文档库 最新最全的文档下载
当前位置:文档库 › 荷载计算

荷载计算

荷载计算
荷载计算

3.2.1.1 板厚尺寸的估算

根据《混凝土结构设计规范》(GB50010-2002)知:现浇钢筋混凝土双向板的厚度要满足一下几点:

①一般情况,现浇钢筋混凝土双向板的最小厚度为80mm ;

②现浇钢筋混凝土框架结构的楼板板厚不宜小于100mm ,且要求双向板的板厚不小于跨度的1/45(简支),1/50(连续);单向板的板厚不小于跨度的1/35(简支),1/40(连续)。

由于本方案中双向板的最大跨度为3900mm ,计算得板的厚度不小于100mm ,所以根据板的厚度确定的一般原则,结合该建筑物各板的受力情况,取板厚均为100mm ,但由于走廊、楼梯、卫生间处的恒载相对较大,所以将走廊的楼板厚取为110mm ,将楼梯、卫生间的楼板厚取为120mm 。

3.2.1.2 主梁尺寸的估算

根据《高层建筑混凝土结构设计规范》6.3.1框架结构的主梁截面高度h 可按(1/10~1/18)l 确定,l 为主梁的计算跨度;梁净跨与截面高度之比不宜小于4。且根据《建筑抗震设计规范》第6.3.1条和6.3.6条规定:梁的截面宽度不宜小于200mm ,梁截面的高宽比不宜大于4。所以框架梁截面高度一般取h=(1/18~1/10) l ,l 为框架梁的跨度。框架梁的宽度取b=(1/3~1/2)h 。

故截面选择如下:

例如:HK 跨横向框架梁:L=5700mm

11()317570,5501810

h L mm mm h mm =~=~=取 11()250167,25023

b h mm mm b mm =~=~=取 250500b h mm mm ?=?取:

3.2.1.3 次梁尺寸的估算

根据《混凝土结构设计规范》可按梁的高度为(1/12~1/18)l 确定,l 为次梁的计算跨度;梁净跨与截面高度之比不宜小于4,梁的截面宽度不宜小于200mm ,梁截面的高宽比不宜大于4。所以框架梁截面高度一般取h=(1/18~1/12) l ,l 为次梁的跨度。次梁的宽度取b=(1/3~1/2)h 。

故截面选择如下:

①一级次梁(梁下有窗的情况):3900L mm =

11()217325,6001812

h L mm mm h mm =~=~=取 11()200300,20023

b h mm mm b mm =~=~=取(注:将一级次梁的高度取直600mm ,主要是考虑了窗的高度,将梁高取至窗顶便于施工方便)

200600b h mm mm ?=?取:

②二级次梁(梁下无窗的情况):3900L mm =

11()217325,4501812

h L mm mm h mm =~=~=取 11()225150,20023

b h mm mm b mm =~=~=取 200450b h mm mm ?=?取:

3.2.1.4 柱子尺寸的估算

根据《高层建筑混凝土结构技术规程》知,柱的截面尺寸应满足以下两点: ①柱截面的宽与高为11()1520

H -,H 为建筑的层高; ②根据《高层建筑混凝土结构技术规程》表6.4.2知:框架柱必须满足该建筑的轴压比限值。 根据①得:柱截面的高与宽为11()1520H -=595059502015-=298mm ~397max 6(1)j N e P A l

=- 根据②得:框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算:

柱组合的轴压比设计值按照公式1-1计算:

N Fgn β= (3-1)

式中: β——为考虑地震作用组合后柱轴力增大系数,边柱取1.3,等跨内柱取1.2,

不等跨取1.25。

F ——为按照简支状态计算柱的负荷面积。

g ——为折算后在单位面积上的重力荷载代表值,近似取14KN/2m 。

n ——为验算截面以上楼层层数。

框架柱验算

0.9c c c N b h f < (3-2)

由图3.1可知边柱和中柱的负载面积如下:

中柱:(3.9+3.9)/2×(5.7+2.1)/2=15.212m

边柱:(3.9+3.9)/2×5.7/2=11.122m

对于边柱:

N Fgn =β=1.3×11.12×14×5=1011.92(KN )

3

21011.921094483.7()0.911.9

C c N A mm uf ?≥==? 取400mm ×400mm

对于内柱:

N Fgn =β=1.25×15.21×14×5=1330.88(KN )

3

21330.8810124265.17()0.911.9

C c N A mm uf ?≥==? 取450mm ×450mm

对于一层大厅前的两根圆形柱,取直径为500mm 。

3.2.2 墙体

框架填充墙厚度为190厚空心砖。

3.2.4 楼梯的做法

楼梯的斜板的水平投影长度均在4m 左右,按建筑要求,采用板式楼梯,故该建筑楼梯均采用钢筋混凝土板式楼梯。

具体楼梯做法(参98ZJ001,楼27):

3.3 荷载的统计与计算

3.3.1 板活荷载的确定

不上人屋面均布活荷载: 0.5KN/㎡

上人屋面均布活荷载: 2.0KN/㎡

走廊的均布活荷载: 2.5 KN/㎡

档案室、资料室的均布活荷载: 2.5 KN/㎡

楼梯间的均布活荷载: 2.5 KN/㎡

健身房的均布活荷载: 4.0 KN/㎡

其他的板的均布活荷载: 2.0KN/㎡

3.3.2 板恒荷载的确定

①屋面恒载标准值

高聚物改性沥青卷材防水屋面做法(参98ZJ001,屋16)如下:

