文档库 最新最全的文档下载
当前位置:文档库 › 基于ADAMS的自卸车举升机构优化设计_张毅

基于ADAMS的自卸车举升机构优化设计_张毅

基于ADAMS的自卸车举升机构优化设计_张毅
基于ADAMS的自卸车举升机构优化设计_张毅

2005 3 专用汽车 ZH U A N YO NG Q ICHE

21 

基于ADAMS 的自卸车举升机构优化设计

张 毅 马 力 李鹏飞

武汉理工大学汽车工程学院 湖北武汉 430070

摘 要:利用A DAM S 软件中参数化建模与分析功能,建立了自卸车举升机构的参数化模型,以举升过程中工作油缸最大推力最小为优化目标,对举升机构的各铰接点位置布置进行了优化设计。

关键词:自卸车 举升机构 A DA M S 软件 优化设计

中图分类号:U 469.4.03 文献标识码:A 文章编号:1004-0226(2005)03-0021-03

Based on ADAMS Dump Truck Lifting Mechanism

Optimization Design

Zhang Yi et al

Abstract A variable model fo r dump truck lifting M echa nism wa s established by using A DA M S.With the maximal drive force of hy draulic cy linder as the o bjective ,o ptimization desig n to all a rticulated fulcr um s in -itial position was achieved.

Key words dump truck ;lifting mechanism ;A DA M S so ftwa re ;o ptimization de sign

收稿日期:2005-03-29

作者简介:张 毅,男,1978年生,硕士研究生,研究方向为CAD /CA E 。

1 前言

举升机构是自卸汽车上的重要工作系统之一,其设计质量直接影响自卸汽车的使用性能,因此对举升机构进行优化设计是十分必要的。目前举升机

构优化设计主要是通过编程方法来实现[1],这种方法必须首先推导相关的计算公式,编写目标函数和约束函数的计算机程序,甚至优化设计程序,因而要求设计人员不仅具备良好的专业知识,而且还必须懂得优化理论,具有较扎实的数学力学基础知识和很强的计算机程序编写能力。

本文研究了利用ADAMS 进行举升机构优化设计的问题。以前推连杆式举升机构(图1)为例,建立了举升机构参数化模型,以工作油缸最大推力最小为优化目标,对机构中各铰接点位置进行了优化计算。文中介绍了ADAM S 参数化建模方法、优化分析过程,最后进行了实例计算。研究表明,采用ADAMS 进行举升机构优化设计,无需推导相关计算公式和编写计算程序。举升速度较高时,可考虑举升重物加速度的影响,为自卸车举升机构的优化设计提供了新途径。2 参数化建模

图1 前推连杆式简图

在ADA MS 软件中建模通常有两种方法:一种是直接建模,利用设计常数以交互方式产生模型,优点是建模方便,缺点是模型修改困难,不便进行改进设计;另一种是参数化建模,通过将设计变量参数化

进行建模,修改设计参数即可得到不同的设计方案,并且容易通过调整模型参数而重建派生得到其它结构形式,具有较强的通用性,缺点是建模时间长。优化设计(OPT )必须采用参数化建模,便于确定设计变量。

建模所需参数包括几何参数(如各部件的外形、铰接点位置坐标等)、物理参数(如质量、质心位置和转动惯量等)和力学参数(如各部件的弹性和铰接点摩擦系数等)。如果整个机构模型的几何参数、物理

研究 设计

22 

2005 3 专用汽车 Z HU A N YO NG Q ICH E

参数和力学参数与实际情况相同,模型就能表达出实际结构的几何关系、物理关系和力学关系,仿真结果与实际结果是等价的。

几何参数中,各铰接点的位置是举升机构布置的主要参数,优化设计的实质就是确定举升机构的最佳布置方案,因此它们必须确定为参数化建模参数;而外形几何尺寸只需满足可视化效果,对仿真没有实质影响,因此建模时只需给定一固定值。物理参数中,各部件质量、质心位置和转动惯量等参数对某一车型而言是固定不变的,因而不会影响具体车型的优化结果,但对它们参数化可使模型具有通用性,适用于不同吨位车型的举升机构。这些参数中,工作油缸、三角臂和拉杆等部件的重量相对举升重量很小,可忽略其影响。因此,本文仅将货物质心位置、举升重量作为参数化建模的物理参数。另外,将各部件视为刚性元件,忽略各铰接点的摩擦力。

以前推连杆式举升机构为例,建立参数化模型如图2所示。模型包括油缸缸体、油缸推杆、三角臂、拉杆和车厢等五个部件,视车架为大地,举升机构在D 、E 、O 点与车架相连。各部件之间采用铰接副连接,液压缸体与液压缸推杆之间采用圆柱副连接,并给定运动关系,模拟活塞在液压缸体中的相对运动。为了充分利用ADAMS 多刚体动力学分析的优势,对油缸活塞移动速度也进行参数化处理,以便在举升速度较快时考虑加速度对举升机构的影响。

图2 举升机构参数化模型

3 ADAMS 优化设计过程

完成参数化建模后,即可进行优化设计。AD -AM S 优化设计必须给定优化目标设计变量,确定运动和约束条件。

本文以油缸最大推力最小为优化目标。AD -AM S 在给定优化目标时无需直接推导设计目标与设计变量具体关系,也不必编写程序,而是由AD -AM S 提供的测量工具直接获取。

设计变量为举升机构布置参数,包括铰接点A 、B 、C 、D 、E 位置坐标,共10个变量,如图1所示。根

据设计的具体要求,可对设计变量的变化范围设置上下限。

优化的约束条件包括举升角度、工作油缸活塞最大行程、机构运动死点和机构干涉约束等。AD -AMS 在处理这些约束条件时,不需建立设计变量之间的约束方程,而直接由ADAM S 提供的测量工具确定,这是传统编程计算方法做不到的。

优化具体算法可由ADAMS 提供,用户可通过对话框对算法类型、收敛精度、迭代次数、最小迭代次数以及输出控制进行设置,不必编写计算程序。同时,ADAMS 也允许自定义算法接入,以满足不同用户的需求。

上述工作完成后,即可进行优化设计,整个设计过程如图3所示。图3 流程图

4 典型举升机构优化设计基于上述方法对某典型自卸车举升机构进行了优化设计,该车举升质量为7500kg ,质心坐标(1897m m ,820m m ),采用ADAM S 提供的广义约减梯度算法(OPTDES -GRG )进行优化计算。

