文档库 最新最全的文档下载
当前位置:文档库 › 银迁移

银迁移

银迁移
银迁移

银迁移

?

银迁移(Silver Migration)现象是指在存在直流电压梯度的潮湿环境中,水分子渗入含银导体表面电解形成氢离子和氢氧根离子:

H20→H+OH-

银在电场及氢氧根离子的作用下,离解产生银离子,并产生下列可逆反应:

在电场的作用下,银离子从高电位向低电位迁移,并形成絮状或枝蔓状扩展,在高低电位相连的边界上形成黑色氧化银。通过著名的水滴试验可以很清楚地观察到银迁移现象。水滴试验十分简单,在相距很近的含银的导体间滴上水滴,同时加上直流偏置电压就可以观察到银离子迁移现象。

银离子的迁移会造成无电气连接的导体间形成旁路,造成绝缘下降乃至短路。除导体组份中含银外,导致银迁移产生的因素还有:基板吸潮;相邻近导体间存在直流电压,导体间隔愈近,电压愈高愈容易产生;偏置时间;环境湿度水平;存在离子或有沾污物吸附;表面涂覆物的特性等。

银迁移造成旁路引起失效有以下特征:

在高湿存在偏压的情况下产生;银离子迁移发生后在导体间留下残留物,在干燥后仍存在旁路电阻,但其伏-安特性是非线性的,同时具有不稳定和不可重复的特点。这与表面有导电离子沾污的情况相类似。

银迁移是一个早已为业界所熟知的现象,是完全可预防的:在布局、布线设计时避免细间距相邻导体间直流电位差过高;制造表面保护层避免水汽渗入含银导体。对产品使用环境特别严酷的(如接近100%RH,85℃)可将整个电路板浸封或涂覆来进行保护。此外,焊接后清洗基板上助焊剂残留物,亦可防止表面有导电离子沾污。

电迁移原理_(华东师范大学_李旭瑞)

《电迁移原理》 的思考总结与扩展 :旭瑞 专业:华东师大学微电子 电迁移原理:

集成电路芯片部采用金属薄膜引线来传导工作电流,这种传导电流的金属薄膜称作互连引线。随着芯片集成度的提高,互连引线变得更细、更窄、更薄,因此其中的电流密度越来越大。在较高的电流密度作用下,互连引线中的金属原子将会沿着电子运动方向进行迁移,,其结果会使导体的某些部位产生空洞或晶须,这种现象就是电迁移。它是引起集成电路失效的一种重要机制。 电迁移失效机理 产生电迁移失效的 因:薄膜导体结构的非均匀性 外因:电流密度 从缺陷产生和积累得角度,我们可以这样解释电迁移的失效机理,即在电迁移过程中,在子风和应力的作用下,互连线中的某些薄弱部位产生了缺陷;缺陷的产生,重新改变了互连线中电流的分布,进而也会影响热分布;这两个过程相互作用,决定了缺陷在哪些薄弱部位产生;随着时间的增加,缺陷不断积累,相邻较近的缺陷融合成一个大缺陷;当产生的缺陷足够大,在垂直电流的方向上占有足够的面积,互连线的电阻就会显著增加;最后当形成的缺陷横跨整个互连线横截面,互连线断路在图2.4中,我们考虑金属原子A,它的周围有十二个相邻的晶格位置,其中之一被空位V占据,其余被其他金属原子占据。在无电流应力条件下,由于热运动,原子A向其附近任何一个方向移动的概率是相等的;若在“电子风”吹动的情况下,很明显原子A向电子风方向移动概率大大增加。假设A要与人原子发生交换,其过程也只能是通过原子与空位的交换,即人移到空位位置,A移到人位置,空位移到原的位置,可见,空位移动一步之前移动了两个原子。同理,若A往几方向移动,空位移动一步须移动三个原子。所以,同等电子风力条件下,金属原子移动方向不同,难易程度也不同。 从电流密度角度,我们可以这样解释电迁移的失效机理 在金属里作用了两种对立的力。这些力被称为“直接力”和“电子风”力。直接力是一种在