计算结果:

高聚物改性沥青卷材防水屋面: 2.26 KN/㎡

120厚C25现浇钢筋混凝土板: 0.120×25=3.00 KN/㎡

20厚底板抹灰: 0.020×17=0.34 KN/㎡

总计:(2.26+3.00+0.34)×1.1=6.16 KN/㎡

取 6.20 KN/㎡

②卫生间楼板恒载标准值

计算结果:

陶瓷地砖卫生间楼面为: 2.26 KN/㎡(100mm)290厚1∶6水泥炉渣垫层: 0.29×12=3.6 KN/㎡

20厚底板抹灰: 0.020×17=0.34 KN/㎡合计:(2.26+3.6+0.34)×1.1=6.5 KN/㎡

取 10.00KN/㎡

③100厚楼面恒载标准值

陶瓷地砖楼面做法(参98ZJ001,楼10):

计算结果:

陶瓷地砖楼面: 0.70KN/㎡

100厚C25现浇钢筋混凝土板: 0.100×25=2.50 KN/㎡

20厚底板抹灰: 0.020×17=0.34 KN/㎡

总计:(0.70+2.5+0.34)×1.1=3.89KN/㎡

取 4.0 KN/㎡

④110厚楼面恒载标准值

陶瓷地砖楼面做法(参98ZJ001,楼10):

计算结果:

陶瓷地砖楼面: 0.70KN/㎡

110厚C25现浇钢筋混凝土板: 0.110×25=2.75 KN/㎡

20厚底板抹灰: 0.020×17=0.34 KN/㎡

总计:(0.70+2.75+0.34)×1.1=4.17KN/㎡

取 4.20KN/㎡

⑤楼梯踏步板恒载标准值

斜板部分:踏步尺寸300mm×150mm,取板厚为120mm,约为板斜长的1/30。

板倾斜度tgα=150/300=0.50,cosα=0.894

计算结果:

楼梯板面做法: 0.70KN/㎡

三角形踏步:

0.5×0.3×0.15*25/0.3=1.88KN/㎡

120厚C25现浇钢筋混凝土板: 0.120×25×1/0.894=3.36 KN/㎡

20厚底板抹灰: 0.020×17×1/0.894=0.38 KN/㎡

总计:(0.70+1.88+3.36+0.38)×1.1=6.95 KN/㎡

取 7.00 KN/㎡

⑥楼梯平台板恒载标准值

陶瓷地砖楼面做法(参98ZJ001,楼10)

计算结果:

陶瓷地砖楼面: 0.70KN/㎡

100厚C25现浇钢筋混凝土板: 0.100×25=2.50 KN/㎡

20厚底板抹灰: 0.020×17=0.34 KN/㎡

总计:(0.70+2.5+0.34)×1.1=3.89KN/㎡

取 4.0 KN/㎡

3.3.3 梁上荷载的确定

需要输入的梁上线荷载是梁上墙体(包括两面抹灰)重量所折算的线荷载。线荷载

q={[(层高-梁高)×墙长-门窗面积]×墙体(包括抹灰)重量+门窗面积×门窗重量}÷墙长。

塑钢窗自重: 0.45KN/㎡

玻璃幕墙自重: 1.5 KN/㎡

夹板门自重: 0.20 KN/㎡

①一般外墙自重(参98ZJ001 外墙22)

190厚空心砖: 0.19×10=1.9KN/㎡

12厚1:3水泥砂浆:

8厚1:2.5水泥砂浆木抹搓平:

喷或滚刷涂料二遍(两侧): 0.20×20×2=0.80KN/㎡

合计: 2.7 KN/㎡

②一般内墙自重(参98ZJ001 内墙4)

190厚空心砖: 0.19×10=1.9KN/㎡

15厚1:1:6水泥石灰砂浆:

5厚1:0.5:3水泥石灰砂浆(两侧):0.20×17×2=0.68KN/㎡

合计: 2.58 KN/㎡

③卫生间内墙自重

190厚空心砖: 0.19×10=1.9KN/㎡

20厚的1:3水泥砂浆(两侧): 0.20×20×2=0.80KN/㎡

合计: 2.7 KN/㎡

④女儿墙自重

190厚空心砖自重: 0.19×10 = 1.90 KN/㎡

两侧抹灰层自重: 0.8 KN/㎡

50-70厚钢筋混凝土压顶自重: [(0.07+0.05)×0.38/2]×25=0.57 KN/㎡合计:(1.9+0.8+0.57)×1.2=3.92KN/㎡

(将屋顶装饰这算成女儿墙自重,所以乘以一个增大系数1.2)

取 4.00 KN/㎡

⑤一楼大厅上空栏杆自重

取 3.0 KN/㎡

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

多层钢筋混凝土框架设计(4 恒荷载内力计算)

