圆心的 横坐标值为_____________________,圆的半径为_____________。 9、与图2所示应力圆对应的单元体是____________向应力状态。 图1 图2 10、 将圆截面压杆改成面积相等的圆环截面压杆,其它条件不变,其柔度将 ________,临界应力将________。 工程上通常把延伸率δ>________的材料称为塑性材料。 低碳钢经过冷作硬化处理后,它的_________极限得到了明显的提高。 b b h h 1 2

图1正方形单元体ABCD ,变形后成为AB `C`D`。单元体的剪应变为_________。 简支梁全梁上受均布荷载作用,当跨长增加一倍时,最大剪力增加一倍,最大弯矩增加了_______________倍。 如图2所示截面的抗弯截面模量Wz =_________________。 运用叠加原理求梁的变形时应满足的条件是:___________________________。 已知梁的挠曲线方程为)3(6)(2 x l EI Px x y -= ,则该梁的弯矩方程是______________________。 图1 图2 单向受拉杆,若横截面上的正应力为σ0,则杆任一点的最大正应力为_______,最大剪应力为____________。 图3应力圆,它对应的单元体属______________________应力状态。 细长杆的临界力与材料的____________________有关, 为提高低碳钢压杆的稳定性,改用高强刚不经济,原因是 _______________________________。 图3 z h b d τ σ

材料力学习题讲解

一、填空题(请将答案填入划线内。) 1、材料力学是研究构件 强度 , 刚度 , 稳定性 计算的科学。 2、构件在外力作用下,抵抗_破坏_的能力称为强度 , 抵抗__变形__的能力称为刚度,保持___稳定性平衡__的能力称为稳定性 。 3、在强度计算中,根据强度条件可以解决三方面的问题:即 校核强度 、 设计截面尺寸 、 和 计算许可载荷 。 4、杆件变形的基本形式有拉伸(压缩)、__剪切_、_扭转__、_弯曲__。 5、研究杆件内力的基本方法是__截面法_________。 6、材料的破坏通常分为两类,即_脆性断裂______和_塑性屈服___。 7.杆件沿轴向方向伸长或缩短,这种变形形式称为 拉伸或压缩 。 8. 在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的现象称为 屈服 。 9.因截面形状尺寸突变而引起局部应力增大的现象,称为 应力集中 。 10、低碳钢拉伸图可以分为四个阶段,它们分别是 __弹性__阶段,_屈服__阶段,_强化__阶段和 _局部收缩_阶段。 11.扭转的变形特点是截面绕轴线发生相对 转动 12.直杆受力后,杆件轴线由直线变为曲线,这种变形称为 弯曲 。 13.梁的弯矩方程对轴线坐标x 的一阶导数等于__剪力__________方程。 14、描述梁变形通常有 挠度 和 转角 两个位移量。 15.静定梁有三种类型,即, 简支梁 、 外伸梁 和 悬臂梁 16、单元体内切应力等于零的平面称为 主平面 ,该平面上的应力称为 主应力 17.由构件内一点处切取的单元体中,正应力最大的面与切应力最大的面夹角为_45_ 度。 18、构件某点应力状态如右图所示,则该点的主应力分别为τ、0、-τ。 19.横力弯曲时,矩形截面梁横截面中性轴上各点处于__纯剪切____应力状态。 20.圆轴弯扭组合变形时,除轴心外,各点处的三个主应力σ1,σ2,σ3中,等于零的主应力是_____σ2___。 21、压杆的柔度,综合反映了影响压杆稳定性的因素有约束、_杆的长度_、杆截面形状和尺寸_。 22、简支梁承受集中载荷如图所示,则梁内C 点处最大正应力等于_________ 。 τ 24pa bh

