文档库 最新最全的文档下载
当前位置:文档库 › Print article

Print article

Print article
Print article

初三数学 坐标与函数

初三数学坐标与函数 1. 如图,方格纸上一圆经过(2,5),(-2,l),(2,-3),( 6,1)四点,则该圆的圆心的坐标为() A.(2,-1)B.(2,2)C.(2,1)D.(3,l) 2.已知M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a等于() A.1 B.2 C.3 D.0 3.在平面直角坐标系中,点P(-2,1)关于原点的对称点在() A.第一象限;B.第M象限; C.第M象限;D.第四象限 4.如图,△ABC绕点C顺时针旋转90○后得到AA′、B′C′, 则A点的对应点A′点的坐标是() A.(-3,-2); B.(2,2); C.(3,0); D.(2,l) 5.点P(3,-4)关于y轴的对称点坐标为_______,它 关于x轴的对称点坐标为_______.它关于原点的对 称点坐标为_____. 6.李明、王超、张振家及学校的位置如图所示. ⑴学校在王超家的北偏东____度方向上,与王超家 大约_____米。 ⑵王超家在李明家____方向上,与李明家的距离大约是____米; ⑶张振家在学校____方向上,到学校的距离大约是______ 米. 7.东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为了促销制定了两种优惠方法,甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某书法兴趣小组欲购买这种毛笔10支,书法练习本x(x>10)本. (1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的关系式;(2)对较购买同样多的书法练习本时,按哪种优惠方法付款更省钱? 8. 某居民小区按照分期付款的形式福利售房,政府给予一定的贴息,小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%. (1)若第x(x≥2)年小明家交付房款y元,求年付房款y(元)与x(年)的函数关系式;(2)将第三年,第十年应付房款填人下列表格中 9. 如图所示,在直角坐标系中,第一次将△OAB变换成△OA1B1;第二次将OA1B1变换

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

一次函数表达式与坐标

一次函数表达式与坐标(讲义) 一、 知识点睛 1. 一次函数表达式 直线(函数图象) 坐标 点 2. 坐标系中处理问题的原则 (1)坐标转线段长、线段长转坐标; (2)作横平竖直的线. 二、 精讲精练 1. 若点M 在函数y =2x -1的图象上,则点M 的坐标可能是( ) A .(-1,0) B .(0,-l) C .(1,-1) D .(2,4) 2. 若直线y =2x +1经过点(m +2,1-m ),则m =______. 3. 一次函数y =-2x +3与x 轴交于点_____,与y 轴交于点_____. 4. 在一次函数2 1 21+=x y 的图象上,与y 轴距离等于1的点的坐标为 __________________. 5. 若点(3,-4)在正比例函数y =kx 的图象上,那么这个函数的解析式为( ) A .43y x = B .43y x =- C .34y x = D .3 4 y x =- 6. 若正比例函数的图象经过点(-1,2),则这个图象必经过点( ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2) 7. 已知某个一次函数的图象过点A (-2,0),B (0,4),求这个函数的表达式. 8. 已知某个一次函数的图象过点A (3,0),B (0,-2),求这个函数的表达式. 9. 如图,直线l 是一次函数y =kx +b 的图象,填空: (1)k =______,b =______; (2)当x =4时,y =______; (3)当y =2时,x =______.

10. 已知y 是x 的一次函数,下表给出了部分对应值,则m 的值是________. 11. 一次函数y=kx +3的图象经过点A (1,2),则其解析式为____________. 12. 若一次函数y=2x+b 的图象经过点A (-1,1),则b =______,该函数图象经过 点B (1,___)和点C (_____,0). 13. 若直线y =kx +b 平行于直线y =3x +4,且过点(1,-2),则将y =kx+b 向下平移3 个单位得到的直线是_____________. 14. 在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M , 则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1) 15. 直线y =2x+b 经过直线y=x -2与直线y =3x +4的交点,则b 的值为( ) A .-11 B .-1 C .1 D .6 16. 当b=______时,直线y =2x +b 与y =3x -4的交点在x 轴上. 17. 一次函数y =kx +3的图象与坐标轴的两个交点间的距离为5,则k 的值为 __________. 18. 直线y =3x -1与两坐标轴围成的三角形的面积为_________. 19. 已知直线y =kx +b 经过(5,0),且与坐标轴所围成的三角形的面积为20,则 该直线的表达式为______________________. 20. 点A ,B ,C ,D 的坐标如图所示,求直线AB 与直线CD 的交点E 的坐标. 21. 如图,已知直线l 1:y =2x +3,直线l 2:y =-x +5,直线l 1,l 2分别交 x 轴于B , C 两点,l 1,l 2相交于点A . (1)求A ,B ,C 三点坐标; (2)S △ABC =________.