四恒荷载内力计算 (一)恒荷载计算 1.屋面框架梁线荷载标准值 20厚水泥混凝土找平0.02×20=0.46kN/m2 40~120厚(1%找坡)膨胀珍珠岩(0.08+0.16)÷2×7=0.546kN/m2四层作法防水层0.36kN/m2 100mm厚钢筋混凝土楼板0.1×25=2.56kN/m2 20mm厚石灰砂浆抹底0.02×17=0.34kN/m2 屋面恒荷载 4.08 kN/m2 边框架梁自重0.3×0.8×25=6kN/m 边框架梁粉刷2×(0.8-0.1)×0.02×17=0.48kN/m 中框架梁自重0.3×0.6×25=4.5kN/m2 边框架梁粉刷2×(0.6-0.1)×0.03×17=0.34kN/m 则作用于屋面框架梁上线荷载标准值为: g5AB1=6.48kN/m g5BC1=4.85kN/m g5AB2=4.08×3.9=15.91kN/m g5BC2=4.08×3=12.24kN/m 2.楼面框架梁线荷载标准值 20mm厚水泥砂浆找平0.02×20=0.46kN/m2 100mm厚钢筋混凝土楼板0.1×25=2.5kN/m2 20mm厚石灰砂浆抹底0.02×17=0.34kN/m2 水磨石面层0.65 kN/m2 楼面恒荷载 3.89 kN/m2 边框架梁自重及粉刷 6.48kN/m 中框架梁自重及粉刷 4.85kN/m 边跨填充墙自重0.24×3.6×18=15.55kN/m 填充墙粉刷2×0.02×2×17=2.45kN/m 则作用于楼面框架梁上线荷载标准值为: g AB1=6.48+15.55+2.45=24.48kN/m g BC1=4.85kN/m g AB2=3.89×3.9=15.17kN/m g BC2=3.89×3=11.67kN/m

模板计算例子

例1、一块1.500*0.300m的组合钢模板,其截面模量W=4.40cm 3 ,惯性距I=13.90cm 4 ,钢材容许应力为2100kg/cm 2 ,E=2.1*106kg/cm 2 ,拟用于浇筑150mm厚的楼板,试验算其能否满足施工要求。已知荷载: 1)新浇混凝土容重2500kg/M 3 ;2)钢筋重量110kg/M 3 混凝土;3)模板自重75kg/M 2 ;4)施工活荷:均布250kg/M 2 或集中荷载130kg; 5)若采用木模板,试计算木模板所需得最小厚度。已知:[σ木]=11.7Mpa,自重500Kg/m 3 。 模板支承形式为简支,楼板底表面外露(即不做抹灰)。 解:(1)均布荷载q 1 ( 考虑均布施工荷载) q 1 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 75 ′ 0.3 ′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2 + 250 ′ 0.3 ′ 1.4 = 272.94(Kg/m) 均布荷载q 2 ( 不考虑均布施工荷载) q 2 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 75 ′ 0.3′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2= 167.94(Kg/m) 集中力P = 130 ′ 1.4 = 182 Kg M 1 = 1/8q 1 l 2 = 1/8 ′ 272.94 ′ 1.5 2 = 76.76 (Kg · m) M 2 = 1/8q 2 l 2 + 1/4Pl = 115.48(Kg · m) M = max(M 1 ,M 2 ) = 115.48(Kg · m) ? = M/w = 115.48 ′ 100/4.4 = 2624.5(Kg/c m 2 ) > 2100(Kg/cm 2 ) 承载力不满足,刚度不必验算。 (2)设此木模板最小厚度为h 米 均布荷载q 1 ( 考虑均布施工荷载) q 1 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 500 ′ 0.3 ′ h ′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2 + 250 ′ 0.3 ′ 1.4 = (245.94 + 180h)(Kg/m) 均布荷载q 2 ( 不考虑均布施工荷载) q 2 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 500′ 0.3 ′ h ′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2 = (140.94 + 180h) (Kg/m) 集中力P = 130 ′ 1.4 = 182 Kg M 1 = 1/8q 1 l 2 M 2 = 1/8q 2 l 2 + 1/4Pl w = 1/6bh 由? 1 = M 1 /w = [?] 解得h 1 = 0.034m 由? 2 = M 2 /w = [?] 解得h 2 = 0.043m 故该木模板得最小厚度为h = max(h 1 ,h 2 ) =0.043m ,实际取h = 4.5cm 。

杆塔荷载及强度校验(常用).

杆塔荷载及强度校验(常用). 杆塔荷载及强度校验 一、荷载种类及计算条件 1?荷载分类 根据荷载在杆塔上的作用方向,可划分为以下几种: (1)水平荷载。杆塔及导线、避雷线的横向风压荷载,转角杆塔导线及避雷线的角度荷载。 (2)纵向荷载。杆塔及导线、避雷线的纵向风压荷载,事故断线时的顺线路方向张力。 还有导线、避雷线的顺线路方向不平稳张力,安装时的紧线张力等。 (3)垂直荷载。导线、避雷线、金具、绝缘子、覆冰荷载和杆塔自重, 安装检修人员及工具重力,使用拉线时由拉线产生的垂直分力。 2.荷载的计算条件 杆塔的荷载与气象条件有关,也与线路运行情况、杆塔型式等因素有关。确定杆塔的荷载应考虑杆塔在施工、运行中可能遇到的外界条件。 对此,《架空送电线路设计技术规程》做了规定。此外,中华人民共和国国家