流动状态试验

中国石油大学(华东) 流体力学 实验报告 实验日期: 2011年4月25日 成绩: 班级: 学号: 姓名: 教师: 同组者: 实验六、流动状态实验 一、实验目的 1.测定液体运动的沿程水头损失(f h )及断面的平均流速(v )。 2.绘制流态曲线)lg (lg v h f 图,找出下临界点并计算临界雷诺数(c Re )的值。 二、实验装置 本室验的装置如图6-1所示。本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。 图6-1 流态实验装置 1. 稳压水箱 ; 2. 进水管 ; 3. 溢流管 ; 4. 实验管路 ; 5. 压差计 ; 6. 流量调节阀 ; 7. 回流管线 ; 8. 实验台 ; 9. 蓄水箱 ; 10. 抽水泵 ;11. 出水管

三、实验原理 1.液体在同一管道中流动,当速度不同时有层流、紊流两种流动状态。层流的特点是流体各质点互不掺混,成线状流动。紊流的特点是流体的各质点相互掺混,有脉动现象。 不同的流态,其沿程水头损失与断面平均流速瑟关系也不相同。层流的沿程水头损失与断面平均流速的一次方成正比;紊流的沿程水头损失与断面平均流速的m (m=1.75-2.0)次方成正比。层流与紊流之间存在一个过渡段,它的沿程水头损失与断面平均流速的关系与层流、紊流的不同。 2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为稳定流,此种情况下A 点、B 点的断面平均流速相等,即21v v =。这时从A 点到B 点的沿程水头损失f h 可由能量方程导出: )2()2(2 2 22211 1g v p z g v p z h ++-++=γγ )()(2 21 1γ γ p z p z + -+ = h h h ?=-=21 (1-6-1) 式中 1h ,2h ------分别为A 点、B 点的测压管水头,由压差计中的两个测压管读出。 3.根据雷诺数判断流体流动状态。雷诺数Re 的计算公式为: v D υ =Re (1-6-2) 式中 D---圆管内径; υ---断面平均速度; v ---运动粘度。 当c Re Re <(下临界雷诺数)时,为层流,其中2320~2000Re =c ; 当'Re Re c >(上临界雷诺数)时,为紊流,其中12000~4000Re'=c 。

流体流动阻力的测定化工原理实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵 学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天 流体流动阻力的测定 摘要 ● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。 ● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。 ● 测定湍流状态下管道局部的阻力系数的局部阻力损失。 ● 本次实验数据的处理与图形的拟合利用Matlab 完成。 关键词 流体流动阻力 雷诺数 阻力系数 实验数据 Matlab 一、实验目的 1、掌握直管摩擦阻力系数的测量的一般方法; 2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ; 3、测定层流管的摩擦阻力 4、验证湍流区内λ、Re 和相对粗糙度的函数关系 5、将所得光滑管的Re -λ方程与Blasius 方程相比较。 二、实验原理 不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群 雷 诺 数: μρ du = Re 相对粗糙度: d ε 管路长径比: d l 可导出: 2)(Re,2u d d l p ??=?εφρ 这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系: 22u d l p H f ? ?=?=λρ

因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。 在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即: 25 .0Re 3163.0=λ 对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得: Re 64=λ 局部阻力: f H =2 2 u ?ξ [J/kg] 三、装置和流程 四、操作步骤 1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀; 2、排尽体系空气,使流体在管中连续流动。检验空气是否排尽的方法是看当流量为零时候U 形压差计的两液面是否水平; 3、调节倒U 型压差计阀门1、2、3、 4、5的开关,使引压管线内流体连续、液柱等高; 4、打开流量调节阀,由大到小改变10次流量(Re min >4000),记录光滑管压降、孔板压降数据; 5、完成10组数据测量后,验证其中两组数据,确保无误后,关闭该组阀门; 6、测量粗糙管(10组)、突然扩大管(6组)数据时,方法及操作同上; 7、测量层流管压降时,首先连通阀门6、7、8、9、10所在任意一条回流管线,其次打开进入高位水灌的上水阀门11,关闭出口流量调节阀16; 8、当高位水灌有溢流时,打开层流管的压降切换阀,对引压管线进行排气操作; 9、打开倒U 型压差计阀门5,使液柱上升到n 型压差计示数为0的位置附近,然后关闭该阀门,检 图1 流体阻力实验装置流程图 1. 水箱 2.离心泵 3.孔板流量计 4.管路切换阀 5.测量管路 6.稳流罐 7.流量调节阀