优化前后举升机构布置参数如表1所示,油缸推力曲线如图4所示,最大推力由160.4kN 减少至117.1kN ,下降了27%,而且平均值下降幅度也比较大。

表1 铰接点位置坐标值

设计变量

x A

y A

x B

y B

x C

y C

x D

y D

x E

y E

初始值3474-10632656524901402210-125215650优化值3487-14032007025301502250-149212080

图4 优化前后油缸推力曲线

5 结论

计算结果表明,采用ADAM S 软件的参数化建

模与分析功能解决举升机构位置布置的优化问题,是方便可行的。

较传统编程计算,该方法不需推导相关数学计算公式和编写计算机程序,具有操作简便,实用性强,工作量小的特点,特别适合企业设计应用。

研究 设计

2005 3 专用汽车 ZH U A N YO NG Q ICHE 23 

PRO E /在搅拌筒拌片展开设计中的应用

张志勇 周万珍

深圳中集专用车有限公司 广东深圳 518118

摘 要:对P RO /E 软件在混凝土搅拌车拌筒拌片设计中的应用进行探讨。

关键词:PRO /E 软件 混凝土搅拌车 搅拌片 设计

中图分类号:U 469.6.02;T P 391.41 文献标识码:B 文章编号:1004-0226(2005)03-0023-0002

收稿日期:2005-05-11

作者简介:张志勇,男,1970年生,工程师,从事专用车设计。

参考文献

1.梁海林,李青山.关于前推连杆组合式举升机构计算机优化数学模型的探讨.城市车辆,1994.4.

2.徐达,蒋崇贤.专用汽车结构与设计.北京:北京理工大学出版社,1998.12.

3.郑建荣.AD AM S —虚拟样机技术入门与提高.北京:机

械工业出版社,2001.11.

4.刘惟信.机械最优化设计.北京:清华大学出版社,1994.

5.崔新涛,毕凤荣.自卸汽车举升机构动力学仿真分析.机械设计与制造,2004.1.

以往的拌片展开设计是通过拌片的放样公式进行计算,而应用PRO /E 软件设计提供了又一种新方法。

1 搅拌筒

图1为一种6m 3拌筒的外形图。其后锥为例,对拌片展开设计进行探讨。

图1

2 用PRO /E 对搅拌片进行设计2.1 做后锥图

利用solid 、pro trusio n 、revo lvo 、thin 、360°旋转

命令做出后锥零件。2.2 做螺线图

feature →create →so lid →cut →advanced →done →helical swp →done →variable →thru axis →rig ht handed →done →plane →pick →dtm3→okay →de -fault →specify refs →dtm2→sketch →centerline →画出螺旋线母线→do ne →始点螺距353→终点螺距

2118→done →sketch →circle (图2)→do ne →okay →ok 做出螺线图(图3),也可以参考作者在《专用汽车》2004第二期上发表的文章《PRO /E 在搅拌罐拌

片螺旋线设计中的应用》的文章。

2.3 做叶片图

feature →create →solid →pro trusio n →advanced →thin →done →swept blend →do ne →nru to origin traj →done →select traj →o ne by one →select →pick →done →norm to surf →do ne →accept →o kay →ne xt

研究 设计

自卸汽车举升机构的机械及液压系统设计

摘要 自卸汽车是利用发动机动力驱动液压举升机构,将货箱倾斜一定角度从而达到自动卸货的目的,并依靠货箱自重使其复位。因此,液压举升机构是自卸汽车的重要工作系统之一,其结构形式、性能好坏直接影响自卸汽车的使用性能和安全性能。本论文首先对自卸式汽车进行了说明,同时根据设计需要对液压系统进行了简要的阐述,并设计液压举升机构及液压系统。液压缸是一种配置灵活、设计制造比较容易而应用广泛的液压执行元件。尽管液压缸有系列化标准的产品和专用系列产品,但由于用户对液压机械的功能要求千差万别,因而非标准液压元件的设计是不可避免的。本次毕业设计的主要内容集中于自卸汽车液压缸的机械结构和液压系统的设计,介绍了自卸汽车的整个工作原理以及举升机构的工作原理,按照设计的一般原则和步骤对液压缸的机械结构和液压系统进行了详细的设计计算,并对其附属部件也进行了合适的选择。最终得到一整套符合要求的汽车自卸系统。 关键词:自卸汽车,液压缸机械设计,液压系统设计

目录 1 绪论 (1) 1.1 自卸汽车的作用 (1) 1.2 自卸汽车的分类 (1) 1.3 常见自卸汽车分类举例 (2) 1.4 自卸汽车的举升机构 (3) 1.5 自卸汽车的结构特点 (3) 1.6 小结 (4) 2 液压系统设计 (5) 2.1 液压概述 (5) 2.1.1 液压技术的发展 (5) 2.1.2 液压传动 (5) 2.2 自卸汽车液压系统设计 (6) 2.2.1 液压缸概述 (6) 2.2.2 液压系统原理图 (7) 2.2.3 液压系统图 (8) 2.3 小结 (9) 3 液压缸结构设计 (10) 3.1 液压缸结构设计的依据、原则和步骤 (11) 3.1.1 设计依据 (11) 3.1.2 设计的一般原则 (12) 3.1.3 设计的一般步骤 (12) 3.2 液压缸基本结构参数及相关标准 (13) 3.2.1 液压缸的液压力分析和额定压力的选择 (14) 3.2.2 液压缸内径D和外径 D (16) 1 3.2.3 活塞杆外径(杆径)d (17) 3.2.4 液压缸基本参数的校核 (18) 3.3 液压缸综合结构参数及安全系数的选择 (19) 3.3.1 液压缸综合结构参数 (19) 3.3.2 安全系数的选择 (19) 3.4 液压缸底座结构设计 (21) 3.5 缸体设计与计算 (22)