标准《工业与民用35KV及以下架空电力线路设计规范》对35KV 及以下架空电力线路杆塔荷载计算条件也做了规定。过去的书刊上把这种 规定叫做杆塔设计条件。它既是设计杆塔时计算杆塔荷载的依据,也是线路设计中校验杆塔强度的依据。现将有关规定综述如下: 35KV及以上高压架空线路的各类杆塔均应计算线路的运行情况、断线(纵向不平衡张力)情况及安装情况的荷载。但对35KV及以下采用针式绝缘子线路和10KV及以下的瓷横担线路,可不进行断线情况的杆塔荷载计算。 (1)正常运行情况。各类杆塔的运行情况,应采用下列荷载计算条件:①最大风速、无冰、未断线;②覆冰、相应风速、未断线;③最低气温、无风、无冰、未断线(适用于终端杆塔和转角杆塔)。 (2)断线(不平衡张力)情况。分以下几种)情况考虑: 1)直线型杆塔(包括悬垂转角杆塔)的断线(不平衡张力)情况 单回路或多回路直线型杆塔(包括悬垂转角杆塔)的断线(不平衡张力)情况,应采用下列荷载计算条件:①断一根导线(或一相不平衡张力)、避 雷线未断、无风、无冰。②一根避雷线有不平衡张力、导线未断、无风、无冰。 其中,单导线的断线张力和避雷线的不平衡张力计算应采用数值参见有关文献。 2)耐张转角型杆塔断线情况 耐张转角型杆塔断线情况应采用下列荷载计算条件(适用于单回路或 多回路杆塔):①在同一档内断两相导线(终端杆塔应考虑剩两相导线)、避雷线未断、无风、无冰。②断一根避雷线、导线未断、无风、无冰。在断线情况下,导线断线张力取导线最大张力的70%,避雷线断线张力取避雷

1、恒荷载取值

3.1.1 恒载取值 恒载:又称永久荷载,在结构使用期间内,荷载的大小不随时间的推移而变化、或其变化与其平均值相比较可以忽略不计、或其变化是单调的并能趋于限值的荷载。如结构自重、构造层重、土压力等。 结构自重和构造层重的标准值计算,可按照施工图纸的设计尺寸和材料的单位体积、或面积、或长度的重力,经计算直接确定;土压力标准值的计算详有关基础设计资料。 3.1.1.1 楼面恒荷载 楼面恒荷载主要由三部分组成:建Array筑面层恒荷载、结构层恒荷载、顶棚恒 荷载,分布形式详图3.1.1所示。 (1)由建筑面层引起的楼面恒荷载 计算 建筑面层引起的楼面恒荷载计算, 必须根据建筑楼面面层的具体做法 确定,常用建筑楼面面层恒荷载取值可图3.1.1 楼面恒荷载组成示意图 参考表3.1.1。 (2)由结构层引起的楼面恒荷载计 算 结构层引起的楼面恒荷载 = 结构楼层楼板厚度×钢筋混凝土容重(一般取25kN/m3)程序计算时,只要输入结构楼层楼板厚度和混凝土容重,结构层恒荷载即会自行导算,详4.1所述。 表3.1.1 常用建筑楼面面层恒荷载取值参考表

(3)由顶棚引起的楼面恒荷载计算 顶棚引起的楼面恒荷载计算,必须根据建筑顶棚的具体做法确定,常用建筑顶棚恒荷载取值可参考表3.1.2。 表3.1.2 常用建筑顶棚恒荷载取值参考表 2

《结构程序PKPM 应用实训》开放性实验资料 3 3.1.1.2 屋面恒荷载 屋面恒荷载主要由三部分组成:建筑屋面面层恒荷载、结构层恒荷载、顶棚恒荷载,分布形式详图3.1.2所示。 图3.1.2 屋面恒荷载组成示意图 由结构层与顶棚引起的屋面恒荷载计算方法,同相应楼面恒荷载的计算方法,由建筑屋面面层引起的屋面恒荷载,必须根据建筑屋面面层的具体做法确定。 由于建筑屋面承担着保温、隔热和防水、排水的功能,因此建筑屋面面层的做法相对于建筑楼面面层的做法要复杂得多,加之各地气候、雨水情况不同,保温隔热材料和防水材料 的不断更新发展,使各地屋面面层的做法不完全相同,但基本构造层相差不多。 (1)平屋面面层恒荷载计算 平屋面,又称建筑找坡屋面,排水坡度为2%~3%,屋面面层的基本构造、荷重如下: ① 结构层(钢筋混凝土屋面板)上水泥砂浆找平层:厚度15~30mm ,容重20kN/m 3 ; ② 隔气层:以成品为主,重量较轻,可以忽略; ③ 保温层兼找坡层:一般采用憎水性能好、导热系数小和重量轻的保温材料,起坡处 厚度必须满足热工要求、由建筑专业计算决定,如膨胀珍珠岩系列(容重7~15 kN/m 3 ,现场拌制的砂浆取大值,成品取小值)、挤塑板系列(很轻,重量可以忽略)等; ④ 水泥砂浆找平层:厚度15~20mm ,容重20kN/m 3 ; ⑤ 防水层:如二毡三油系列、二布六胶系列等,重量2~8 kN/m 2 ; ⑥ 保护面层:对于不上人屋面,可以是涂料、反射膜、砂石粘料(常称绿豆砂)、蛭石云母粉、纤维纺织毯、水泥砂浆块材等;对于上人屋面,与楼面面层的做法相同,一般以水泥砂浆面层为主;也可以结合环境绿化,采用种植屋面、蓄水屋面等。 (2)坡屋面面层恒荷载计算

