文档库 最新最全的文档下载
当前位置:文档库 › 遗传

遗传

遗传
遗传

生物的遗传现象

教材分析及学情分析:

本课的教学应当运用直观、形象的方法,激活学生的前概念,激发学生的兴趣,同时,暗示“处处留心皆学问”的道理,让学生感受到只有善于观察,勤比较和勤于思考才能真正学好科学。

教学目标:

1.知道什么事遗传现象。

2.知道遗传是生物的普遍现象。

3.能对自己家人的外形特征进行比较,并能说出哪些地方相似。

4.能对动物的遗传现象作出合理的推测。

教学重点:了解遗传是生命的基本特征。

教学难点:能对动物的遗传现象作出合理的推测。

教学内容设计与流程:

一、激发学生探究遗传现象的兴趣。

做游戏,找出三对家长的孩子或根据孩子找家长。(利用ppt打出来)

让学生思考事通过什么样的方法找到答案的。

(同学们根据孩子和家长有许多相似的特征找出他们是一家人,是不是所有的孩子都有一些和父母相似的特征呢?)再研究一对父子。

二、认识人类的遗传现象。

1.研究陈强、马季父子的照片。

(这是我国著名的喜剧演员陈佩斯和他的父亲陈强的照片,大家仔细找找,他们哪些地方相似,把你们小组发现的记录在这张表中)

学生们分组汇报自己找到哪些地方长的像(眼睛、眉毛、耳朵、脸型、嘴巴、

头发等)

关于头发,同学们讨论和争执的非常剧烈,陈强我们看的出来他患有脱发,这里要补充的,陈佩斯原来头发也是一样的,也还有脱发,头上的头发不多,为了演出的方便把其他的头发也剃了,所以你们再想想他们的头发是否是相似的。

(师把长的像的地方写在黑板上)

除了长相和疾病以外,孩子与父母还有可能具有哪些相似的特征呢?我们再来看一看另外一对父子。

(课件出示马季父子的全身照,都微微发胖,身材很像。)

——引出遗传的定义。

2.学生对照自己找自己与不同种族人的遗传特征。

(陈强父子有遗传,马季父子有遗传,你们和父母之间有遗传吗?你们哪些特征是爸爸遗传给的,哪些是妈妈遗传给的。)

和父亲相似的特征:

和母亲相似的特征:

是不是每位同学都找到了从父母身上遗传的特征,看样子我们中国人都有遗传现象,那外国人呢?(出示布什父子的照片)

(脸型、嘴巴、身材、眼睛、鼻子)

总结:中国人呢有遗传现象,外国人也有遗传现象,看来遗传是人类的普遍现象。

3.父母不光把他们的特征遗传给了我们,更重要的是把人的所有的基本特征都遗传给我们。

三、引导学生得出遗传是生物的普遍现象。

出示动物一家让学生寻找遗传特征。

(生物都有遗传,世界上所有能繁衍后代的生物都有遗传。)

假如给同学们一小块种满豌豆的菜地,现在你想知道豌豆有没有遗传现象,你会从哪些方面研究?