电迁移现象及其失效机理

集成电路中的电迁移现象 电迁移现象简介随着芯片特征尺寸越来越小,集成度越来越高,对芯片可靠性的研究也变得越来越重要,而其中电迁移现象是影响互连引线的主要可靠性问题。在微电子器件中,金属互连线大多采用铝膜,这是因为铝膜具有电阻率低、价格低廉、与硅制造工艺相兼容、与SiO2 层等介质膜具有良好的粘附性、便于加工等一系列优点。但使用中也存在着如性软、机械强度低、容易划伤;化性活泼、易受腐蚀;抗电迁移能力差等一系列问题。 集成电路芯片内部采用金属薄膜互连线来传导工作电流,这种传导电流的金属在较高的电流密度作用下,沿电场反方向运动的电子将会与金属离子进行动量交换,结果使金属离子与电子流一样朝正极方向移动,相应所产生的金属离子空位向负极方向移动,这样就造成了互连线内金属净的质量传输,这种现象就是电迁移。 电迁移失效机理电迁移现象是指集成电路工作时金属线内部有电流通过,在电流的作用下金属离子产生物质运输的现象。进而导致金属线的某些部位出现空洞从而发生断路,而另外一些部位由于有晶须生长或出现小丘造成电路短路。当芯片集的成度越来越高后,其中金属互连线变的更细、更窄、更薄,电迁移现象也就越来越严重。图为典型的电迁移失效结果。 (a)电迁移引发短路(b)电迁移引发断路 在块状金属中,电流密度较低(<104A/cm2),其电迁移现象只在接近材料熔点的高温时才发生。薄膜的材料则不然,淀积在硅衬底上的铝条,截面积很小和很好的散热条件,电流密度可高达107A/cm2,所以在较低的温度下就能发生电迁移。在一定温度下,金属薄膜中存在一定的空位浓度,金属离子通过空位而运动,但自扩散只是随机的引起原子的重新排列,只有在受到外力时才可产生定向运动。通电导体中作用在金属离子上的力有两种:一种是电场力F q,另一种是导电载流子和金属离子间相互碰撞发生动量交换而使离子产生运动的力,这种力叫摩擦力F e,对于铝膜,载流子为电子,这时电场力F q很小,摩擦力起主要作用,粒子流与载流子运动方向相同。这一摩擦力又称为电子风。经过理论分析有: F=F q+F e=Z*qE