马勒里式举升机构优化设计

基于ADAMS的自卸车举升机构的仿真优化 自卸车是装有由本车发动机驱动的液压举升机构,能将车厢卸下,或将车厢倾斜一定角度卸货,并靠自重使车厢自行回位的专用汽车。随着生产力的发展,货物运输合理化和装卸机构机械化的要求,自卸车得到了很快的发展,并且日趋完善。 举升机构是自卸车的核心机构,它直接关系到自卸车的整车及举升性能。根据用户的特殊要求,举升机构有不同的结构形式和性能指标。对于举升机构的设计,最早的方法是类比作图试凑法,但这种方法盲目性大,需多次作图试凑,工作量大,而且设计精度较差。随着计算机技术的飞速发展,解析法和矩阵变换算法相继产生,但是它们都得进行繁琐的计算和编程。近些年发展起来的虚拟样机技术,融合了现代信息技术、先进仿真技术和先进制造技术,利用虚拟样机代替物理样机对产品进行创新设计测试和评估,能大大缩短产品开发周期,降低产品开发成本,改进产品设计质量,全面提高面向客户与市场需求的能力。 以虚拟设计思想、复杂运动学和动力学基本理论方法以及拓扑技术为 基础,计算机数字虚拟环境下进行的多体系统运动学和动力学的仿真分 析,已经得到许多虚拟样机分析软件的强力支持。目前在这一领域,使 用最多的产品是美国MSC公司在多体系统领域的标志产品 MSC.ADAMS。本文利用ADAMS对马勒里举升臂式(油缸前推连杆组合 式)机构进行了优化设计。首先利用ADAMS/View模块建立了举升机构 简化物理模型,然后对该物理模型进行了仿真,最后使用ADAMS/Insight 模块以液压油缸最大推力最小为优化目标,对机构中部分铰接点位置进 行了优化计算。优化后液压缸的最大推力比优化前有了很大幅度的降低, 这对提高举升机构的性能有着重要作用。 举升机构的建模与仿真 1.物理模型的简化 建立自卸车举升机构物理模型前,必须先对举升机构进行合理的简化。 从汽车动力学的角度出发,对所建模型做如下简化和假设:举升机构为 一多刚体系统,每个刚体在各个方向的惯性力均为零;由于某些铰链在 一些方向的力的约束真值比较小,对整车动力学的影响可以忽略不计, 假设其为零;外形几何尺寸只需满足可视化效果,对仿真没有实质影响, 因此建模时只需给定一固定值即可。简化后的举升机构物理模型如图1 所示。 2.举升机构的建模 仿真模型的建立,首先需要确定设计点的坐标。设计点是各零件之间 连接处的关键几何定位点,确定设计点就是在系统坐标系中给出零件之间连接点的几何位置。模型设计点的空间位置坐标和相互关系是建立仿真模型的关键,该举升机构设计点的坐标值如表1所示,举升质量为20000kg。 基于前面举升机构物理模型的简化,根据表1提供的设计点的坐标参数值,在ADAMS/View模块中建立

高位自卸汽车

XXX学院 课程设计成果说明书 题目:高位自卸汽车 学生姓名:XXX 学号:081309141 学院:_______________ XX学院___________ 班级:C08机械(1 ) 指导教师:_____________________ 同组者:_________________________________

2010 年6 月24 日 目录 第1章设计题目与其要求................................................................... .3 1.1设计题目.............................................................................. .3 1.2设计要求.............................................................................. .3 第2章结构简图及其运动分析................................................................ .4 2.1举升机构及其运动分析 .................................................................. .4 2.2翻转机构.............................................................................. .5 2.3后箱门打开机构........................................................................ .6 第3章最佳方案............................................................................ .7 3,1最佳方案选择......................................................................... .7 第4章机构总成............................................................................ .9 4.1机构总成. (9) 结束语 (10) 参考文献 (10)

自卸车举升机构的优化设计

2010.3. HEAVY TRUCK《重型汽车》 15 □文/王臣涛(合肥工业大学) 引 言 自卸运输车的举升机构对其生产效率及性能有很大的影响。因此,合理选择举升机构的结构参数,将极大提高自卸车的工作能力。作为组合式举升机构的一种,前推连杆放大式(也称“T ”式或马勒里式)举升机构具有横向刚度好、举升转动圆滑平顺、举升力系数小等优点,特别适用于大吨位自卸汽车,被公认为是一种较好的举升机构。本文以最大举升力系数和油压波动系数为优化目标函数,对某新开发自卸车“T ”式举升机构进行了优化分析,获得了较好的举升力系数曲线及油压特性曲线,对该车型的开发设计起了一定的指导作用。 1 动力学模型的建立及仿真 1.1 模型建立 模型中一些结构简单的构件直接在ADAMS 中建立,对于结构复杂的构件通过UG 建立,然后再导入到ADAMS 中,活塞缸与活塞之间通过移动副连接并加一驱动函数来模拟液压油对活塞的推力作用,建立的动力学模型的约束拓扑结构如图1。1.2 仿真分析 在仿真过程中,最大举升角度为50°,货物为整体结构,且不考虑货物的安息角,仿真结束后得到该车型以及 自卸车举升机构的 优化设计 标杆样车的举升力系数、油缸压力随货箱翻转角的变化曲线如图2、图3 。

图3 油缸油压随货箱翻转角的变化曲线工程实际中要求油压特性符合以下条件: (1) 最大油压值不在初始时出现,而在举升角为5°~θ max 时达到; (2) 举升过程中的最大油压值P max 不高于初始油压值P 的8%; (3) 最大油压值在允许值范围内尽可能小; (4) 油压波动较小。 从仿真结果可以看出: (1) 该车型举升机构油压最大值出现在翻转角5~8°,符合理想的油压特性基本要求; (2) 标杆样车在整个的自卸过程中所需的举升力较小,举升性能相对于该车型较好,但是其举升力最大值出现在初始位置,不符合理想的油压特性曲线; (3) 该车型举升机构在整个的自卸过程中所需的举升力偏大,油缸油压的变化也较大,对油缸使用不利,需要对举升机构进行进一步的优化。 2 模型参数化 2.1 目标函数的建立 一般来说在自卸机构设计中,需要同时考虑所需油缸推力的大小和油缸压力的波动。理论上来说,如果只是单纯的以一个性能参数为目标函数,无法得到既满足油缸推力最小又使得油缸压力波动最小的优化结果,为此,我们提出了一种通过加权系数综合考虑举升力系数以及油缸压力波动系数的优化方案。 (1) 以式(1)为目标函数,通过改变举升机构中各个关键铰点坐标,得出几组优化结果; minF(x)=wf?KF+wp?KP (1)式中wf+wp=1(0≤wf≤1,0≤wp≤1); 本文中取w f=0.7,w p=0.3。 wf——举升力系数加权系数; wp——油压波动系数加权系数; KF——举升力系数=油缸实际作用力/举升重量; KP——油压波动系数=(最大油压-平均油压)/平均油压。 (2) 考虑整车总布置的限制进行筛选,最终确定一组优化结果。 2.2 设计变量及约束条件 本文选取A、B、C、D、E、O6个点的x,z坐标(即各安装点在整车上的前后和上下位置)对模型进行参数化(见图4),并且根据整车总布置的要求, 确定各个设计变量的变化范围,具体如表1。 图4 关键点位置示意图 另外,由于整车总布置以及设计要求的限制,还需如下约束。 (1) 举升角θmax≥50.0度; (2) 铰点C在举升过程中距货箱地板的距离d mi n≥70.0mm; (3) 机构空间尺寸:举升机构长度Lmax≤1530.0mm,高度Hmax≤340.0mm; 货厢后铰支点O至其后挡板内壁最小距离:Lomin≥ 表1 设计变量取值范围Qichesheji 《重型汽车》HEAVY TRUCK 2010.3. 16