梁模板计算实例(新)

模板计算实例 1、工程概况 柱网尺寸6m×9m,柱截面尺寸600mm×600mm 纵向梁截面尺寸300mm×600mm,横向梁截面尺寸600mm×800mm,无次梁,板厚150 mm,层高12m,支架高宽比小于3。 (采用泵送混凝土。) 2、工程参数(技术参数)

3计算 3.1梁侧模板计算 图3.1 梁侧模板受力简图 3.1.1梁侧模板荷载标准值计算 新浇筑的混凝土作用于模板的侧压力标准值,依据建筑施工模板安全技术规范,按下列公式计算,取其中的较小值: V F C 210t 22.0ββγ= 4.1.1-1 H F c γ= 4.1.1-2 式中 : γc -- 混凝土的重力密度,取24kN/m 3; t 0 -- 新浇混凝土的初凝时间,按200/(T+15)计算,取初凝时间为 5.7小时。 T :混凝土的入模温度,经现场测试,为20℃; V -- 混凝土的浇筑速度,取11m/h ; H -- 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取0.8m ; β1-- 外加剂影响修正系数,取1.2; β2-- 混凝土坍落度影响修正系数,取1.15。 V F C 210t 22.0ββγ==0.22×24×5.7×1.2×1.15×3.32=138.13 kN/m 2

H F c γ==24×0.8=19.2 kN/m 2 根据以上两个公式计算,新浇筑混凝土对模板的侧压力标准值取较小值19.2kN/m 2。 3.1.2梁侧面板强度验算 面板采用木胶合板,厚度为18mm ,验算跨中最不利抗弯强度和挠度。计算宽度取1000mm 。(次楞平行于梁方向) 面板的截面抵抗矩W= 1000×18×18/6=54000mm 3; (W= 650×18×18/6=35100mm 3 ;)(次楞垂直于梁方向) 截面惯性矩I= 1000×18×18×18/12=486000mm 4; (I= 650×18×18×18/12=315900mm 4 ;) 1、面板按三跨连续板计算,其计算跨度取支承面板的次楞间距,L=0.15m 。 2、荷载计算 新浇筑混凝土对模板的侧压力标准值G 4k =19.2kN/m 2, 振捣砼对侧模板产生的荷载标准值Q 2K =4kN/m 2。 (规范:2振捣混凝土时产生的荷载标准值(k Q 2)(↓→)对水平面模板可采用2 kN/m 2,对垂直面模板可采用4 kN/m 2) 荷载基本组合 1) 由可变荷载效应控制的组合 k Q n i ik G Q r G r S 111+=∑= (4.3.1—2) ∑∑==+=n i ik Qi n i ik G Q r G r S 1 1 9.0 (4.3.1—3) 式中 G r ──永久荷载分项系数,应按表4.2.3采用;

桥梁工程恒载内力计算例题

一、 设 计 资 料 (一) 桥面净空 16m (行车道)+2*0.75(人行道)+ 2* 0.25 (栏杆)。 (二)主梁跨径和全长 标准跨径 m l b 00.20=(墩中心距离) 计算跨径 m l 50.19=(支座中心距离) 主梁全长 96m .19=全l (主梁预制长度) (三)设计荷载 根据该桥所在道路的等级确定荷载等级为: 公路-Ⅱ级,人群荷载3.5kN/m 2 (四)材料 混凝土:主梁用40 号(C40),人行道、栏杆及桥面铺装用25 号(C25) 钢筋:直径〉=12mm 时采用Ⅱ级钢筋,直径<12 mm 时采用Ⅰ级热轧光面钢筋。 每侧的栏杆和人行道构件重量的作用力为5KN/m 。 (五)计算方法

1.恒载内力 (1)恒载:假定桥面构造各部分重量平均分配给各主梁承担,计算下表

构件名 构件简图及尺寸(cm) 单元构件体积及算式(m 3) 容重 (KN /m 3) 每延米重量(kN/m) 主 梁 434 .0)2 14 .008.030.1(91.0230.100.2=+-? ?-? 25 85.1025434.0=? 横 隔 梁 中 梁 089.05.19591.02216.018.0)214.008.000.1(=÷???+?+- 25 228.225089.0=? 114.12/228.2= 边 梁 桥 面 铺 装 沥青混凝土: 64.01604.0=? 混凝土垫层(取平均厚12cm ): 92.11612.0=? 223 224 72.142364.0=? 08.462492.1=? ∑=+=76 .69/)08.4672.14(人 行 道 部 分 11.19/25=?