第二章材料力学选择题剖析讲解学习

第二章材料力学 材料力学中研究的物体是________。 A.刚体 B.可变形固体 C.流体 D.A+B B 当载荷不超过某一定范围时,多数材料在去除载荷后能恢复原有的形状和尺寸,材料的这种性质称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 A 当载荷不超过某一定范围时,多数材料在去除载荷后能恢复原有的形状和尺寸,去除载荷后能够消失的变形称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 B 当载荷不超过某一定范围时,多数材料在去除载荷后能恢复原有的形状和尺寸,材料的这种性质称为______;去除载荷后能够消失的变形称为______。 A.弹性/弹性变形 B.塑性/塑性变形 C.弹性/塑性变形 D.塑性/弹性变形 A 材料力学研究的变形主要是________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 B 材料在弹性阶段的变形即弹性变形________。 A.通常是很小的可复原的变形 B.通常是很小的不可复原的变形 C.通常是很大的可复原的变形 D.通常是很大的不可复原的变形 A 材料在弹性阶段的变形即弹性变形,在研究构件的刚度问题时________,在研究构件的静力平衡问题时________。 A.必须考虑/必须考虑 B.可以忽略/必须考虑 C.必须考虑/可以忽略 D.可以忽略/可以忽略 C 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,

材料的这种性质称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 C 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,不能复原而残留下来的变形称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 D 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,材料的这种性质称为________;不能复原而残留下来的变形称为________。 A.弹性/弹性变形 B.塑性/塑性变形 C.弹性/塑性变形 D.塑性/弹性变形 B 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,恢复的变形称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 B 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,材料的这种性质称为________;复原的变形称为______。 A.弹性/弹性变形 B.塑性/塑性变形 C.弹性/塑性变形 D.塑性/弹性变形 D 杆件在受到外力作用后,产生的塑性变形实际上就是________。 A.超出弹性范围的变形 B.外力去除后不能消失而残留下来的变形 C.因外力去除而产生的变形 D.使自身形状、尺寸发生改变的变形 B 构件的强度就是指________。 A.构件在载荷作用下抵抗破坏的能力 B.构件在载荷作用下抵抗变形的能力 C.构件在载荷作用下抵抗破坏和变形的能力 D.构件在载荷作用下保持其原有平衡状态、抵抗失稳的能力 A 以下工程实例中,属于强度问题的是________。 A.起重钢索被重物拉断 B.车床主轴变形过大

材料力学讲解作业

材料力学讲解作业 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

作下图所示梁的剪力图和弯矩图。 2m 1m 1m m 1kN 2kN 2kN 2kN A B C D 梁分三段,AB 、BC 为空荷载段,CD 段为均布荷载段,均布荷载q=2kN/2m=1kN/m 。 A , B ,D 三处剪力有突变,说明有集中力作用,在A 截面有向上集中力2kN ,在B 截面有向下集中力2kN ,在D 截面有向上集中力2kN 。荷载图如图 (b)。 根据荷载图作弯矩图,如图 (c)所示。 如下图所示机构中,1,2两杆的横截面直径分别为cm d 101= , cm d 202= ,P=10kN 。横梁ABC ,CD 视为刚体。求两杆内的应力。

p D C B A 1 22m 2m 1.5m 1m 1m CD 杆的D 支座不受力,CD 杆内也不受力,所以p 可视为作用于ABC 杆的C 端。取ABC 为受力体,受力图如图(b)所示。 MPa MPa A N MPa MPa A N kN N kN N 7.6310204 103203.12710 1041010202101622226 23111=????== =????====--πσπσ,

如图所示的阶梯形圆轴,直径分别为cm d 41=,cm d 72=。轮上三个皮带轮,输入功率为kW N 171=,kW N 132=,kW N 303=。轴的转速为n=200r/min ,材料的许用剪应力[τ]=60MPa 。试校核其强度。 1 计算各轮处的扭转外力偶矩。 m kN m kN m m kN m kN n N m m kN m kN n N m ?=??=?=??=?=??==433.1200 30 55.9621.02001355.9255.9812.02001755.9155 .9321