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

IC工艺和版图设计习题集部分有答案

IC工艺及版图设计分类习题 Ⅰ填空题 1. 有一种称为0.13um 2P5M CMOS 单阱工艺, 它的特征线宽为 0.13um ,互连层共有 7层, 其电路类型为 CMOS 。 2. 某种工艺称为0.35um Mixed Signal 2P4M Polycide 3.3VProcess,请判断其特征尺寸为 0.35um ,互连层共有 6 层,适合(适合或不适合)于设计模拟电路。 3. 请根据实际的制造过程排列如下各选项的顺序: a. 生成多晶硅 b. 确定阱的位置和大小 c. 定义扩散区,生成源漏区 d. 确定有源区的位置和大小 e. 确定接触孔位置 正确的顺序为: bdace 。 4. N 阱 CMOS 工艺中,之所以要将衬底接 GND 、阱接到电源上,是因为阱和衬底构成的pn节反偏。 5. 版图验证主要包括三方面: LVS , DRC , ERC ; 完成该功能的 Cadence 工具主要有(列举出两个):DIV A ,DRACULA 。 6. 芯片使用0.01 cmΩi P 型衬底顶部的8um 厚的10 cmΩi P 型外延层制作,计算从芯片抽取 25mA 电流需要 6.67×104 um2衬底接触面积。假设最大允许的衬底去偏置为0.3V。 7.某种铜铝合金可以安全工作于5×1 05 A/ cm2的电流密度下。如果金属层厚度为8000A o, 则10um 宽的金属连线能承受 40 mA 的电流;当通过氧化台阶时,金属层厚度减小 了50%,则该10um 宽的金属连线能承受 20 mA 电流。 8. CMOS 工艺中集成电路中的电阻主要有__电阻,扩散电阻,poly电阻_三种。 9.CMOS 工艺中某种材料工艺变化方块电阻偏差在20%,假设特征尺寸为0.5um,工艺线宽控制维持在10%以内。假设使用1um 的线宽来绘制电阻,电阻容差 25% 。使用2um 的线宽来绘制电阻,电阻容差 22.5% 。 Ⅱ选择题 1. NMOS 器件的衬底是(B )型半导体。 A、N 型 B、P 型 C、本征型 D、耗尽型 2. N 型半导体材料的迁移率比P 型半导体材料的迁移率(C )。 A、相等 B、小 C、大 3. 在0.13um 集成电路技术中,铜取代铝成为最主要的互连金属的主要原因是:(AD ) A、铜具有更高的导电率; B、铜具有更低的导电率; C、铜更容易刻蚀加工; D、铜具有更好的抵抗电迁移的能力。 4. 在ICFB 中完成一个完整的集成电路版图绘制,下列哪些文件是必需的 ( ABCD ) A. Technology 文件 B. DRC 文件 C. LVS 文件 D. Display 文件 5. DRACULA 做layout 的DRC 检查后,应该打开那个文件来看错误信息?(C ) A 后缀名为drc 的文件。 B 后缀名为lvs 的文件。 C 后缀名为sum 的文件。 D 后缀名为com 的文件。 6. DRACULA 做layout 的LVS 检查后,应该打开那个文件来看错误信息?。( B ) A 后缀名为drc 的文件。 B 后缀名为lvs 的文件。 C 后缀名为sum 的文件。 D 后缀名为com 的文件。 7. 在layout 中给金属线加线名标注,即用lable 按schematic 的Pin 的要求对所要标注的金属

电迁移现象及其失效机理

电迁移现象及其失效机 理 标准化管理部编码-[99968T-6889628-J68568-1689N]

集成电路中的电迁移现象 电迁移现象简介 随着芯片特征尺寸越来越小,集成度越来越高,对芯片可靠性的研究也变得越来越 重要,而其中电迁移现象是影响互连引线的主要可靠性问题。在微电子器件中,金属互连线大多采用铝膜,这是因为铝膜具有电阻率低、价格低廉、与硅制造工艺相兼容、与SiO 2 层等介质膜具有良好的粘附性、便于加工等一系列优点。但使用中也存在着如性软、机械强度低、容易划伤;化性活泼、易受腐蚀;抗电迁移能力差等一系列问题。 集成电路芯片内部采用金属薄膜互连线来传导工作电流,这种传导电流的 金属在较高的电流密度作用下,沿电场反方向运动的电子将会与金属离子进行 动量交换,结果使金属离子与电子流一样朝正极方向移动,相应所产生的金属离子空位向负极方向移动,这样就造成了互连线内金属净的质量传输,这种现象就是电迁移。电迁移失效机理 电迁移现象是指集成电路工作时金属线内部有电流通过,在电流的作用下金 属离子产生物质运输的现象。进而导致金属线的某些部位出现空洞从而发生断路,而另外一些部位由于有晶须生长或出现小丘造成电路短路。当芯片集的成度 越来越高后,其中金属互连线变的更细、更窄、更薄,电迁移现象也就越来越严重。图2.1为典型的电迁移失效结果。 (a)电迁移引发短路(b)电迁移引发断路 在块状金属中,电流密度较低(<104A/cm2),其电迁移现象只在接近材料熔点的高温时才发生。薄膜的材料则不然,淀积在硅衬底上的铝条,截面积很小和很好的散热条件,电流密度可高达107A/cm2,所以在较低的温度下就能发生电迁移。在一定温度下,金属薄膜中存在一定的空位浓度,金属离子通过空位而运动,但自扩散只是随机的引起原子的重新排列,只有在受到外力时才可产生定向运动。通电导体中作用在金属离子上 的力有两种:一种是电场力F q ,另一种是导电载流子和金属离子间相互碰撞发生动量交 换而使离子产生运动的力,这种力叫摩擦力F e ,对于铝膜,载流子为电子,这时电场力 F q 很小,摩擦力起主要作用,粒子流与载流子运动方向相同。这一摩擦力又称为电子风。经过理论分析有: F=F q +F e =Z*qE