模板荷载计算

本方案是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。 关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合1施工荷载计算的计算依据 施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。 2模板支撑系统及其新浇钢筋混凝土自重的计算参数: 模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用:钢筋混凝土和模板及其支架自重标准值和设计值统计表 材料名称单位标准值分项系数设计值备注 平板的模板KM/m2 0.3 1.2 0.36 包括小楞 梁的模板KN/m2 0.5 1.2 0.6 展开面积 普通混凝土KN/m3 24 1.2 28.8 楼板的钢筋KN 1.1 1.2 1.32 每立方米混 凝土的含量 梁的钢筋KN 1.5 1.2 1.8 模板及支架KN/m2 0.75 1.2 0.9 层高≤4m 3施工人员及设备荷载的取值标准: 施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。 施工活荷载标准值和设计值统计表 序号计算构件名 称 荷载类型单位标准值分项系数设计值备注

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

杆塔(技术部)

名词解释 ,杆塔的定义:钢筋混凝土杆与铁塔的总称。 ,水平档距:杆两侧档距之和的算术平均值。, ,垂直档距:杆塔两侧档导线最低点、之间的水平距离。 ,比载:导线单位长度、单位截面积上的荷载, ,杆塔的呼称高是指杆塔下横担下缘到设计地面的垂直距离,用表示。 ,爬电距离:不同电位的两个导电部件之间沿绝缘材料表面的最短距离。 ,电气间隙:不同电位的两个导电部件间最短的空间直线距离 ,导线弧垂是指在平坦地面上,相邻两基电杆上导线悬挂高度相同时,导线最低点与两悬挂点间连线的垂直距离。 ,安全距离,是导线对地面、建筑物、树木、果树、经济作物、及城市绿化灌木之间的最小垂直距离 ,风偏角。导线和绝缘子串在风荷载作用下,使绝缘子串风偏一定角度,称为风偏角,, ,长细比是指杆件的计算长度与杆件截面的回转半径之比, ,根开:相邻两塔腿中心轴线之间的水平距离 ,在荷载作用下,钢结构的外力和内力必须保持平衡。但平衡状态有稳定和不稳定之分,当为不稳定平衡时,轻微扰动将使结构或其组成构件产生很大的变形而最后丧失承载能力,这种现象就称为结构失去稳定性。, 简答题 杆塔的作用:在输电线路中起着支持导线、避雷线系统,使导线、避雷线与地面(水面)间及导线、避雷线间保持电气安全距离的作用。 杆塔的分类 一、按材料不同分类 分为钢筋混凝土电杆和铁塔两种。 二、按受力不同分类 .直线型杆塔(又称中间杆塔) 仅承受垂直荷载以及水平风荷载(即横向水平荷载),而不承受顺线路方向的张力的杆塔称直线型杆塔。 特点()仅承受垂直荷载以及水平风荷载 ()采用悬垂绝缘子串

()事故断线时产生不平衡张力,允许在不平衡张力作用下杆塔发生倾斜。 2.耐张型杆塔(又称承力杆塔) 除具有与直线型杆塔同样荷载承载能力外,还能承受更大的顺线路方向的拉力(支持事故断线时产生纵向不平衡张力,或者承受因施工、检修时用以锚固导线和避雷线引起的荷载的杆塔)称耐 张型杆塔。 特点:()除具有直线型杆塔承受荷载能力外,还要承受纵向水平荷载。 ()采用耐张绝缘子串 )在发生事故断线时,导线悬挂点不产生位移 三、按用途不同分类 .换位杆塔 用于改换同一回线路导线位置的杆塔 导线换位的原因:导线的各种排列方式(包括等边三角形),均不能保证三相导线的线间距离或导线对地距离相等,因此,三相导线的电感、电容及三相阻抗均不相等,这会造成三相电流的不平衡,这种不平衡,对发电机、电动机和电力系统的运行以及输电线路附近的弱电线路均会带来一系列的不良影响。为了避免这些影响,各相线应在空间轮流地改换位置,以平衡三相阻抗。 、跨越杆塔 用于线路跨越江河、山谷、铁路、公路、通讯线及其它电力线路跨越杆塔有直线型和耐张型两种。一般跨越杆塔的高度较高。 、转角杆塔 用于线路改变方向处的杆塔。在特殊情况下,直线型杆塔和耐张型杆塔可设计成兼度以下的小转角。当转角超过度以上时必须按转角杆塔设计。 、终端杆塔 用于发电厂及变电所的第一座杆塔。终端杆塔用来承受杆塔一侧的导线拉力。终端杆塔必须是耐张型杆塔。 四、按线路回路分类 按线路回路多少可分为: 单回路杆塔 双回路杆塔和多回路杆塔。 双回路和多回路杆塔能节省杆塔数目,减少线路事故。 作用于杆塔上的荷载按其作用方向分为垂直荷载、横向荷载、纵向荷载。

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

4.高压输电线路水平档距和垂直档距计算

高压输电线路水平档距和垂直档距计算 一、水平档距和水平荷载 在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是否满足要求。杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘子串的作用。就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。 为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。 悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示: 则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。 图2-10水平档距和垂直档距

如上图所示:此时对A杆塔来说,所要承担的总风压荷载为 因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。它表示有多长导线的水平荷载作用在某杆塔上。水平档距是用来计算导线传递给杆塔的水平荷载的。 严格说来,悬挂点不等高时杆塔的水平档距计算式为

只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S; 当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为: 无冰时(2-48) 有冰时(2-49) 式中S—导线截面积,mm2。 二、垂直档距和垂直荷载 如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。同理,AO2段导线上的垂直荷载由A杆承担, O2C段导线上的垂直荷载由C杆承担。