举升机构设计

目录 第一章绪论 (1) 1.1 课题的选定及目的 (2) 1.2 国内外自卸汽车及其技术的发展概况 (3) 一、国外发展概况 (3) 二、国内发展概况 (3) 1.3 课题研究的主要内容及基本工作思路 (5) 一、主要内容 (5) 二、本课题基本工作思路 (7) 第二章自卸车液压举升机构的总体设计方案 (8) 2.1 自卸汽车主要尺寸和有关参数的确定 (8) 一、东风小霸王轻型自卸汽车参数 (8) 二、主要尺寸参数的确定 (9) 三、质量参数的确定 (9) 四、最大举升角的确定 (10) 五、车厢举升与下降时间 (11) 六、车厢的布置 (12) 七、底盘的选用 (12) 2.2 自卸车总体结构概述 (13) 一、自卸汽车的结构型式 (13) 二、自卸汽车举升机构特性比较 (15) 2.3 总体设计方案选择 (16) 第三章自卸汽车液压举升系统的设计 (17) 3.1 直接推动式举升机构的具体设计 (17) 一、工作原理 (17) 二、参数设计 (18) 三、小结 (26) 3.2油泵的选取 (27) 一、概述 (27)

二、泵的技术参数 (28) 3.3 液压阀元件的选取 (29) 一、单向阀的选取 (29) 二、压力控制阀选取 (30) 三、平衡阀选取 (30) 3.4 举升系统管路设计 (30) 3.5 举升系统的总体设计 (30) 3.6 设计方案 (31) 3.7液压举升系统 (32) 一、自卸汽车二位二通液压举升系统设计改进 (32) 二、自卸汽车三位四通液压举升系统设计改进 (37) 三、举升机构液压锁紧、平衡回路 (38) 3.8报警装置 (40) 一、零部件 (40) 二、安装方法 (40) 第四章自卸汽车液压举升系统的优化设计 (41) 4.1 优化设计的选择 (41) 4.2 优化函数及目标函数 (41) 4.3 优化软件程序 (42) 4.4 优化结果 (42) 4.5 本章小结 (42) 参考文献 (42) 2

大学机械原理课程设计高位自卸汽车设计计算说明书

大学机械原理课程设计高位自卸汽车设计 计算说明书 1.2 设计要求及原始数据 (1).设计要求: ①具有一般自卸汽车的功能。 ②能将满载货物的车厢在比较水平的状态下平稳地举升到一定高度,最大升程S max 见表1。 ③为方便卸货,要求车厢在举升过程中逐步后移,车厢处于最大升程位置时,其 后移量a见表1。为保证车厢的稳定性,其最大后移量a max 不得超过1.2a。 ④在举升过程中可在任意高度停留卸货。 ⑤在车厢倾斜卸货时,后厢门随之联动打开;卸货完毕,车厢恢复水平状态,后厢门也随之可靠关闭,后厢门和车厢的相对位置见图2。 ⑥举升和翻转机构的安装空间不超过车厢底部与大梁间的空间,后厢门打开机构的安装面不超过车厢侧面。 ⑦结构尽量紧凑、简单、可靠,具有良好的动力传递性能。 (2)原始数据: 方案号车厢尺寸L×W×H L(mm)×W(mm)×H(mm) S max (mm) A (mm) W (kg) L 1 (mm) H d (mm) A 4000×2000×640 1800 380 5000 300 500 B 3900×2000×640 1850 350 4800 300 500 C 3900×1800×630 1900 320 4500 280 470 D 3800×1800×630 1950 300 4200 280 470 E 3700×1800×620 2000 280 4000 250 450 F 3600×1800×610 2050 250 3900 250 450

2 设计方案的评价及选择 2.1举升机构 2.1.1设计要求: 1.能将满载货物的车厢在比较水平的状态下平稳地举升到一定高度,最大升程S max见表1。 2.为方便卸货,要求车厢在举升过程中逐步后移,车厢处于最大升程位置时,其后移量a见表1。为保证车厢的稳定性,其最大后移量a max不得超过1.2a。 3.在举升过程中可在任意高度停留卸货。 2.1.2 设计方案 方案1:平行四边形举升机构 图2-1平行四边形举升机构 如上图所示机构,CBEF形成一平行四边形,杆BC在液压油缸的带动下绕C轴转动,从而完成车厢的举升和下降。 优点: ①.结构简单,易于加工、安装和维修; ②.能够保证车厢在举升和下降过程中保持水平,稳定性好; ③.液压油缸较小的推程能够完成车厢较大的上移量。 缺点: 车厢上移时,其后移量很大。为了保证车厢举升到最大高度时,其最大后移量不超过设计要求,需将杆BC、EF做得很长,甚至大大超过了车厢的长度,在工程实际中不能实现。 方案2:L型举升机构 图2-2 L型举升机构

T式腹举自卸车举升机构的设计

T式腹举自卸车举升机构的设计 作者:张忠荣简中强张永祥黄建根文章来源:贵州航天凯山特种车改装有限公司万向集团发布 时间:05-30 新浪微博QQ空间人人网开心网更多 图1 T式腹举自卸车举升机构示意 作为低吨位自卸车领域中应用最为广泛的T式腹举自卸车,举升机构是其设计的关键。采用专业“举升机构分析系统”软件对举升系统的四连杆机构进行计算,并根据计算结果建立三维数字模型,同时用有限元分析软件对设计机构进行分析,可确保举升机构设计可行且强度满足要求。 自卸车按举升方式可分为腹举式、前举式和侧举式。T式腹举自卸车是腹举式的一种,其主要特点在于采用油缸前推式三角放大机构实现对货厢的自卸。相比较而言,腹举式具有结构紧凑,成本较低,且相同底盘下货厢设计装载量更大等优势,故腹举自卸车在4~40 t低吨位自卸车领域得到广泛应用。T式腹举自卸车如图1所示,举升机构主要由三角臂、拉臂和举升油缸等组成,与货厢、副车架及液压系统组成举升系统。举升机构是T式腹举自卸车设计的关键。