四、帮助小猫找爸爸。

东亚人的遗传系统初识

东亚人的遗传系统初识 东亚的古人类学界至今还有人不相信。北京猿人竟然不是我们的祖先。但是在这里,的确没有找到十万年到四万年前的人类化石,看起来这里的古人种,在约十万年前就灭亡了。在之后的几万年冰河时期,东亚大地寒冷而寂寞,直到四万多年前,来自非洲的现代人重新发现了这块大地。从一九九九年宿兵等人研究了几千分亚太地区的样品的NRY,到二000 年柯越海等人研究近一万二千分中中国各族样品,涉及到的所有个体的NRY单倍型都在非洲起源的谱系树上,没有一个人是可能来自北京猿人或其它东亚的古人种。既然东亚人群也是来自非洲,他们又是从哪个方向进入东亚大地的呢?有两个可能的地方,中亚和中国西北或中南半岛。由于前一地区考古研究的深入,大量现代人的早期遗址被发现,所以很多人开始相信东亚人是由西北方向进入,而后由北向南散布开来的。但实际上东南亚发现的现代人遗址的年代也不晚。宿兵等对亚太人群的NRY分析证实了后一种可能。他们的研究对象包括人群和西伯利亚人群,由于每个部分包含相当数量的群体,所以保了大区域结构的可靠性。结果发现,这四个区域中的NRY 的SNP 单倍型种数由南向北梯度下降,而且南部区域包含了所有北部区域的种类。因为SNP单倍型的主要种类早在人类在东亚分化前就形成了,所以随着长时间的扩散迁徙,人群的单倍型在途中可能丢失,造成单倍型种类沿迁徙方向从丰富变为单调.故而东亚人由东南亚进入东亚大陆。随者冰川渐渐消融,人群开始向北扩散,遍及各地。还有部分群体通过亚洲和北美之间的白令陆桥进入美洲。除此之外,在北方还发现了很少量的单倍型,在人群中占的比例很小,这个比例在新丨疆地区大概是17%,蒙古高音大概占6%-8%之间,东北维持于4%上下,而到日本就骤升为约30%,而这些类型显然与约十万年前由非洲迁移到中亚的群体有关。所以,迁移的主线虽是由南向北,但还有少量人口由西北进入。从亚洲到美洲的移民至少可分三批。第一批是约三万年前,由中亚来的那部分人先走过白令陆桥,到达美洲后迅速南下,成为南美和北美南部大部分的印第安人(AmericanIndian)。第二批在约一万年前,从南向经中国东北到白令陆桥的人群占据了北美的北部,成为现代纳丁语系(Na-Dene)的明珠,大约三千年前度过白令海峡的爱斯基摩人和阿留申人 可以算是第三批美洲人。亚洲南端的安达曼――巴布亚语系(Anadaman-Papua)、泛新几内亚语系(Trans-NewGuinea)和澳大利亚语系的棕色人种的迁徙路线还没有头绪、但他们与东亚的其它人群系统差距很遥远。 除了古老的SNP 单倍型随着人群的分化而散布和佚失,在分化过程中的不同时代不同分枝上也会产生新的SNP单倍型。新的单倍型成为这些分枝的标志性特征。不同时期产生的单倍型在人群中的分布提示了图五中的东亚人群系统发生的可能关系。对于这张图有几点要说明。首先,由于现代人群虽然调查分析得已相当大量,但是还是有限,所以各突变的年代估计只是个大概数据。其次,族群发生树状结构虽然比较可靠,但不能排除新的材料改变树的局部结构的可能。另外还有一点更重要的说明,是我们这里用到的族群年代都是借用于语言学,但是这课发生树却是遗传学的结果,与语言学的对应只是个梗概。族群的血统分化,完全可能不与语言分化同步,甚至相去甚远。再加上群体语言转用的影响,使遗传结构与语言结构差距更大。但是,另用一套新的遗传名词的话,对于人类学研究的各领域的交流和理解会造成障碍,更使普通读者一头雾水。所以只要明确这里讲的是(在一定时期)大致讲某类语言的人群的遗传分化过程,就不必强求名词的严格界定了。现代东亚的人群分别讲大致留个语系的语言,即:汉藏语系(Sino-Tiьetan,包括汉、藏、羌、彝等族)、侗台语系(Daic,包括侗、壮、泰、黎、僚、仡佬等族,亦称百越)、苗瑶语系(Hmong-Mien,包括苗、瑶、畲等族,又称荆蛮)、南亚语系(Austro-asiatic,包括越南、高棉、芒、孟、门达等族,又称