恒荷载取值

3.1.1 恒载 恒载:又称永久荷载,在结构使用期间内,荷载的大小不随时间的推移而变化、或其变化与其平均值相比较可以忽略不计、或其变化是单调的并能趋于限值的荷载。如结构自重、构造层重、土压力等。 结构自重和构造层重的标准值计算,可按照施工图纸的设计尺寸和材料的单位体积、或面积、或长度的重力,经计算直接确定;土压力标准值的计算详有关基础设计资料。 3.1.1.1 楼面恒荷载 筑面层恒荷载、结构层恒荷载、顶棚恒 荷载,分布形式详图3.1.1所示。 (1)由建筑面层引起的楼面恒荷载 计算 建筑面层引起的楼面恒荷载计算, 必须根据建筑楼面面层的具体做法 确定,常用建筑楼面面层恒荷载取值可图3.1.1 楼面恒荷载组成示意图 参考表3.1.1。 (2)由结构层引起的楼面恒荷载计 算 结构层引起的楼面恒荷载 = 结构楼层楼板厚度×钢筋混凝土容重(一般取25kN/m3)程序计算时,只要输入结构楼层楼板厚度和混凝土容重,结构层恒荷载即会自行导算,详4.1所述。 表3.1.1 常用建筑楼面面层恒荷载取值参考表

(3)由顶棚引起的楼面恒荷载计算 顶棚引起的楼面恒荷载计算,必须根据建筑顶棚的具体做法确定,常用建筑顶棚恒荷载取值可参考表3.1.2。 表3.1.2 常用建筑顶棚恒荷载取值参考表

3.1.1.2 屋面恒荷载 屋面恒荷载主要由三部分组成:建筑屋面面层恒荷载、结构层恒荷载、顶棚恒荷载,分布形式详图3.1.2所示。 图3.1.2 屋面恒荷载组成示意图 由结构层与顶棚引起的屋面恒荷载计算方法,同相应楼面恒荷载的计算方法,由建筑屋面面层引起的屋面恒荷载,必须根据建筑屋面面层的具体做法确定。 由于建筑屋面承担着保温、隔热和防水、排水的功能,因此建筑屋面面层的做法相对于建筑楼面面层的做法要复杂得多,加之各地气候、雨水情况不同,保温隔热材料和防水材料 的不断更新发展,使各地屋面面层的做法不完全相同,但基本构造层相差不多。 (1)平屋面面层恒荷载计算 平屋面,又称建筑找坡屋面,排水坡度为2%~3%,屋面面层的基本构造、荷重如下: ① 结构层(钢筋混凝土屋面板)上水泥砂浆找平层:厚度15~30mm ,容重20kN/m 3 ; ② 隔气层:以成品为主,重量较轻,可以忽略; ③ 保温层兼找坡层:一般采用憎水性能好、导热系数小和重量轻的保温材料,起坡处 厚度必须满足热工要求、由建筑专业计算决定,如膨胀珍珠岩系列(容重7~15 kN/m 3 ,现场拌制的砂浆取大值,成品取小值)、挤塑板系列(很轻,重量可以忽略)等; ④ 水泥砂浆找平层:厚度15~20mm ,容重20kN/m 3 ; ⑤ 防水层:如二毡三油系列、二布六胶系列等,重量2~8 kN/m 2 ; ⑥ 保护面层:对于不上人屋面,可以是涂料、反射膜、砂石粘料(常称绿豆砂)、蛭石云母粉、纤维纺织毯、水泥砂浆块材等;对于上人屋面,与楼面面层的做法相同,一般以水泥砂浆面层为主;也可以结合环境绿化,采用种植屋面、蓄水屋面等。 (2)坡屋面面层恒荷载计算

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

模板自重荷载参数

竭诚为您提供优质文档/双击可除 模板自重荷载参数 篇一:模板荷载计算 3.现浇梁板支模方案 现浇板采用15mm厚双面覆膜竹胶板做面板,下铺方木间距150-200mm,板支撑采用满堂红碗扣钢管架,钢管架立杆间距900mm。面板四周交接处用海绵毡条塞实,胶带封严以防漏浆。见图4-6。 图 4-6 现浇板支撑示意图图4-7 所有次梁及外墙简支梁、阳台挑梁配置定型钢模板,其他简支梁配置木模板。梁模面板:直梁的底模与侧模均采用15mm厚多层板,龙骨:采用50×70mm单面刨光方木。梁侧模、梁底模按图纸尺寸进行现场加工,由塔吊车运至作业面组合拼装。然后加方楞并利用支撑体系将梁两侧夹紧,当梁高大于500时,加对拉螺 杆加固,在梁h/2处加Φ12穿墙螺栓@600。梁底钢管支撑加固。所有跨度大于或等于4米的梁,均需在跨中起拱

0.3%l,悬挑梁均需在悬臂端起拱0.6%。梁板支撑固定系统采用Φ48钢管和扣件支撑固定。现浇板模板采用满堂红钢管脚手架支撑架,梁模支撑当梁断面小于400×700mm,层高小于4.5米时,可采用双排立杆。 4.楼梯支模方案 采用木模板。板底、板侧模板均采用1.5mm双面覆膜竹胶板做面板,50×70mm方木板楞;踏步板配置木模板,用2根50×70做踏步板背楞,横向踏步梯板宽度用15mm多层板板按踏步设计尺寸。楼梯模板采用钢管架子支撑。 4.4.2施工准备 1.模板:1.5㎝双面覆膜竹胶板。 2.钢管:采用Φ48和铸铁扣件,作为模板的支撑体系。 3.其他支模用具:Φ32锥形/Φ14对拉螺栓(地下外墙带止水片)、80×100mm方木、钢筋撑子、脱模剂、海绵条(单、双面胶条)、硬质塑料套管、钢丝网片、各种连接螺栓等。 4.机具:空压机、角磨机、扳手、盒尺等。 4.4.7模板计算书(含模板支撑验算) 1.现浇板模板计算 楼板厚度100mm、120mm模板板面采用15mm层板,次龙骨采用50×70mm,e=104n/mm2,i=bh3/12=40×703/12=1.63×104mm4,方木主龙骨采用50×70mm方木。 1)荷载计算