材料力学第6四章扭转

第6章 圆轴的扭转 6.1 扭转的概念 扭转是杆件变形的一种基本形式。在工程实际中以扭转为主要变形的杆件也是比较多的,例如图6-1所示汽车方向盘的操纵杆,两端分别受到驾驶员作用于方向盘上的外力偶和转向器的反力偶的作用;图6-2所示为水轮机与发电机的连接主轴,两端分别受到由水作用于叶片的主动力偶和发电机的反力偶的作用;图6-3所示为机器中的传动轴,它也同样受主动力偶和反力偶的作用,使轴发生扭转变形。 图6—1 图6—2 图6—3 这些实例的共同特点是:在杆件的两端作用两个大小相等、方向相反、且作用平面与杆件轴线垂直的力偶,使杆件的任意两个截面都发生绕杆件轴线的相对转动。这种形式的变形称为扭转变形(见图6-4)。以扭转变形为主的直杆件称为轴。若杆件的截面为圆形的轴称为圆轴。 图6—4 6.2 扭矩和扭矩图 6.2.1 外力偶矩 作用在轴上的外力偶矩,可以通过将外力向轴线简化得到,但是,在多数情况下,则是通过轴所传递的功率和轴的转速求得。它们的关系式为 n P M 9550 (6-1) 其中:M ——外力偶矩(N ·m ); P ——轴所传递的功率(KW ); n ——轴的转速(r /min )。 外力偶的方向可根据下列原则确定:输入的力偶矩若为主动力矩则与轴的转动方向相同;输

入的力偶矩若为被动力矩则与轴的转动方向相反。 6.2.2 扭矩 圆轴在外力偶的作用下,其横截面上将产生连续分布内力。根据截面法,这一分布内力应组成一作用在横截面内的合力偶,从而与作用在垂直于轴线平面内的外力偶相平衡。由分布内力组成的合力偶的力偶矩,称为扭矩,用n M 表示。扭矩的量纲和外力偶矩的量纲相同,均为N·m 或kN·m 。 当作用在轴上的外力偶矩确定之后,应用截面法可以很方便地求得轴上的各横截面内的扭矩。如图6-5(a )所示的杆,在其两端有一对大小相等、转向相反,其矩为M 的外力偶作用。为求杆任一截面m-m 的扭矩,可假想地将杆沿截面m-m 切开分成两段,考察其中任一部分的平衡,例如图6-5(b )中所示的左端。由平衡条件 0)(=∑F M X 可得 M M n = 图6—5 注意,在上面的计算中,我们是以杆的左段位脱离体。如果改以杆的右端为脱离体,则在同一横截面上所求得的扭矩与上面求得的扭矩在数值上完全相同,但转向却恰恰相反。为了使从左段杆和右段杆求得的扭矩不仅有相同的数值而且有相同的正负号,我们对扭矩的 正负号根据杆的变形情况作如下规定:把扭矩当矢量,即用右手的四指表示扭矩的旋转方向,则右手的大拇指所表示的方向即为扭矩的矢量方向。如果扭矩的矢量方向和截面外向法线的方向相同,则扭矩为正扭矩,否则为负扭矩。这种用右手确定扭矩正负号的方法叫做右手螺旋法则。如图6-6所示。 按照这一规定,园轴上同一截面的扭矩(左与右)便具有相同的正负号。应用截面法求扭矩时,一般都采用设正法,即先假设截面上的扭矩为正,若计算所得的符号为负号则说明扭矩转向与假设方向相反。 当一根轴同时受到三个或三个以上外力偶矩作用时,其各 图6-6 扭矩正负号规定 段横断面上的扭矩须分段应用截面法计算。 6.2.3 扭矩图 为了形象地表达扭矩沿杆长的变化情况和找出杆上最大扭矩所在的横截面,我们通常把扭矩随截面位置的变化绘成图形。此图称为扭矩图。绘制扭矩图时,先按照选定的比例尺,以受扭杆横截面沿杆轴线的位置x 为横坐标,以横截面上的扭矩n M 为纵坐标,建立n M —x 直角坐标系。然后将各段截面上的扭矩画在n M —x 坐标系中。绘图时一般规定将正号的

材料力学扭转详细讲解和题目,非常好

材料力学扭转 6.1 扭转的概念 扭转是杆件变形的一种基本形式。在工程实际中以扭转为主要变形的杆件也是比较多的,例如图6-1所示汽车方向盘的操纵杆,两端分别受到驾驶员作用于方向盘上的外力偶和转向器的反力偶的作用;图6-2所示为水轮机与发电机的连接主轴,两端分别受到由水作用于叶片的主动力偶和发电机的反力偶的作用;图6-3所示为机器中的传动轴,它也同样受主动力偶和反力偶的作用,使轴发生扭转变形。 图6—1 图6—2 图6—3 这些实例的共同特点是:在杆件的两端作用两个大小相等、方向相反、且作用平面与杆件轴线垂直的力偶,使杆件的任意两个截面都发生绕杆件轴线的相对转动。这种形式的变形称为扭转变形(见图6-4)。以扭转变形为主的直杆件称为轴。若杆件的截面为圆形的轴称为圆轴。 图6—4 6.2 扭矩和扭矩图 6.2.1外力偶矩 作用在轴上的外力偶矩,可以通过将外力向轴线简化得到,但是,在多数情况下,则是通过轴所传递的功率和轴的转速求得。它们的关系式为