图2 举升机构分析图 举升机构理论分析 进行T式腹举自卸车举升机构设计,必须确定载荷。首先应对举升质量处于任意举升角度时的油缸推力和各构件的受载情况进行分析计算,然后对计算结果进行比较,取最大值作为各构件强度计算的依据。 图3 举升机构O点坐标系图(单位:mm) 对在任意举升角度时进行分析计算,求得任意举升角的油缸推力FEC和拉杆内力FBB。理论分析过程中,我们设定举升机构的举升质量为30 t,最大举升角52°,根据车厢的结构尺寸作机构简图,如图2所示。具体求解步骤如下:

1.求举升角为θ时A、G、B和C点的位置坐标 建立坐标系,原点选在车架与副车架的铰接点O。先求三角臂与车厢铰接点A和举升质量质心G的坐标。 图4 载荷为40t时,举升机构主要技术参数设置 由下式可得A点坐标: 由下式可得G点坐标: 由下式可得B点坐标: 由下式可得C点坐标: 2.求直线BD和CE长度

平台举升机构设计

钢拱架举升机构设计 目前隧道施工每一循环都有一些人工无法完成,而需要装载机、挖掘机来施做,但时间又很短的工序,如拱架的顶升、开挖台车的前进或后退、仰拱模板的移动等等。特别是开挖钻爆平台,钢拱架需要装载机举升到平台上,钢拱架只有800KG左右,这样浪费时间和浪费资源,所以考虑采用其它机械机构来提升或举升钢拱架,来节约时间,现就考虑的方案进行论证和说明如下。 现在考虑利用液压油缸作为推力,采用机械杠杆原理实现举升功能。 根据汽车维修升降机原理设计简单的升降机,如图。两边立柱里面采用液压油缸作为动力顶升一个动滑轮,使用3个定滑轮使钢丝绳在提升端4陪速度和长度上升,即油缸行程伸出1.5米,提升端应该可以上升6米,满足现场施工高度需要。油缸选择行程1.5米,最大受力按照2T考虑,即顶升力20KN。 开挖平台高度4.9米,设计举升立柱高度5.5米。托架高度离地

面300mm,实际托架起升高度4.7米。两边提升机构主立柱采用8#角钢,3根高度5.5.米,周边采用5个的钢板。 按照设计起升重量2T考虑,选择钢丝绳规格为Φ8,从表中查出Φ8最小破断拉力为33.4KN(3.34T),2跟钢丝绳总的最小破断力就为6.68T,安全系数达到3.34。钢丝绳2根每根长度15米左右(根据实际现场安装确定)。 下横梁选择20#工字钢1根,长度5.3米,托架选用18#工字钢进行加工2根,高度0.8米,托架翻转油缸采用行程35cm的双向油缸。 滑动横梁的立柱采用12#槽钢2根,高度5米。 滑轮选择40#滑轮,相当于每个滑轮必承重为400KG,考虑安全系数应按2陪选择。 液压系统图如下。液压系统单独设在平台方便的地方,用油管连接到2个油缸。

机械式立体车库总体及升降机构设计

机械式立体车库总体及升降机构设计 目录 前言.....................................................................................................................- 1 -第一章绪论.......................................................................................................- 2 -第1.1节机械式立体停车库发展概况. (2) 第1.2节立体停车库分类及优点 (3) 第1.3节机械式立体停车库市场前景分析 (4) 第二章现有的立体停车库.................................................................................- 5 -第2.1节立体车库的形式的确定 . (5) 第2.2节升降横移式立体停车库的原理 (7) 第2.3节升降横移式立体停车库的优越性 (9) 第2.4节研究升降横移式立体停车库的意义 (10) 第三章升降横移式立体停车库模型的结构设计 .......................................... - 11 -第3.1节概述 . (11) 第3.2节横移传动系统设计 (12) 第3.3节升降传动系统 (15) 第3.4节安全制动设计 (19) 第3.5节主框架部分 (20) 第四章立体车库电气控制系统设计 ........................................................... - 22 -

自卸车设计说明书

自卸车设计说明书 一、设计输入: 整车型号 轴距:4250+1350mm; 载质量:65t;厢体质量:5t;整备质量:15.79t;容积:22m3 举升型式:前顶四级缸举升形式。 二、整车布置: 见图1 布置型式:油缸上支座固定在前板上(见图1) 经过作图2得出,车箱内长为6000mm,举升48°后板离地高度为444mm。 图2 三、方案计算说明 1、分析整车爬坡时是否存在后翻的可能性(见图3) 通过得知满载最大爬坡度35%,经计算坡度等于19.3°。经过作图得知,在坡度为19.3°的坡上货物重心在后轮与地面支撑点之前,故车辆满载爬19.3°的坡时不会后翻。 图3 2、选用柳汽前举升四级缸4TG-E185×4650,该油缸参数为:额定压力 为 16MPa,工作容积为82.4L,总行程为4650mm,油缸各级杆径分别为185 mm、160 mm、135 mm、110 mm,在额定压力16MPa下油缸推力分别为43 t、32t、22.9t、15.2t 油缸受力见图4,F为油缸推力,G为车箱自重加货物后的总质量 根据力矩平衡可以得出,如果要顺利举升货物必须满足以下公式:

F ×b > G ×a 图4 表1(载重65t ) 表2(载重80t ) 故:满足F 4×b 4>G ×a 4 3.系统压力计算 根据油缸所需推力及活塞杆的截面积,可以得出油缸的内压力: 载重65t 情况下: 载重80t 情况下: 4. 选用CB-J2100型油泵,该油泵参数为:额定转速为2300转/分,额定压力为20MPa ,驱动功率为66.28kW ,液压系统容积效率通常取0.9,校核举升时间 油缸举升所需时间:88.239.060 100 2300104.823 =???=  t 秒 5. 传动轴的计算 根据9550 T n P ?= 可以得出油泵额定压力(20 MPa )时所需的扭矩: 2772300 82.6695509550=?=?=n P T N ·M 油泵在20MPa 额定工作时所需的扭矩为277N ·M ; 选用取力器为QH50,输出额定扭矩为500N ·M ;