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

遗传学专业术语

遗传学专业术语 1.遗传标记(genetic marker,GM):个体的单位遗传性状作为标 志用于法医物证分析时,这种遗传性状就称为遗传标记。 2.基因(gene):是具有遗传效应的DNA片段(部分病毒如烟草花 叶病毒、HIV的遗传物质是RNA)。 3.基因突变(gene mutation):基因组DNA分子发生的突然的、可 遗传的变异现象。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。 4.基因座(locus):基因在染色体上的一个特定位置称为基因座。 5.等位基因(allele):同一个基因座上的基因可以有多个,他们之 间存在DNA一级结构的差异,这种有差异的基因互称为等位基因。 6.基因型(genotype):是指个体一个或多个基因座上等位基因的组 合,是生物体可见性状的实际基因组成。 7.纯合子(Homozygote):是指同一位点基因座上的两个等位基因 相同的基因型个体,即基因组成相同,如AA,aa。 8.杂合子(heterozygote):与纯合子相反,是指同一位点基因座上 的两个等位基因不同的基因型个体,即基因组成不同,如Aa。 9.表型(phenotype):是指生物体某特定基因所表现出的性状。例 如:ABO血型中A型、B型、O型和AB型血。 10.孟德尔分离定律(law of segregation):在生物的体细胞中,控制 同一性状的遗传因子成对存在,不相融合;在形成配子时,成对

的等位基因发生分离,分离后的等位基因分别进入不同的配子中,随配子遗传给后代的现象叫做孟德尔分离定律。 11.孟德尔自由组合定律(law of independent assortment):应当具有 两对(或更多对)相对性状的亲本进行杂交,在子一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。 12.遗传多态性(polymorphism):从遗传学角度分析,是指控制遗 传标记的基因座上存在2个或2个以上等位基因,并且等位基因的频率大于0.01。 13.基因频率(allelic frequency):是指群体中某种等位基因数目占该 基因座上所有等位基因总数目的百分比。在一个基因座中,无论有多少等位基因,所有等位基因频率之和为1。 14.基因型频率(genotype frequency):是指一个群体中,某基因座 上的基因型在全部基因型中所占的百分比,该基因座上全部基因型频率的总和应为1。 15.表型频率(phenotype frequency):是指就某一性状而言,某一表 型在群体中所占的百分比。所有表型频率之和必等于1。 16.Hardy-Weinberg平衡定律:是指在无限大、随机婚配、没有突变、 没有选择、没有迁移、没有遗传漂变(小群体内基因频率随机波动)的群体中,一个位点上的基因型频率和基因频率将代代保持不变,处于遗传平衡状态。 17.连锁平衡(linkage equilibrium,LE):位于不同染色体的基因座