n P M 9550= (6-1) 其中:M ——外力偶矩(N ·m ); P ——轴所传递的功率(KW ); n ——轴的转速(r /min )。 外力偶的方向可根据下列原则确定:输入的力偶矩若为主动力矩则与轴的转动方向相同;输入的力偶矩若为被动力矩则与轴的转动方向相反。 6.2.2 扭矩 圆轴在外力偶的作用下,其横截面上将产生连续分布内力。根据截面法,这一分布内力应组成一作用在横截面内的合力偶,从而与作用在垂直于轴线平面内的外力偶相平衡。由分布内力组成的合力偶的力偶矩,称为扭矩,用n M 表示。扭矩的量纲和外力偶矩的量纲相同,均为N·m 或kN·m 。 当作用在轴上的外力偶矩确定之后,应用截面法可以很方便地求得轴上的各横截面内的扭矩。如图6-5(a )所示的杆,在其两端有一对大小相等、转向相反,其矩为M 的外力偶作用。为求杆任一截面m-m 的扭矩,可假想地将杆沿截面m-m 切开分成两段,考察其中任一部分的平衡,例如图6-5(b )中所示的左端。由平衡条件 0)(=∑F M X 可得 M M n = 图6—5 注意,在上面的计算中,我们是以杆的左段位脱离体。如果改以杆的右端为脱离体,则在同一横截面上所求得的扭矩与上面求得的扭矩在数值上完全相同,但转向却恰恰相反。为了使从左段杆和右段杆求得的扭矩不仅有相同的数值而且有相同的正负号,我们对扭矩的 正负号根据杆的变形情况作如下规定:把扭矩当矢量,即用右 手的四指表示扭矩的旋转方向,则右手的大拇指所表示的方向 即为扭矩的矢量方向。如果扭矩的矢量方向和截面外向法线的 方向相同,则扭矩为正扭矩,否则为负扭矩。这种用右手确定 扭矩正负号的方法叫做右手螺旋法则。如图6-6所示。 按照这一规定,园轴上同一截面的扭矩(左与右)便具 有相同的正负号。应用截面法求扭矩时,一般都采用设正法, 即先假设截面上的扭矩为正,若计算所得的符号为负号则说明 扭矩转向与假设方向相反。 当一根轴同时受到三个或三个以上外力偶矩作用时,其各 图6-6 扭矩正负号规定 段横断面上的扭矩须分段应用截面法计算。

材料力学 扭转答案

3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。试作轴的扭矩图。 解:kN kN kN kN 返回 3-2(3-3) 圆轴的直径,转速为。若该轴横截面上的最大切应力等于,试问所传递的功率为多大 解:故 即 又 故 返回

3-3(3-5) 实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。试求: (1)最大切应力及两端截面间的相对扭转角; (2)图示截面上A,B,C三点处切应力的数值及方向; (3)C点处的切应变。 解:= 返回 3-4(3-6) 图示一等直圆杆,已知,,,。试求: (1)最大切应力; (2)截面A相对于截面C的扭转角。 解:(1)由已知得扭矩图(a)

(2) 返回 3-5(3-12) 长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。实心轴直径为d;空心轴外径为D,内径为,且。试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。 解:重量比= 因为 即 故 故 刚度比= = 返回 3-6(3-15) 图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。试确定该轴的直径d。 解:扭矩图如图(a) (1)考虑强度,最大扭矩在BC段,且

(1) (2)考虑变形 (2) 比较式(1)、(2),取 返回 3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。外力偶矩,,。已知:,,。试校核该轴的强度和刚度。 解:扭矩图如图(a) (1)强度 = ,BC段强度基本满足 = 故强度满足。 (2)刚度 BC段:

相关文档