《自卸车设计说明书》word版

目录 第1章绪论 (3) 1.1 课题的提出 (3) 1.2 专用汽车设计特点 (5) 1.3课题的实际意义 (6) 1.4 国内外自卸汽车的发展概况 (7) 第2章轻型自卸车主要性能参数的选择 (10) 2.1整车尺寸参数的确定 (10) 2.2质量参数的确定 (10) 2.3其它性能参数 (12) 2.4本章小结 (12) 第3章自卸车车厢的结构与设计 (13) 3.1 自卸汽车车厢的结构形式 (13) 3.1.1车厢的结构形式 (13) 3.1.2车厢选材 (14) 3.2车厢的设计规范及尺寸确定 (14) 3.2.1车厢尺寸设计 (15) 3.2.2车厢内框尺寸及车厢质量 (16) 3.3车厢板的锁启机构 (17) 3.4 本章小结 (17) 第4章自卸举升机构的设计 (18) 4.1自卸举升机构的选择 (18) 4.1.1举升机构的类型 (18) 4.1.2自卸汽车倾卸机构性能比较 (21) 4.2举升机构运动与受力分析及参数选择 (23) 4.2.1机构运动分析 (23) 4.2.2举升机构受力分析与参数选择 (24)

4.3本章小结 (26) 第5章液压系统设计 (27) 5.1液压系统工作原理与结构特点 (27) 5.1.1工作原理 (27) 5.1.2液压系统结构布置 (28) 5.1.3 液压分配阀 (28) 5.2油缸选型与计算 (29) 5.3油箱容积与油管内径计算 (30) 5.4取力器的设计 (31) 5.5本章小结 (32) 第6章副车架的设计 (33) 6.1副车架的截面形状及尺寸 (33) 6.2副车架前段形状及位置 (33) 6.2.1 副车架的前端形状及安装位置 (33) 6.2.2 纵梁与横梁的连接设计 (35) 6.2.3 副车架与主车架的连接设计 (36) 6.3副车架主要尺寸参数设计计算 (37) 6.3.1副车架主要尺寸设计 (37) 6.3.2副车架的强度刚度弯曲适应性校核 (37) 6.4本章小结 (44) 结论 (45) 参考文献 (46) 致谢 (47)

自卸汽车举升机构设计

分类号编号 烟台大学 毕业论文(设计) T式自卸汽车举升机构设计 The design of T- type column hydraulic car lift 申请学位:工学学士学位 院系:机电汽车工程学院 专业:机械设计制造及其自动化 姓名: 学号: 指导老师: 2014年6月1日 烟台大学 .

T式自卸汽车举升机构设计 姓名: 指导教师: 2014年6月1日 烟台大学

摘要 随着国民经济的增长,我国专用汽车市场进入了快速成长期。2005 年专用汽车生产企业已经有 628 家,专用汽车品种已经达到 4900 多个,2005 年专用汽车产量达70 万辆,占载货汽车总产量的 40%。作为专用汽车中一个分支的自卸汽车,陆续出现了多种多样的型式,其中最常见的是后倾式自卸汽车。 本文首先对自卸汽车国内外发展现状及设计内容作了相关的概述。接着,按照自卸车举升机构的设计过程,完成了对机构的选型、机构的受力分析也计算、液压回路系统的设计与运动仿真分析。 关键字:专用汽车,自卸汽车,举升机构,运动仿真

Abstract With the national economic growth, China's auto market has entered a special rapid gro wth. 2005 Special Purpose Vehicle manufacturers have been 628, Special Purpose Vehicle has reached more than 4900 varieties,2005 special vehicle production reached 700,000, Accounting f or 40% of total truck. As a Special Purpose Vehicle in a branch of the dump truck, has been found in a wide variety of types , of which the most common is Back ward curved dump truck. In this paper, firstly, I made a general about the auto unload vehicle design and itsdevelopment domestic and abroad. Then, according to the process of the design of lifting mechanism of dump truck, completed the analysis of mechanism selection, mechanism of stress analysis are also calculated, h ydraulic system design and motion simulation. Key words: Special Purpose Vehicle, Dump Truck, Lifting mechanism, motion simulation

(完整版)升降机构毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编 辑。 1 绪论 1.1 设计的主要目的 本课题主要完成的是一放线机升降结构设计,包括线圈夹紧.升降机构,实现线圈的夹紧.装卸操作。该放线机用于计算机通讯线缆或类似线缆的裁切的自动供料,以保证线缆切线长度。 1.2 设计的主要思路 设计研究的主要思路就是想把传统的螺旋式升降改为液压升降,这样就可以大大的节省人力物力,而且也能精准的完成机械的自由升降。以便更好的使用放线机。本人的想法是想用液压驱动不想用陈规的螺杆升降, 要解决这些问题必须解决升降系统和驱动系统,在常规的螺杆升降的前提下,要提升很大重量到指定高度是非常困难的,这样会大大的降低工作效率,所以选用液压升降会大大节省人力物力,还有就是因为刚卷质量非常大,单靠钢丝绳的拉力是远远不够的,想要正常的自由旋转就必须要有一个可靠的驱动系统,现在一般用的驱动系统都是电机驱动,因为它有许多优点,可以根据线卷的拉力大小来调节他的转速,还可以进行一般的正反转,还有就是在电机上安装一个变频器,可以无限调速,可以得到任何想要得转速。驱动装置则是用液压

驱动,它可以避免由于螺杆滑丝而引起的不必要的工程事故,而且力大可以迅速提升到指定高度。 1.3 设计的要求 1.夹紧只限于轴向,线绕度不受限制,夹紧力不致使线轴破坏。 2.驱动力可采取外驱动力。 3升降过程要求平稳.快捷。 4.放线时线圈外径悬空高度200mm—400mm。 5.线圈形状尺寸示于图1.1 图1.1 线卷的零件图 1.4 放线机发展情况综述 科学的发展越来越要求精确的技术,以此同时我们还不能以牺牲

效率为代价。现在线路的应用越来越多,相应各种线的切割,也越来越多,这就要求我们有一种设备既有很高的效率又能保证精度要求。所以我们来研究放线机有很好的经济很社会效益。 现阶段我国在各项技术中一直处于先进水平,在一些领域还保持着领先。一种应用于钢帘线及高精度、高性能金属线材生产的现代化关键设备——25模多功能智能化高速水箱拉丝机,由江苏泰隆机械集团研制成功,并于4月9日通过了科技成果鉴定。鉴定委员会认为,该设备的研制对推动我国高端金属线材制造技术的发展,扭转我国金属线材产量雄踞世界第一而装备技术却受制于发达国家的被动局面,具有重大现实意义。 这一技术成果的鉴定委员会主任由中科院院士吴宏鑫担任,来自中国航天科技集团、中国冶金设计院、南京航天航空大学、等国家高科技领域的科研院所及高校的权威专家组成鉴定小组。专家组在认真审定江苏泰隆机械集团提供的设计方案、技术资料和制造工序的基础上,参照了国际、国内重点用户的应用结论,一致认定,该项成果采用集成化、立体式传动结构和单侧主动式25道次拉拔技术,钢丝拉拔直线性能好,模具消耗低,拉丝效率高;单台设备集拉丝机、收线机、张力柜、配电柜等多种设备功能于一体,结构紧凑,大大节省了金属材料、装配工序和使用空间;以变频技术为依托,采用智能化技术实施动态性集中控制,来进行各种放线机的升降运动。 江苏泰隆机械集团几年前开始金属线材设备的开发研制,通过自主开发和引进消化,逐步形成从金属拉丝、高速层绕、重卷、外绕、放线、CO2气体保护焊丝及各类特种金属线材成套设备的开发与制造体系,不仅国内市场占有率达70%以上,而且出口10多个国家和地区。