平面直角坐标系与函数知识要点归纳

平面直角坐标系与函数知识要点归纳 怎样确定自变量的取值范围

函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素。求函数自变量的取值范围通常有以下七种方法: 一、整式型:当函数解析是用自变量的整式表示时,自变量的取值范围是一切实数。 例1. 求下列函数中自变量x 的取值范围:(1);(2) 5 3213-=x y )( 二、分式型:当函数解析式是用自变量的分式表示时,自变量的取值范围应使分母不为零。 例2. 函数中,自变量x 的取值范围是________。 三、偶次根式型(主要是二次根式): 当函数解析式是用自变量的二次根式表示时,自变量的取值应使被开方数非负。 例3. 函数中,自变量x 的取值范围是________。 四、零指数或负指数: 当函数解析式是用自变量的零指数或负指数表示时,自变量的取值应使零指数或负指数的底数不为零。 例4、函数y=3x +(2x-1)0+(-x +3)-2 五、综合型:当函数解析式中含有整式、分式、二次根式、零指数或负指数时,要综合考虑,取它们的公共部分。 的取值范围是中,自变量、函数例x x x x x y 20 )3(1)2(5-++---= 。 六、实际问题型:当函数解析式与实际问题挂钩时,自变量的取值范围应使解析式具有实际意义。 例6. 拖拉机的油箱里有油54升,使用时平均每小时耗油6升,求油箱中剩下的油y (升)与使用时间t (小时)之间的函数关系式及自变量t 的取值范围。 七、几何问题型:当函数解析式与几何问题挂钩时,自变量的取值范围应使解析式具有几何意义。 例7. 等腰三角形的周长为20,腰长为x ,底边长为y 。求y 与x 之间的函数关系式及自变量x 的取值范围。

函数图像与坐标

图像与坐标专练 例1:一次函数y=ax+b 的图象L 1关于直线y=-x 轴对称的图象L 2的函数解析式是_____ 练习:如图,已知点P(2m-1,6m-5)在第一象限角平分线OC 上,一直角顶点P 在OC 上,角两边与x 轴y 轴分别交于A 点B 点。 (1)求点P 的坐标 (2)当∠APB 绕着P 点旋转时,OA+OB 的长是否发生变化?若变化,求出其变化范围;若不变,求其值 的坐标坐标是____A1则点1=AB 3= OA , A1落在点A 对折,点OB 沿OABC 将矩形如图图在直角坐标系中2,,已知:例 的解析式.AM ′处处,求直B 轴上的点x 恰好落在B 折叠叠,AM 沿ABM 若将△上的一点,OB 是M ,B 和点A 轴分别交于点y 轴、x 与练习:直线83 4+-=x y

的值 a 的面积面积相等ABC 与△ABP △使),2 1(a,P 有一点90=BAC 是等腰直角三角形,∠ABC 且△点在第一象限,C 两点,B 、A 轴分别交于y 轴x 1的的图的x 3 3-=y 函数3,在第二象限:例? + 的值值 a 面积积相等,求实ABP 与△ABC )若△3(的面积面 ABC )求△2(; m )画出直线1(,a)(1P 90=BAC 是等腰直角三角形,∠ABC 且△点在第一象限,C 两点,B 、A 轴分别交于y 轴x 1的的图的x 3 3- =y 函数为坐标系中一动点,,点练习:?+

随堂练习: 1.如图,点A 的坐标为(-1,0),点B 在直线y=x(改为y=2x-4时又如何)上运动,当线段AB 最短时,点B 的坐标是? (1图)(2图) 2.直线AB : y=1/2 x+1 分别与x 轴、y 轴交于点A 、点B ;直线CD :y=x+b 分别与x 轴、y 轴交于点C 、点D .直线AB 与CD 相交于点P .已知S △A B D =4,则点P 的坐标是? 3.如图,正方形ABCD 的边长为4,点P 为正 方形边上一动点,若点P 从点A 出发沿A→D→C→B→A 匀速运动一周.设点P 走过的路程为x ,△ADP 的面积 为y ,则下列图象 能大致反映y 与x 的函数关系的是( ) A. B. C. D. 4.点A 坐标(5,0),直线y=x+b(b>=0)与y 轴交于点B ,连接AB ,角a=75度,则b 的值为_______ (4图) (5图) 5.已知OB 是一次函数y=2x 的图像,点A (0,2),在直线OB 上找一点C ,使得三角形ACO 为等腰三角形,求点C 的坐标。