胚胎干细胞遗传分析的工具

DOI 10.1007/s13238-012-2096-4 Protein & Cell Protein Cell 2012, 3(11): 806–810 M INI-REVIEW Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses Linyu Shi, Hui Yang, Jinsong Li Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China Correspondence: jsli@https://www.wendangku.net/doc/071788173.html, Received September 3, 2010Accepted September 12, 2012 ABSTRACT Identification of the function of all genes in the mam-malian genome is critical in understanding basic mechanisms of biology. However, the diploidy of mammalian somatic cells has greatly hindered efforts to elucidate the gene function in numerous biological processes by mutagenesis-based genetic approaches. Recently, mouse haploid embryonic stem (haES) cells have been successfully isolated from parthenogenetic and androgenetic embryos, providing an ideal tool for genetic analyses. In these studies, mouse haES cells have already shown that they could be used in cell-based forward or reverse genetic screenings and in generating gene-targeting via homologous recombina-tion. In particular, haES cells from androgenetic em-bryos can be employed as novel, renewable form of fertilization agent for yielding live-born mice via injec-tion into oocytes, thus showing the possibility that ge-netic analysis can be extended from cellular level to organism level. KEYWORDS haploid embryonic stem cells, partheno-genetic embryos, androgenetic embryos, genetic screening, diploid, genomic imprinting INTRODUCTION Most somatic cells in mammalian organisms are diploid, containing duplicate sets of chromosomes, a situation that is beneficial for their survival since if one copy of a gene is dis-rupted, the other copy can compensate for it. However, dip-loidy limits the identifying the function of a specific gene, be-haploid fungal spores of Saccharomyces cerevisiae have been largely utilized for mutational screens on a ge-nome-wide scale, as a recessive mutation should result in an unambiguous phenotype due to the absence of a second gene copy. In vertebrate, haploidy exists only in the postmeiotic germ-line, which is structurally specialized for fertilization. These cells cannot divide in vitro, thus preventing gene manipulation. Stable cultured haploid cell lines can be successfully derived from the embryos of some lower vertebrates, such as frogs (Freed and Mezger-Freed, 1970) and fish (Yi et al., 2009). Meanwhile, Zebrafish, as an important model organism for the study of early vertebrate development, its haploid em-bryos are amenable to insertional mutation and genetic screening (Wiellette et al., 2004). In mammalian organisms, the near-haploid human cell lines have been established from tumors (Kotecki et al., 1999; Sukov et al., 2010). Although these cells have been used for genetic screenings (Carette et al., 2009, 2011), their aneuploid karyotype and cancerous characteristics limits their application. Recently, three inde-pendent laboratories reported the isolation of mouse haES cells, with pilot genetic screenings and construction of a gene knockout (KO) mouse (Elling et al., 2011; Leeb and Wutz, 2011; Yang et al., 2012), representing an important break-through in the field. Here, we review recent progress in derivation of mouse haES cells, discuss their potential applications and outline future challenges. DERIVATION OF haES CELL LINES There are two different kinds of haploid embryos according to their genetic origin, i.e., parthenogenetic and androgenetic

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

最优控制-遗传算法综述

最优控制论文 遗传算法的发展 摘要 最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。解决最优控制问题

的主要方法有古典变分法、极大值原理和动态规划。 最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最 小能耗控制系统、线性调节器等。目前研究最优控制理论最活跃的领域有神经网 络优化、模拟退火算法、趋化性算法、遗传算法、鲁棒控制、预测控制、混沌优化 控制以及稳态递阶控制等。 作为一种比较新的一种新的优化算法—遗传算法(Genetic Algorithm, 简称G A ) 正在迅速发展。 遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。近年来,由于遗传算法求解复杂优化问题的巨大潜力及其在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注。本文介绍了遗传算法的研究现状,描述了它的主要特点和基本原理,概述了它的理论、技术和应用领域,讨论了混合遗传算法和并行遗传算法,指出了遗传算法的研究方向,并对遗传算法的性能作了分析。

目录 1 前言 (1) 2 遗传算法基本理论..................................................... 1... 2.1 遗传算法的基本步骤.................................................. 1.. 2.2 遗传算法的现状..................................................... 2... 2.3 遗传算法的应用..................................................... 3... 2.3.1 函数优化 ..................................................... 3... 2.3.2 组合优化 ..................................................... 4... 2.3.3 生产调度问题 ................................................. 4... 2.3.4 自动控制 ..................................................... 4... 2.3.5 机器人学 ..................................................... 4... 2.3.6 图像处理 ..................................................... 4... 2.3.7 人工生命 ..................................................... 5... 2.3.8 遗传编程 ..................................................... 5... 2.3.9 机器学习 ..................................................... 5... 2.3.10 数据挖掘.................................................... 5... 3 遗传算法的研究方向................................................... 5... 参考文献............................................................ 7...