化工原理实验流体流动阻力系数的测定实验报告

化工原理实验-流体流动阻力系数的测定实验报告

————————————————————————————————作者: ————————————————————————————————日期:

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流 的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运 动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素较多,在 工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意 义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l/ d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法 =△P/ρ=λ(l /d)u2/2 直接测定。h f ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差 计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根 据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻 力系数。改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一 相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数

流动状态中国石油大学(华东)流体力学实验报告

流动状态中国石油大学(华东)流体力学实验报告实验六、流动状态实验 一、实验目的 1.测定液体运动时的沿程水头损失(hf)及断面的平均流速(v); 2.在双对数坐标上绘制流态(hf—v)曲线图,找出下临界点并计算临界雷诺数(Rec)的值。 二、实验装置 本室验的装置如图所示。本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。 在图1-6-1横线上正确填写实验装置各部分的名称 图1-6-1 流态实验装置 1. 稳压水箱;进水管溢流管 4. ;5. 压差计;6. 流量调压阀 7. 回流管线;8. 实验台;9. 10. 抽水泵;11. 出水管 ; 蓄水箱; 三、实验原理填空 1.液体在同一管道中流动,当速度不同时有层流、紊流两种流动状态。层流的特点 是质点互不掺混,成线状流动。在紊流中流体的各质点相互掺混,有脉动现象。 不同的流态,其沿程水头损失与断面平均速度的关系也不相同。层流的沿程水头损失与断面平均流速的一次方成正比;紊流的沿程水头损失与断面平均速度的m次方成正比(m= 1.75~2.0) 。层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速关系与层流、紊流的不同。 2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动 为 稳定流,此种情况下v1=v2。那么从A点到B点的沿程水头损失为hf,可由能流量方程导 出: v12p2v22

pp p1 h1、h2分别是A点、B点的测压管水头,由压差计中的两个测压管读出。 3.雷诺数(Reynolds Number)判断流体流动状态。雷诺数的计算公式为: Dv D—圆管内径;v—断面平均速度;—运动粘度系数 当(下临界雷诺数)为层流,Rec=2000~2320; 之间。(上临界雷诺数)为紊流,Rec当 四、实验要求 1.有关常数:实验装置编号:6 实验管内径:D= 1.0 cm;水温:T= 16.6 ℃; 水的密度:;动力粘度系数:;运动粘度系数:。 2、以表1-6-1中的任意一组数据为例,写出计算实例(包含计算公式、数据及结果)。 (1 )沿程水头损失: 22v1p2v2 p1