函数证明问题专题训练

函数证明问题专题训练 ⑴.代数论证问题 ⑴.关于函数性质的论证 ⑵.证明不等式 6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根. (Ⅰ)当x >a 时,求证:()f x <x ; (Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); (Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x x f ,求证: )(x f 在],0[π上单调递减; 2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程 ()f x =x 的根. ⑴.当x >a 时,求证:()f x <x ; ⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); ⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为

函数与坐标系

第十五讲 函数与坐标系 【学习目标】 1、复习平面直角坐标系的有关概念,明确点的位置与点的坐标之间的关系 2、复习函数的一般概念,以及用解析法表示简单的函数,会画函数的图像 3、进一步培养函数的思想以及数形结合的思想 【知识要点】 1、 平面直角坐标系的基本知识: ①直角坐标系的画法;②坐标系内各象限的编号顺序及各象限内点的坐标的符号 2、函数的定义,以及用解析法表示函数时要注意考虑自变量的取值必须使解析式有意义 3、函数的图象: (1)函数图象上的点的坐标都满足函数解析式,以满足函数解析式的自变量值和与它对应的函数值为坐标的点都在函数图象上. (2)知道函数的解析式,一般用描点法按下列步骤画出函数的图象: 列表.在自变量的取值范围内取一些值,算出对应的函数值,列成表. 描点.把自变量的值和与它相应的函数值分别作为横坐标与纵坐标,在坐标平面内描出相应的点. 连线.按照自变量由小到大的顺序、用平滑的曲线把所描各点连结起来. 【典型例题】 例1、点P (-1,-3)关于y 轴对称的点的坐标是_____________;关于x 轴的对称的点的坐标是 ____________;关于原点对称的点的坐标是____________。 例2、(1)若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 (2)已知点P (a ,b ),a ·b >0,a +b <0,则点P 在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 (3)已知点P (x ,y )的坐标满足方程|x +1|+y -2 =0,则点P 在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 (4) 已知点A 233x x --,在第二象限,化简491232x x x +---=________ 例3、函数自变量的取值范围: (1)函数y =1x -1 中自变量x 的取值范围是

函数的证明方法

一般地,对于函数f(x) ⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。 ⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。 ⑶如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 ⑷如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 定义域互为相反数,定义域必须关于原点对称 特殊的,f(x)=0既是奇函数,又是偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言。 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义。 ④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。 ⑤如果函数定义域不关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如f(x)=x3【-∞,-2】或【0,+∞】(定义域不关于原点对称) ⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0 注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数

坐标系与函数

平面直角坐标系与函数 基础题目 一选择题 1.在平面直角坐标系中,点P(x2+2,-3)所在的象限是() A.第一象限B.第二象限C.第三象限D.第四象限 2.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为4,到y轴的距离为3,则点M的坐标是() A.(3,-4)B.(4,-3)C.(-4,3)D.(-3,4) 3.已知:如图,等边三角形OAB的边长为23边OA在x轴正半轴上,现将等边三角形OAB 绕点O逆时针旋转,每次旋转60°,则第2020次旋转结束后,等边三角形中心的坐标为()A.(3,1)B.(0,-1)C.(3-1) D.(0,-2) 4.如图,一个函数的图象由射线BA,线段BC,射线CD组成、其中点A(-2,2),B(1,3),C(2,1),D(6,5),则() A.当<2时,y随x的增大而增大 B.当x<2时,y随x的增大而减小 C.当x>2时,y随x的增大而增大 D.当x>2时,y随x的增大减小 5.(2020?河南模拟)如图,矩形ABCD的周长是28cm,且AB比BC长2cm.若点P从点A 出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止运动.若设运动时间为t(s),△APQ的面积为S(cm2),则S(cm2)与t(s)之间的函数图象大致是()

第3题图 第4题图 第5题图 A B C D 6.若点A (n ,m )在第四象限,则点B (m 2,-n )在( ) A.第四象限 B.第三象限 C.第二象限 D.第可以象限 二填空题 7.点P (m ,2)在第二象限内,则m 的值可以是__________.(写出一个即可) 8.已知点P (x ,y )位于第四象限,并且x ≤y+4(x ,y 为整数),写出一个符合条件的点P 的坐标:__________. 9.函数13 x y x -=-的自变量x 的取值范围是__________. 10中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,-2),“马”位于点(4,-2),则“炮”位于点 __________. 11.如图,已知点A 1(1,1),将点A 1向上平移1个单位长度,再向右平移2个单位长度得 到点A 2;将点A 2向上平移2个单位长度,再向右平移4个单位长度得到点A 3;将点A 3向上平移4个单位长度,再向右平移8个单位长度得到点A 4,…按这个规律平移下去得到点A n (n 为正整数),则点A n 的坐标是__________.