第五章-遗传算法工具箱函数

第五章遗传算法工具箱函数 本章介绍英国设菲尔德大学开发的遗传算法工具箱函数。 由于MATLAB高级语言的通用性,对问题用M文件编码,与此配对的是MA TLAB先进的数据分析、可视化工具、特殊目的的应用领域工具箱和展现给使用者具有研究遗传算法可能性的一致环境。MATLAB遗传算法工具箱为遗传算法从业者和第一次实验遗传算法的人提供了广泛多样的有用函数。 遗传算法工具箱使用MA TLAB矩阵函数为实现广泛领域的遗传算法建立一套通用工具,这个遗传算法工具是用M文件写成的,是命令行形式的函数,能完成遗传算法大部分重要功能的程序的集合。用户可通过这些命令行函数,根据实际分析的需要,编写出功能强大的MATLAB程序。 5.1 工具箱结构 本节给出GA工具箱的主要程序。表5.1为遗传算法工具箱中的各种函数分类表。 表5.1 遗传算法工具箱中函数分类表

5.1.1 种群表示和初始化 种群表示和初始化函数有:crtbase,crtbp,crtrp。 GA工具箱支持二进制、整数和浮点数的基因表示。二进制和整数种群可以使用工具箱中的crtbp建立二进制种群。crtbase是附加的功能,它提供向量描述整数表示。种群的实值可用crtrp进行初始化。在二进制代码和实值之间的变换可使用函数bs2rv,它支持格雷码和对数编码。 5.1.2 适应度计算 适应度函数有:ranking,scaling。 适应度函数用于转换目标函数值,给每一个个体一个非负的价值数。这个工具箱支持Goldberg的偏移法(offsetting)和比率法以及贝克的线性评估算法。另外,ranking函数支持非线性评估。 5.1.3 选择函数 选择函数有:reins,rws,select,sus。 这些函数根据个体的适应度大小在已知种群中选择一定数量的个体,对它的索引返回一个列向量。现在最合适的是轮盘赌选择(即rws函数)和随机遍历抽样(即sus函数)。高级入口函数select为选择程序,特别为多种群的使用提供了一个方便的接口界面。在这种情况下,代沟是必须的,这就是整个种群在每一代中没有被完全复制,reins能使用均匀的随机数或基于适应度的重新插入。 5.1.4 交叉算子 交叉算子函数有:recdis,recint,reclin,recmut,recombin,xovdp,xovdprs,xovmp,xovsh,xovshrs,xovsp,xovsprs。 交叉是通过给定的概率重组一对个体产生后代。单点交叉、两点交叉和洗牌交叉是由xovsp、xovdp、xovsh函数分别完成的。缩小代理交叉函数分别是:xovdprs、xovshrs和xovsprs。通用的多点交叉函数是xovmp,它提供均匀交换的支持。为支持染色体实值表示,离散的、中间的和线性重组分别由函数recdis、recint、reclin完成。函数recmut提供具有突变特征的线性重组。函数recombin是一高级入口函数,对所有交叉操作提供多子群支持入口。 5.1.5 变异算子 变异算子函数有:mut,mutate,mutbga。

MATLAB遗传工具箱核心函数

核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function[x,endPop,bPop,traceInfo]= ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOver Ops,mutFNs,mutOps)--遗传算法函数 【输出参数】

x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 10] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[20;23;20] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[400;61003;4100 3;400]

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

染色体遗传标记

染色体遗传标记 一:基因位点的标记: ?基因所在的染色体。第一个数字表明基因所在的染色体。性染色体用X或Y表示。 ?所在染色体的臂。P是短臂,q是长臂。 ?基因在p或q臂上的位置。基因的位置基于染色体某种特定染色下的亮带和暗带的标准形式。通常用两位数命名(代表区和带),有时后面跟着一个小数点和一个或多个小数(代表亮带或暗带内的亚带)。数字的大小表示离着丝粒的距离。 ?有时,缩写“cen”或“ter”也用于描述基因的位置。“Cen”指基因离着丝粒非常近。“Ter” 代表端粒,表明基因非常靠近p或q臂的末端。 二:染色体和染色体异常的标记 46,XX :正常女性核型 46,XY:正常男性核型 46,XX,del(14)(q23) :有46条染色体,女性,14号染色体长臂2区3带缺失。 46,XY,dup(14)(q22q25) :有46条染色体,男性,14号染色体长臂重复累及2区2带至5带。 46,XX,r(7)(p22q36) :有46条染色体,女性,7号染色体环。短臂末端(p22)与长臂末端(q36)融合形成环。 47,XY,+21 :有47条染色体,男性,额外染色体为21号。 不夸张的说,畸形的类型有几百万。以下是一些术语的代码: add =原因不明的额外物质 del = 缺失 de novo = 不是遗传的染色体畸形 der = 衍生染色体 dic =双着丝粒 dup = 重复 fra = 脆性位点