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

流动状态

中国石油大学(华东)工程流体力学实验报告 实验日期:2016.04.18成绩: 班级:学号:姓名:教师: 同组者: 实验六、流动状态实验 一、实验目的 h)及断面的平均流速(v); 1.测定液体运动时的沿程水头损失( f h—v)曲线图,找出下临界点并计算临界雷诺数(Re)2.在双对数坐标上绘制流态( f 的值。 二、实验装置 本室验的装置如图所示。本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。 在图1-6-1横线上正确填写实验装置各部分的名称 图1-6-1流态实验装置 1. 稳压水箱; 2. 进水管; 3. 溢流管; 4. 实验管路; 5. 压差计; 6. 流量调节阀 7. 回流管线;8. 实验台;9. 蓄水箱; 10. 抽水泵;11. 排水管

三、实验原理 填空 1.液体在同一管道中流动,当 速度 不同时有层流、紊流两种流动状态。 层流 的特点是质点互不掺混,成线状流动。在 紊流 中流体的各质点相互掺混,有脉动现象。 不同的流态,其 沿程水头损失 与断面平均速度的关系也不相同。层流的沿程水头损失与断面平均流速的 一次方 成正比;紊流的沿程水头损失与断面平均速度的m 次方成正比 (m= 1.75~2.0 ) 。层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速关系与层流、紊流的不同。 2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为 稳定流 ,此种情况下v 1=v 2。那么从A 点到B 点的沿程水头损失为h f ,可由能流量方程 导出: 22 1 122f 12121212()() 22()()p v p v h z z g g p p z z h h h γγγγ =++-++=+-+=-=? h 1、h 2分别是A 点、B 点的测压管水头,由 压差计 中的两个测压管读出。 3.雷诺数(Reynolds Number )判断流体流动状态。雷诺数的计算公式为: Dv Re ν = D —圆管内径;v —断面平均速度;ν—运动粘度系数 当c Re Re <(下临界雷诺数)为层流,c Re =2000~2320; 当c Re Re '>(上临界雷诺数)为紊流,c Re '=4000~12000之间。 四、实验要求 1.有关常数: 实验装置编号:No. 4 实验管内径:D = 1.0 cm ; 水温:T = 16.8 ℃; 水的密度:ρ= 0.998834 g/cm 3; 动力粘度系数:μ= 1.08846 mPa ?s ; 运动粘度系数:ν= 0.010897 cm 2/s 。 2、以表1-6-1中的任意一组数据为例 ,写出计算实例(包含计算公式、数据及结果)。 (1 )沿程水头损失:f h =h2-h1=54.6-12.1=42.5cm (2)运动粘度系数:ν=μ/ρ=1.08846÷0.998834*10-2=0.010897cm 2 /s (3)流量:Q =V/t=1000/12.69=78.80ml/s (4) 断面平均速度:v =Q /A=78.80/(3.14*12 )=25.10cm/s

电迁移现象及其失效机理

集成电路中的电迁移现象 电迁移现象简介 随着芯片特征尺寸越来越小,集成度越来越高,对芯片可靠性的研究也变得越来越重要,而其中电迁移现象是影响互连引线的主要可靠性问题。在微电子器件中,金属互连线大多采用铝膜,这是因为铝膜具有电阻率低、价格低廉、与硅制造工艺相兼容、与SiO2层等介质膜具有良好的粘附性、便于加工等一系列优点。但使用中也存在着如性软、机械强度低、容易划伤;化性活泼、易受腐蚀;抗电迁移能力差等一系列问题。 集成电路芯片内部采用金属薄膜互连线来传导工作电流,这种传导电流的金属在较高的电流密度作用下,沿电场反方向运动的电子将会与金属离子进行动量交换,结果使金属离子与电子流一样朝正极方向移动,相应所产生的金属离子空位向负极方向移动,这样就造成了互连线内金属净的质量传输,这种现象就是电迁移。 电迁移失效机理 电迁移现象是指集成电路工作时金属线内部有电流通过,在电流的作用下金属离子产生物质运输的现象。进而导致金属线的某些部位出现空洞从而发生断路,而另外一些部位由于有晶须生长或出现小丘造成电路短路。当芯片集的成度越来越高后,其中金属互连线变的更细、更窄、更薄,电迁移现象也就越来越严重。图2.1为典型的电迁移失效结果。 (a)电迁移引发短路(b)电迁移引发断路在块状金属中,电流密度较低(<104A/cm2),其电迁移现象只在接近材料熔点的高温时才发生。薄膜的材料则不然,淀积在硅衬底上的铝条,截面积很小和很好的散热条件,电流密度可高达107A/cm2,所以在较低的温度下就能发生电迁移。在一定温度下,金属薄膜中存在一定的空位浓度,金属离子通过空位而运动,