欧拉函数公式及其证明

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n ,小于n 且和n 互质的正整数(包括1)的个数,记作φ(n) 。 完全余数集合: 定义小于n 且和n 互质的数构成的集合为Zn ,称呼这个集合为n 的完全余数集合。显然|Zn| =φ(n) 。 有关性质: 对于素数p ,φ(p) = p -1 。 对于两个不同素数p,q ,它们的乘积n = p * q 满足φ(n) = (p -1) * (q -1) 。 这是因为Zn = {1, 2, 3, ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} ,则φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) =φ(p) * φ(q) 。 欧拉定理: 对于互质的正整数 a 和n ,有aφ(n)≡ 1 mod n。 证明: ( 1 ) 令Zn = {x1, x2, ..., xφ(n)} ,S= {a * x1mod n, a * x2mod n, ... , a * xφ(n)mod n} ,则Zn = S 。 ① 因为a 与n 互质,x i(1 ≤ i ≤ φ(n)) 与n 互质,所以a * x i与n 互质,所以a * x i mod n ∈ Zn 。 ② 若i ≠ j ,那么x i≠ x j,且由a, n互质可得a * x i mod n ≠ a * x j mod n (消去律)。( 2 ) aφ(n) * x1 * x2 *... * xφ(n)mod n ≡ (a * x1) * (a * x2) * ... * (a * xφ(n)) mod n ≡ (a * x1mod n) * (a * x2 mod n) * ... * (a * xφ(n)mod n) mod n ≡x1 * x2 * ... * xφ(n) mod n 对比等式的左右两端,因为x i(1 ≤ i ≤ φ(n)) 与n 互质,所以aφ(n)≡ 1 mod n (消去律)。 注: 消去律:如果gcd(c,p) = 1 ,则ac ≡ bc mod p ? a ≡ b mod p 。 费马定理: 若正整数 a 与素数p 互质,则有a p - 1≡ 1 mod p。 证明这个定理非常简单,由于φ(p) = p -1,代入欧拉定理即可证明。 ********************************************************************* ******** 补充:欧拉函数公式 ( 1 ) p k的欧拉函数 对于给定的一个素数p ,φ(p) = p -1。则对于正整数n = p k,

函数坐标系(修改)

课题:函数的定义、平面直角坐标系 主备:朱贝课型:复习审核:九年级数学组 班级姓名学号 【学习目标】 1. 函数的相关概念及表示方法 2. 平面直角坐标系中,点坐标的表示和相关应用 【重点难点】 重点:函数的相关概念及表示方法,平面直角坐标系的应用难点:函数和坐标系的应用【知识梳理】 一、函数的概念及表示方法 1.在某一过程中可以取不同数值的量叫做___ _____ ,保持同一数值的量叫做。2.如果那么, y叫做x的函数,x叫做。 3.函数的三种表示方法是:、、。二、平面直角坐标系 1.点P(a,b),关于x轴对称点的坐标为 ________,关于y轴对称点的坐标为_________,关于原点的坐标为___ __;点P(a,b),到x轴的距离为;到y轴的距离为,到原点的距离为。x轴上的点A坐标为(a, ),y轴上的点B坐标为(,b)。 2.在平面直角坐标系中,线段AB‖x轴,A(a,b),B (c,d),则AB= ,b d;线段CD‖y轴,C(e,f)B (g,h),则CD= ,e g。 【课前练习】 1.已知点P(-2m,m-6) (1)当m=-1时,点P在第象限; (2)当点P在x轴上时,m= ; (3)当点P在第三象限时,m的取值范围是。 2.点M(4,0)到点(-1,0)距离是;点P(-5,12)到x轴的距离是,到y轴的距离是,到原点的距离是。 3.在平面直角坐标系中,线段AB‖x轴,点A(2,3),AB=5,则点B的坐标为。4.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4, 5.边长为a的等边三角形,其面积S= ,其中常量是,变量是,