idic =具同形双着丝粒的染色体 ins = 插入 inv = 倒位 i or iso =等臂染色体 mar =标记染色体 mat = 母体起源 Minus sign (-) =减号(-),放在染色体号前面表示失去整条染色体,放在染色体号后面表示该染色体变短 mos = 镶嵌型 p = 染色体的短臂 pat = 父本 Plus sign (+) =加号(+),放在染色体号前面表示增加整条染色体,放在染色体号后面表示该染色体加长 q = 染色体长臂 r = 环状染色体 rcp = 互逆 rea = 重排 rec =重组染色体 rob =罗伯逊易位:是指D组与G组10个染色体之间的一种特殊类型的易位,过去又称为着丝粒融合 t = 异位 tel = 端粒 ter = 染色体的终点 upd =单亲二体一对染色体(均来自父或母) ? = 不明确

遗传学(详细)

申明:以下资料是个人总结,仅供参考,不懂的还是得去看看书,那些难理解的,通过做计算题来帮助理解,遗传会有一些计算题,最后,希望大家都能顺利通过,希望大家不要把资料给农学091班以外的同学,否则就不说了。 第一章 1遗传和变异是生物界最普遍和最基本的两个特征。 2遗传+变异+自然选择=物种 3遗传+变异+人工选择=品种 4拉马克“用进废退”+“获得性状遗传”(环境的改变是生物变异的根本原因)5达尔文自然选择+人工选择+(泛生学说:存在泛生粒形成生殖细胞,进入器官发生作用,表现遗传) 6魏斯曼种质连续论:(环境影响体质,体质由种质产生,种质是世代连绵不绝的) 第二章 1细胞是生物体机构和生命活动的基本单位。 2细胞膜使细胞成为具有一定形态结构的单位,借以调节和维持细胞内微小环境的相对稳定性。 3细胞骨架的主要功能是维持细胞的形态和运动,并使细胞器在细胞内保持在适当的位置。 4线粒体含有DNA,RNA和核糖体,具有独立合成蛋白质的能力。 5叶绿体含有DNA,RNA和核糖体等,能够合成蛋白质,并且能够分裂增殖,还可以发生白化突变。 6他们具半复制能力。 7尚未分裂的核中,通过碱性染料染色较深的纤细网状物质即为染色质。 8染色体和染色质是同一物质不同的形态表现,染色体是核中最重要而稳定的成分,具有特定的形态结构和一定的数目,是遗传物质的主要载体。 9每个染色体有一个着丝粒,和有其分成的长臂和短臂,着丝点处(主缢痕),断臂处(次缢痕)具组成核仁的特殊功能。次缢痕具末端圆形或长形的突出体,即随体,与识别有关。染色体包括V型,L型,棒状以及粒状染色体。 10对生物细胞核内全部的染色体的形态进行分析称为染色体组分析或核型分析。 11形态和结构基因相同的一对染色体称为同源染色体。(形态和所含基因位点不同的同源染色体,性染色体) 12形态结构不同的各队染色体之间,互成非同源染色体。 13维持生长的三个前提:1细胞体积的增加;2遗传物质的复制;3一种保证遗