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一遇的风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μz 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区;

风荷载高度变化系数μz 计算公式 A类地区=1.379(z/10)0.24 B类地区= (z/10)0.32 C类地区=0.616(z/10)0.44 D类地区=0.318(z/10)0.6 位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μs 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。一般取决于建筑建筑物的平面形状等。

荷载计算公式总结

荷载计算公式总结

————————————————————————————————作者:————————————————————————————————日期:

荷载计算公式 序 号 荷载图示支座反力R、剪力V、弯矩M和挠度ω的计算公式 1 p l b V R AC A = =,p l a V R CB B = - =; p l ab M C =,p l bx M AC X = ) ( ,p l x a M CB X ? ? ? ? ? - =1 ) ( ; EIl b pa C3 2 2 = ω,当b a=时, EI pl C48 3 = ω; 当) 2 ( 3 b a a x b a+ = >、时,得 3 ) 2 ( 9 2 2 max ab a EIl pb+ = ω 2 p l b c V R AC A + = = 2 ,p l b a V R DB B + = - = 2 , p l a c V CD - =;px l b c M AC X + = 2 ) ( , () []al x a c l p M CD X + - = ) ( ,()()x l b a l p M DB X - + =2 ) ( ,当c a>,()b c l pa M M C + = =2 max ; () []3 2 2 3 24 2 2 6 c c a l a a l c a EIl pa C - - - + + = ω, () []3 2 2 3 24 2 2 6 a ac l c c l a c EIl pc D - - - + + = ω 3 p n R R B A2 1 - = =; 当n为奇数时:pl n n M 8 1 2 max - =,3 3 2 4 max384 1 4 5 pl EI n n n- - = ω 当n为偶数时:pl n M 8 max =,3 2 max384 4 5 pl nEI n- = ω V AC ――AC段内的剪力 (等值或变值) A B l a b C p A B l a c D p C p b A B l= c c c (n- c c A B R R l x x C

模板荷载计算

3. 现浇梁板支模方案 现浇板采用15mm厚双面覆膜竹胶板做面板,下铺方木间距150-200mm,板支撑采用满堂红碗扣钢管架,钢管架立杆间距900mm。面板四周交接处用海绵毡条塞实,胶带封严以防漏浆。见图4-6。 图4-6 现浇板支撑示意图图4-7 所有次梁及外墙简支梁、阳台挑梁配置定型钢模板,其他简支梁配置木模板。梁模面板:直梁的底模与侧模均采用15mm厚多层板,龙骨:采用50×70mm单面刨光方木。梁侧模、梁底模按图纸尺寸进行现场加工,由塔吊车运至作业面组合拼装。然后加方楞并利用支撑体系将梁两侧夹紧,当梁高大于500时,加对拉螺

杆加固,在梁h/2处加Φ12穿墙螺栓600。梁底钢管支撑加固。所有跨度大于或等于4米的梁,均需在跨中起拱0.3%L,悬挑梁均需在悬臂端起拱0.6%。梁板支撑固定系统采用Φ48钢管和扣件支撑固定。现浇板模板采用满堂红钢管脚手架支撑架,梁模支撑当梁断面小于400×700 mm,层高小于4.5米时,可采用双排立杆。 4.楼梯支模方案 采用木模板。板底、板侧模板均采用1.5mm双面覆膜竹胶板做面板,50×70mm 方木板楞;踏步板配置木模板,用2根50×70做踏步板背楞,横向踏步梯板宽度用15mm多层板板按踏步设计尺寸。楼梯模板采用钢管架子支撑。 4.4.2施工准备 1.模板:1.5㎝双面覆膜竹胶板。 2.钢管:采用Φ48和铸铁扣件,作为模板的支撑体系。 3.其他支模用具:Φ32锥形/Φ14对拉螺栓(地下外墙带止水片)、80×100mm 方木、钢筋撑子、脱模剂、海绵条(单、双面胶条)、硬质塑料套管、钢丝网片、各种连接螺栓等。 4.机具:空压机、角磨机、扳手、盒尺等。 4.4.7模板计算书(含模板支撑验算) 1.现浇板模板计算 楼板厚度100mm 、120mm模板板面采用15mm层板,次龙骨采用50×70mm,E=104N/mm2,I=bh3/12=40×703/12=1.63×104mm4,方木主龙骨采用50×70mm方木。 1)荷载计算 模板及支架自重标准值:0.3KN/m2 混凝土标准值:2.4 KN/m2 钢筋自重标准值:1.1 KN/m2 施工人员及设备荷载标准值:2.5 KN/m2 楼板按100mm厚算,荷载标准值:F =9.9Kn 1 =12.38Kn 荷载标准值:F 2 2)计算次龙骨间距 新浇筑的混凝土均匀作用在胶合板上,单位宽度的面板可以为梁、次龙骨作

相关文档