自卸车检验标准

自卸车 1 范围 1.1 本标准规定了用定型汽车底盘改装的自卸车和自卸半挂车的技术要求、试验方法、检验规则、标志、随车文件、使用说明书、运输和贮存。 1.2 本标准适用于本公司用定型汽车底盘改装的自卸汽车和本公司生产的自卸半挂车(包括后卸自卸车、侧卸自卸车和侧卸半挂车)。 1.3 具体车型及其主要技术参数纳入产品图样管理,本标准不再重复列入。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文,所有标准都会被修定,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 1589-2004 道路车辆外廓尺寸、轴荷及质量限值 GB 3766-2001 液压系统通用技术条件 GB 4785-1998 汽车及挂车外部照明和信号装置的安装 GB 5920-1999 汽车及挂车前位灯、后位灯、示廓灯和制动灯配光性能 GB 7258-2004 机动车运行安全技术条件 GB 9969.1-1998 工业产品使用说明书总则 GB 11554-1998 汽车与挂车之后雾灯配光性能 GB 11564-1998 机动车回复反射器 GB 11567.1-2001 汽车和挂车侧面防护要求 GB 11567.2-2001 汽车和挂车后下部防护要求 GB/T 12674-1990 整车质量(重量)参数测定方法 GB 15741-1995 汽车和挂车号牌板(架)及其位置 GB 17509-1998 汽车和挂车转向信号灯配光性能 GB 18099-2000 汽车及挂车侧标志灯配光性能 JB/T 5943-1991 工程机械焊接件通用技术条件 GB 4019-1985 汽车驻车制动性能要求 QC/T 222-1997 自卸汽车通用技术条件 QC/T 223-1997 自卸汽车性能试验方法 QC/T 252-1998 专用汽车定型试验规程 QC/T 319-1999 自卸汽车取力器技术条件 QC/T 460-1999 自卸汽车液压缸技术条件 QC/T 461-1999 自卸汽车换向阀技术条件 QC/T 559-1999 货车、客车行车制动性能要求 QC/T 569-1999 汽车驻车制动试验方法 QC/T 625-1999 汽车用涂镀层和化学处理层。 QC/T 29015-1991 自卸汽车栏板锁紧装置技术条件 QC/T 29104-1992 专用汽车液压系统液压油固体污染度限值 JB/Z 111-86 汽车油漆涂层 GB/T18411-2001 道路车辆产品标牌

NTQ3040B轻型农用自卸车车厢和举升机构毕业设计

目录 摘要 ..................................................................................................................................... Abstract. (Ⅱ) 第1章绪论 (3) 1.1 课题的提出 (3) 1.2 专用汽车设计特点 (5) 1.3课题的实际意义 (6) 1.4 国内外自卸汽车的发展概况 (7) 第2章轻型自卸车主要性能参数的选择 (10) 2.1整车尺寸参数的确定 (10) 2.2质量参数的确定 (10) 2.3其它性能参数 (12) 2.4本章小结 (13) 第3章自卸车车厢的结构与设计 (14) 3.1自卸汽车车厢的结构形式 (14) 3.1.1车厢的结构形式 (14) 3.1.2车厢选材 (15) 3.2车厢的设计规范及尺寸确定 (15) 3.2.1车厢尺寸设计 (15) 3.2.2车厢内框尺寸及车厢质量 (16) 3.3车厢板的锁启机构 (17) 3.4本章小结 (17) 第4章自卸举升机构的设计 (18) 4.1自卸举升机构的选择 (18) 4.1.1举升机构的类型 (18) 4.1.2自卸汽车倾卸机构性能比较 (21) 4.2举升机构运动与受力分析及参数选择 (23)

4.2.1机构运动分析 (25) 4.2.2举升机构受力分析与参数选择 (26) 4.3本章小结 (26) 第5章液压系统设计 (27) 5.1液压系统工作原理与结构特点 (27) 5.1.1工作原理 (27) 5.1.2液压系统结构布置 (28) 5.1.3液压分配阀 (28) 5.2油缸选型与计算 (29) 5.3油箱容积与油管内径计算 (30) 5.4取力器的设计 (31) 5.5本章小结 (35) 第6章副车架的设计 (36) 6.1副车架的截面形状及尺寸 (36) 6.2副车架前段形状及位置 (36) 6.2.1副车架的前端形状及安装位置 (36) 6.2.2 纵梁与横梁的连接设计 (38) 6.2.3 副车架与主车架的连接设计 (36) 6.3副车架主要尺寸参数设计计算 (37) 6.3.1副车架主要尺寸设计 (37) 6.3.2副车架的强度刚度弯曲适应性校核 (37) 6.4本章小结 (44) 结论 (45) 参考文献 (46) 致谢 (47)

自卸车结构及类别

自卸车的结构及类别 自卸车结构 自卸车主要由液压倾卸机构、车厢、车架及其附件构成。其中液压倾卸机构和车厢结构各个厂家不尽相同,以下按车厢和举升机构的型式两个方面说明自卸车的结构。 1、车厢型式 车厢结机构型式按用途不同大概可分为:普通矩形车厢和矿用铲斗车厢。 普通矩形车厢用于散装货物运输。其后板装有自动开合机构,保证货物顺利卸出。普通矩形车厢板厚为:前板4-6mm,边板4-8mm,后板5-8mm,底板 6-12mm。 矿用铲斗车厢则适用于大石块等粒度较大货物的运输。考虑到货物的冲击和碰幢,矿用铲斗车厢的设计形状较复杂,用料较厚,而且有些车型在底板上焊接一些角钢,以增加车厢的刚度和抗冲击能力。 2、举升机构型式 举升机构是自卸车的核心,是判别自卸车优劣的首要指标。