遗传标记的发展及其类型

遗传标记的发展及其类型 1形态标记 19世纪60年代,Mendel以豌豆为材料,详细研究了豌豆的7对相对性状的遗传规律。由于这些性状都具有典型的外部形态,很容易识别,从而构成了最早的遗传标记,即形态学标记,由此奠定了近代遗传学的基础。形态标记是利用植物外部形态多态性进行的标记技术。自然界中的生物存在着许多非常明显的形态标记,如果形、花色、矮杆、卷叶等。形态标记简单直观且经济方便,但大多数植物中的形态标记数量有限,多态性较差,表型易受环境影响,且形态标记的获得周期长,不适于需要完整的基因组测试的数量性状位点分析,故形态标记在作物遗传育种中的作用有限。 2细胞学标记 细胞学标记是利用植物细胞染色体的变异的标记技术。植物细胞染色体的变异包括染色体核型和带型的变异。细胞学标记虽然能进行一些重要基因的染色体定位,但标记材料的培育需要大量的人力和时间,并且有些物种对染色体数目和结构变异反应敏感,难以获得标记材料,从而限制了细胞学标记在遗传育种上的应用。 3生化标记 生化标记主要指同工酶标记,是依据植物体内有效成分的化学分析进行标记的技术。同工酶是同种功能的酶的不同形式,由一个以上基因座位编码,其可通过电泳和组织化学染色法分离成肉眼可见的酶谱带型。与形态标记和细胞学标记相比,生化标记表现近中性,对植物经济性状无大的不良影响,且是基因产物差异的直接反映,受环境影响较小。但由于在植物群体研究中能表现出位点多态性的同工酶种类较少,使其应用也受到限制而不能成为较理想的遗传标记。 4分子标记 分子标记是以生物大分子的多态性为基础的标记技术,目前使用的分子标记主要是指DNA分子标记。DNA分子标记能反映植物个体或种群的基因组DNA 间的差异,如由于碱基易位、倒位、缺失、插入、重排或由于存在长短与排列不一的重复序列而产生的差异。起步于20世纪70年代的分子标记在近40年间发展迅速,目前已出现了几十种分子标记方法。与前3种标记(形态、细胞学和生化标记)技术相比,分子标记具有巨大的优越性: ①直接以DNA的形式表现,在植物体的各个组织、各发育时期均可检测到,受季节、环境限制,不存在表达

遗传学 名词解释

1、同源染色体:指形态、结构、功能相似的一对染色体,一条来自父方,一条来自母方 2、性染色体:与性别决定有关的染色体 常染色体:性染色体之外的其他染色体统称为常染色体 3、细胞周期:一次细胞分裂结束到下一次细胞分裂结束,构成一个细胞周期 4、二价体:减数分裂偶线期,每对联会的同源染色体 5、交换(互换):联会复合体形成后,非姐妹染色单体之间相应的部位发生断裂、重接的现象 6、交叉端化:双线期,同源染色体分开,交换部位形成交叉,且向两极移动的现象 7、基因组:细胞或生物体的遗传物质的总量 8、配子发生:产生成熟配子或孢子的整个过程 9、孢子体世代(无性世代):在植物界,一个合子(2n)发育成一个二倍体个体的过程 配子体世代(有性世代):孢子体进一步进行生殖形成一个配子体,并产生配子的过程 10、世代交替:植物生活史中,产生孢子的时代(2n)与产生配子的世代(n)相互交替的现象 11、性状:生物体所表现出来的形态特征和生理特性 12、性对性状:不同品种之间表现出相对差异的一对性状 13、杂交:不同遗传型的个体进行有性交配 14、显性性状与隐性性状:具有一对相对性状的两亲本杂交,F1所表现出的其中一个亲本的性状为显 性性状;未表现出来的另一亲本的性状为隐形性状 15、等位基因:控制相对性状的同一基因的两种不同形式的基因 16、基因型:生物体的遗传组成,是肉眼看不到的,通过杂交试验测定 表现型:生物所表现的性状,肉眼可见,可以用物理、化学方法测定 17、纯合体:体细胞所含控制某一性状的两个基因(等位基因)是相同的个体 杂合体:体细胞所含控制某一性状的两个基因(等位基因)是不同的个体 18、纯系:具有相同基因型的一群个体 19、完全显性:两个纯合亲本杂交,F1表现出其亲本之一的性状 不完全显性:两个纯合亲本杂交,F1表现的性状介于两亲本之间的表型 20、测交:被测验的个体与基因型为隐性纯合的个体进行杂交 回交:F1个体与亲本之一进行杂交 21、携带者:携带有害性基因,但其表现被正常显性等位基因掩盖的杂合体 22、多因一效:指某性状在代谢上由很多基因决定 一因多效:指一个基因可影响若干性状的现象 23、表现度:基因表达的变异方式之一,是指个体间基因表达的变化程度 外显率:基因表达的另一变异方式之一,是指某一基因型个体显示预期表型的比例 24、致死基因:生物体中具有致死作用的基因 25、隐性致死:基因的致死作用只在纯合体时表现