浅谈常见函数的导函数证明及推导

浅谈常见函数的导函数证明及推导 西南大学数学与统计学院 彭兵 【摘要】:随着新课程的改革,导数及其应用这一节凸显了其作用,利用导数知识研究函数、不等式的证明、数列求和等问题是高考中最常见的,占每年高考数学试卷总分的20%左右。但导数这一章又是最难学的知识点之一,让很多一线教师表示很无奈。据笔者观察,大部分老师在第二节“几种常见函数的导数”的教学中,只是要求学生背住这几个公式即可,没有深入去探讨去讲解这几种导函数的本质,证明过程肯定也是省略掉了。但笔者认为,这恰好失去了一次引导学生,培养学生发散思维能力的机会。笔者通过自己对教材的理解,谈一谈对常用函数的导函数证明及推导。 【关键词】常见函数 导函数 证明 引导 导数的重要性正如本章的导言中所说的: “……,它是数学发展史上继欧氏几何后的又一个具有划时代意义的伟大创造,被誉为数学史上的里程碑……”。而在高中教学中,由于其应用的广泛性,导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具,并且在许多问题上起到居高临下和以简驭繁的作用。] 1[变化率是数学史上一个重要的转折, 由此数学发展到了变量数学的新阶段, 开辟了数学研究的崭新天地。 这一节知识点是近年来高考命题的热点之一, 这部分内容可以加强对考生由有限到无限的辩证思想的教育,使考生能以导数为工具研究函数的变化率, 为解决函数的极值问题提供有效的途径及更简便的手段, 加强对函数的深刻理解和直观认识, 同时为解决几何问题提供新的方法, 从而使学生掌握一种科学的语言和工具, 学习一种理性的思维模式。学好这部分内容是十分重要的。 一、准确把握导函数的背景和概念 1、教学背景 高中导数教学中,对导数的介绍比较抽象,仅仅是一种极限思想的应用,具体的表达式是 ()()()x x f x x f x f x ?-?+=→?0 'lim ,这与之前所学到的知识和内容有很差距,所以这也就要求 教师在教学的过程中可以适当地结合实际问题,以实际问题为背景,在不断变化,充分体会导数的概念和内涵,这样也可以收到很好的效果。 2、导数的几何意义 函数()x f y =在点0x 的导数的几何意义就是表示了函数曲线在点()000,y x p 处的斜率。 利用导数的几何意义求曲线切线斜率是高考的热点。所以导数的几何意义可以看做是教学工作的重点和难点,学生需要充分理解导数的概念和意义,才能在此基础上深刻理解导数的几何意义,理解导数的内涵,为导数以后的学习打下良好的基础。 二、导数在高考中的运用 1、导数体现在函数问题中

函数的单调性证明

函数的单调性证明 一.解答题(共40小题) 1.证明:函数f(x)=在(﹣∞,0)上是减函数. 2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)是增函数. 4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 7.证明:函数y=在(﹣1,+∞)上是单调增函数. 8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.

10.已知函数f(x)=x+. (Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数; (Ⅱ)若>0对任意x∈[4,5]恒成立,数a的取值围. 11.证明:函数f(x)=在x∈(1,+∞)单调递减. 12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性. 14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.

15.求函数f(x)=的单调增区间. 16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数. 17.求函数的定义域. 18.求函数的定义域. 19.根据下列条件分别求出函数f(x)的解析式 (1)f(x+)=x2+(2)f(x)+2f()=3x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x). 21.求下列函数的解析式 (1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x) (4)已知3f(x)﹣f()=x2,求f(x)

坐标与函数

函数的基础知识1 一.选择题(共9小题) 1.函数中,自变量x的取值范围是() A.x≠3 B.x≥3 C.x>3 D.x≤3 2.(2014?海南,第8题3分)如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为() A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2) 3.(2014?黑龙江牡丹江, 第6题3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为() 第3题图 A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2) 4.函数y=中,自变量x的取值范围是() A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0 5.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()

A.4个B.3个C.2个D.1个 6.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是() A.小明看报用时8分钟B.公共阅报栏距小明家200米 C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟 7.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为() A.40平方米B.50平方米C.80平方米D.100平方米 8.已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是() A.B.