举升机构的型式目前国内常见的有: a.F式三角架放大举升机构 b.T式三角架放大举升机构 c.双缸举升 d.前顶举升 e.双面侧翻 三角架放大式举升机构是目前国内使用最多的一种举升方式,适用载重量8-40吨,车厢长度4.4-6米。优点为结构成熟、举升平稳、造价低;缺点为车厢底板与主车架上平面的闭合高度较大。 双缸举升形式大多用在6X4自卸车上,是在第二桥前方两侧各安装一支多级缸(一般为3-4级),液压缸上支点直接作用在车厢底板上。双缸举升的优点为车厢底板与主车架上平面的闭合高度较小;缺点是液压系统很难保证两液压缸同步,举生平稳性较差,对车厢底板的整体刚度要求较高。 前顶举升方式结构简单、车厢底板与主车架上平面的闭合高度可以很小,整车稳定性好,液压系统压力较小,但前顶多级缸行程较大,造价很高。 双面侧翻液压缸受力较好,行程较小,可实现双面侧翻;但液压管路较复杂,举生翻车事故发生率较高。 自卸车选型 随着自卸汽车的发展和购买能力的提高,自卸车已经不是传统意义上的什么活都可以干的万能自卸车,从设计角度讲也是按不同的货物、不同工况、不同地区开发不同的产品。这就要求在购买车辆时要向厂家提供具体使用情况。 1、底盘 在选择底盘时,一般是按经济效益来考虑的,比如:底盘的价格、装载质量、超载能力、百公里油耗等。除此之外,用户还要考虑底盘的如下参数: a.底盘车架上平面离地高度。一般6x4底盘车架上平面离地高度为1050-1200mm。该数值越大整车重心越高,越容易造成翻车。影响该数值的因素主要是轮胎直径、悬挂的布置和主车架截面高度。

自卸车结构

◆自卸车结构 自卸车主要由液压倾卸机构、车厢、车架及其附件构成。其中液压倾卸机构和车厢结构各个厂家不尽相同,以下按车厢和举升机构的型式两个方面说明自卸车的结构。 1、车厢型式 车厢结机构型式按用途不同大概可分为:普通矩形车厢和矿用铲斗车厢(下图)。 普通矩形车厢用于散装货物运输。其后板装有自动开合机构,保证货物顺利卸出。普通矩形车厢板厚为:前板4-6mm,边板4-8mm,后板5-8mm,底板6-12mm。 矿用铲斗车厢则适用于大石块等粒度较大货物的运输。考虑到货物的冲击和碰幢,矿用铲斗车厢的设计形状较复杂,用料较厚,而且有些车型在底板上焊接一些角钢,以增加车厢的刚度和抗冲击能力。 相关图片: 2、举升机构型式 举升机构是自卸车的核心,是判别自卸车优劣的首要指标。 举升机构的型式目前国内常见的有(下图): F式三角架放大举升机构 T式三角架放大举升机构 双缸举升 前顶举升 双面侧翻 三角架放大式举升机构是目前国内使用最多的一种举升方式,适用载重量8-40吨,车厢长

度4.4-6米。优点为结构成熟、举升平稳、造价低;缺点为车厢底板与主车架上平面的闭合高度较大。 双缸举升形式大多用在6X4自卸车上,是在第二桥前方两侧各安装一支多级缸(一般为3-4级),液压缸上支点直接作用在车厢底板上。双缸举升的优点为车厢底板与主车架上平面的闭合高度较小;缺点是液压系统很难保证两液压缸同步,举生平稳性较差,对车厢底板的整体刚度要求较高。 前顶举升方式结构简单、车厢底板与主车架上平面的闭合高度可以很小,整车稳定性好,液压系统压力较小,但前顶多级缸行程较大,造价很高。 双面侧翻液压缸受力较好,行程较小,可实现双面侧翻;但液压管路较复杂,举生翻车事故发生率较高。

高位自卸汽车设计说明书

JIANGXI AGRICULTURAL UNIVERSITY 机械原理课程设计 题目:高位自卸汽车 学院:工学院 姓名:刘译文 学号:20124319 专业:机械设计制造及其自动化 班级:1202 指导教师:林金龙职称:讲师 二〇一四年六月

目录 摘要 ..................................................................................................................................... - 3 - 1基本要求 ..................................................................................................................... - 4 - 1.1设计要求 .............................................................................................................. - 4 - 1.2设计提示 .................................................................................................................. - 5 - 2机构选型设计 ................................................................................................................. - 6 - 2.1举升机构基本要求 .................................................................................................. - 6 - 2.2举升机构方案比较 .................................................................................................. - 6 - 2.2.1平行四边形举升机构 ....................................................................................... - 6 - 2.2.2双滑块推动举升机构 ....................................................................................... - 7 - 2.2.3剪式举升机构 ................................................................................................... - 8 - 2.3翻转机构基本要求 .................................................................................................. - 9 - 2.4翻转机构方案比较 .............................................................................................. - 9 - 2.4.1车厢直推滑块翻转机构 ................................................................................... - 9 - 2.4.2连杆直推滑块翻转机构 ................................................................................. - 10 - 2.4.3连杆斜推滑块翻转机构 ................................................................................. - 10 - 2.6后箱门打开机构方案比较 .................................................................................... - 11 - 2.6.1直杆联动顶开机构 ......................................................................................... - 12 - 2.6.2直杆伸缩顶开机构 ......................................................................................... - 12 - 2.6.3圆弧联动顶开机构 ......................................................................................... - 13 - 3总体机构运动简图及自由度验证 ............................................................................... - 14 - 3.1总体机构运动简图 ................................................................................................ - 14 - 3.2机构自由度验证 .................................................................................................... - 15 - 3.2.1举升机构 ......................................................................................................... - 15 - 3.2.2翻转机构 ......................................................................................................... - 16 - 3.2.3后箱门打开机构 ............................................................................................. - 17 - 4机构尺度综合分析 ....................................................................................................... - 17 - 4.1举升机构尺度分析 ................................................................................................ - 18 - 4.2翻转机构尺度分析 ................................................................................................ - 18 - 4.3后箱门打开机构尺度分析 .................................................................................... - 19 - 5机构运动分析 ............................................................................................................... - 21 - 5.1举升机构运动分析 ................................................................................................ - 21 - 5.2翻转机构运动分析 ................................................................................................ - 22 - 5.3后箱门打开机构运动分析 .................................................................................... - 23 - 5.4机构运动线图 ........................................................................................................ - 24 - 5.5机构运动循环图 .................................................................................................... - 24 - 结论与体会 ....................................................................................................................... - 25 - 参考文献 ........................................................................................................................... - 26 - 附录 ................................................................................................................................... - 27 - 致谢 ................................................................................................................................... - 28 -

相关文档
相关文档 最新文档