【实用资料】Matlab遗传算法工具箱简介.pdf

Matlab遗传算法工具箱 基于Matlab平台的遗传算法(GA)工具箱主要有:美国北卡罗来纳大学开发的GAOT、英国谢菲尔德大学开发的GATBX以及GADS(Genetic Algorithm and Direct Search Toolbox)遗传算法与直接搜索工具箱。遗传算法与直接搜索工具箱的界面如图所示: GADS工具箱用户界面 (1)Solver(求解器):用于选择需要的算法。 (2)Problem:需要解决的问题。包括: 1)Fitness function:需要最小化的适应度函数,填写的格式为:@objfun,其中objfun.m是编写适应度函数的M文件,返回一个具体数值。 2)Number of variables:适应度函数的自变量的数目,此处表示优化设计的设计变量个数。 (3)Constraints约束。 1)Linear inequalities线性不等式约束,表示为:* ,填写矩阵A和向 A x b 量b的信息。

2)Linear equalities 线性等式约束,表示为:*Aeq x beq ,填写矩阵Aeq 和向量beq 的信息。 3)Bounds :填写独立变量的取值范围。在Lower 中填写变量的取值下界,Upper 中填写变量的取值上界,均以向量形式表示。 4)Nonlinear constraint function 非线性约束函数,编写非线性约束函数的M 文件nonlcon.m ,则在此处填写@nonlcon 。 (4)Run solver and view results 运行求解器并观察结果。点击Start 即可开始运行。Current iteration 中将显示当前运行的代数。Final point 栏中显示最优解对应的变量的取值。 (5)Option 部分是遗传算法参数的设定。 1)Population 种群参数设定。 Population type 种群类型,设定适应度函数的输入数据类型。工具箱提供了 两种输入类型:双精度、串位,用户还可以编写M 文件自定义输入数据的类型。 Population size 种群规模,定义每一代种群的个体数量。种群规模越大,遗传算法的运行速度越慢。 Creation function 创建函数,用于创建初始种群。 Initial population 初始种群,如果不指定初始种群,则系统将运用创建函数创建初始种群。 Initial scores 初始得分,如果此处没有定义初始得分,则系统应用适应度函数来计算初始得分。 Initial range 初始范围,用于指定初始种群中的各变量的上下限。初始范围用一个矩阵表示,该矩阵行数为2,列数为变量的个数。其中第一行描述初始种群中变量的取值下限,第二行描述初始种群中变量的取值上限。 2)Fitness scaling 适应度测量,包括:Rank 排序尺度变换、Proportional 比例尺度变换、Top 顶级尺度变换、Shift linear 线性转换尺度变换以及Custom 用户自定义。 3)Selection 选择,工具箱提供了以下几种选择函数:Stochastic uniform 随机 均匀分布、 Remainder 剩余、Uniform 均匀分布、Roulette 轮盘赌选择、Tournament 锦标赛选项、Custom 用户自定义。 4)Reproduction 再生参数,需设定可生存到下一代的精英个数Elite count ,以及下一代由交叉产生的部分所占比例Crossover fraction 。

相关文档
相关文档 最新文档