函数导数公式及证明.doc

函数导数公式及证明 函数类型常量函数 幂函数 指数函数 对数函数 三角函数 原函数 f (x) C ,C为常量 f (x)x a f (x)x m f (x)a x f (x)e x f ( x)lo g a x f (x) ln x f (x)sin x f (x)cosx 求导公式 f ' ( x)0 ( x a )'ax a 1 ( x a )( n)a(a 1)...(a n1)x a n ( a 0,1,2..., n1) ( x m )( n) m! x m n, (n m) (m n)! ( a x )' a xln a ( a x )( n) a x ln n a , (0 a 1) (e x )'e x (e x )(n ) e x (log a x)' 1 x ln a (log a x)(n ) ( 1)n 1 (n 1)! ,(0 a 1) x n ln a (ln x)' 1 x (ln x) (n ) ( 1)n 1 (n 1)! x n (sin x)' cosx (sin x)( n) sin(x n ) 2 (cosx)' sin x

反三角函数双曲函数反双曲函数f (x)tan x f (x)cot x f (x) arcsinx f (x)arccosx f (x) arctanx f (x)arccot x f ( x)sinh x f ( x) coshx f (x)tanh x f ( x)coth x f (x)arsinh x f (x) arcoshx f (x)ar tanh x (cosx)( n) cos(x n ) 2 (tan x)' sec2 x 1 x 1 (tan x)2 cos2 (cot x)' csc2 x 1 1 (cot x)2 sin2 x (arcsin x) ' 1 1 x2 (arccos x)' 1 1 x2 (arctan x)' 1 1 x2 (arccot x)' 1 1 x2 (sinh x)' coshx (cosh x)' sinh x (tanh x)' 1 cosh2 x (coth x)' 1 x sinh2 ( ar sinh x)' 1 x2 1 ( ar cosh x) ' 1 x2 1 (ar tanh x)' 1 1 x2 复合函数导数公式 复合函数求导公式

坐标系与函数综合

备用图 1、如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC, OE= 1 2 BC.(1)求∠BAC的度数. (2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证: 四边形AFHG是正方形. (3)若BD=6,CD=4,求AD的长. 2.如图所示,平面直角坐标系中, 抛物线y=ax2+bx+c 经过 A(0,4)、B(-2,0)、C(6,0).过点A 作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线的交点, 点F在y轴负半轴上,且F(0,-2). (1)求抛物线的解析式,并直接写出四边形OADE的形状; (2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB 、FA方向运动,点P 运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为 顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围; (3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N 的坐标;不存在,说明理由. 3.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C (0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.⑴求抛物线的函数表达式; ⑵求直线BC的函数表达式;⑶点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线 于P、Q两点,且点P在第三象限. ①当线段PQ= 3 4 AB时,求tan∠CED的值; ②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标. 4、如图,在平面直角坐标系中,O是坐标原点,直线9 4 3 + - =x y与x轴,y轴分别交于B,C 两点,抛物线c bx x y+ + - =2 4 1 经过B,C两点,与x轴的另一个交点为点A,动点P从点A出 发沿AB以每秒3个单位长度的速度向点B运动,运动时间为t(0<t<5)秒. (1)求抛物线的解析式及点A的坐标; (2)以OC为直径的⊙O′与BC交于点M,当t为何值时,PM与⊙O′相切?请说明理由。 (3)在点P从点A出发的同时,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C 运 动,动点N从点C出发沿CA以每秒 5 10 3 个单位长度的速度向点A运动,运动时间和点P相 同。 ①记△BPQ的面积为S,当t为何值时,S最大,最大值是多少? ②是否存在△NCQ为直角三角形的情形,若存在,求出相应的t值;若不存在,请说明理由.

(精心整理)函数单调性的判断或证明方法

函数单调性的判断或证明方法. (1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例1.判断函数在(-1,+∞)上的单调性,并证明. 解:设-10,x2+1>0. ∴当a>0时,f(x1)-f(x2)<0,即f(x1)0,即f(x1)>f(x2), ∴函数y=f(x)在(-1,+∞)上单调递减. 例2.证明函数在区间和上是增函数;在 上为减函数。(增两端,减中间) 证明:设,则 因为,所以,

所以, 所以 所以 设 则, 因为, 所以, 所以 所以 同理,可得 (2)运算性质法. ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减) ②若. ③当函数. ④函数二者有相反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。(3)图像法.根据函数图像的上升或下降判断函数的单调性。 例3.求函数的单调区间。 解:

在同一坐标系下作出函数的图像得 所以函数的单调增区间为 减区间为. (4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数 的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表: 增增增 增减减 减增减 减减增 例4.求函数的单调区间

相关文档