但自扩散只是随机的引起原子的重新排列,只有在受到外力时才可产生定向运动。通电导体中作用在金属离子上的力有两种:一种是电场力F q ,另一种是导电载流子和金属离子间相互碰撞发生动量交换而使离子产生运动的力,这种力叫摩 擦力F e ,对于铝膜,载流子为电子,这时电场力F q 很小,摩擦力起主要作用, 粒子流与载流子运动方向相同。这一摩擦力又称为电子风。经过理论分析有: F=F q +F e =Z*qE 式中Z*成为有效原子价数,E为电场强度,q为电子电荷。Z*的绝对值越小,抗电迁移能力就越大。 电迁移引起的失效模式 1 短路 (1)电迁移使晶体管发射极末端积累铝离子,使EB结短路,这对套刻间距小的微波功率管容易发生; (2)电迁移产生的晶须使相邻的两个铝条间短路, 这对相邻铝条间距小的超高频器件、大规模集成电路容易发生; (3)集成电路中铝条经电迁移后与有源区短接, 多层布线上下层铝条经电迁移后形成晶须而短接; (4)晶须与器件内引线短接"触的数目。 2 断路 (1)正常工作温度下, 铝条承受电流过大, 特别是铝条划伤后, 电流密度更大,使铝条断开"尤其是大功率管, 在正常结温(150℃)时, 往往工作几百小时后因电迁移而失效; (2)压焊点处, 因接触面积小, 电流密度过大而失效; (3)氧化层台阶处, 因电迁移而断条"通过氧化层阶梯的铝条在薄氧化层上散热好, 温度低, 而在厚氧化层上散热差, 温度高"所以当电子流沿着铝条温度增加的方向流动时, 就会出现铝原子的亏空, 而形成宏观的空隙。 3 参数退化 电迁移将影响器件的性能稳定,如引起晶体管EB结击穿特性退化,电流放大倍数h FE变化等。

流体流动阻力测定实验报告

嘉应学院化学实验教学中心实验报告 学生姓名专业班级学号 课程名称化工原理实验实验指导老师实验时间 实验题目:流体流动阻力测定实验 一、数据记录 1、实验原始数据记录如下表: 离心泵型号:MS60/0.55,额定流量:60L/min, 额定扬程:19.5mN,额定功率:0.55kw 流体温度t=21.3℃ 直管基本参数管内径(mm)测量段长度(cm) 局部阻力20 95 光滑管20 100 粗糙管21 100 序号流量m3/h 光滑管高度差(cm)粗糙管高度差(cm)局部阻力高度差(cm) 1 3. 2 34.5 47. 3 11 2 3 30.9 41.1 10.2 3 2.8 27.1 36.8 8.7 4 2.6 23.3 31.6 7.7 5 2.4 20.8 27 5.6 6 2.2 1 7 23.2 5.6 7 2 14.8 18.5 4.5 8 1.8 12.3 15.6 2.6 9 1.6 9.9 12.4 2.6 10 1.4 7.8 9.6 2.1 2、根据公式ΔP f=ρgR (注:本实验采用倒U型压差计)计算出各管道的压差如下表 序号流量m3/h 光滑管压差 (KPa) 粗糙管压差 (KPa) 局部阻力压差 (KPa) 1 3. 2 3.378 4.632 1.077 2 3 3.026 4.025 0.999 3 2.8 2.65 4 3.604 0.852 4 2.6 2.282 3.094 0.754 5 2.4 2.037 2.644 0.548 (续表) 3、由t=21.3℃查得水的密度ρ=998.2kg/m3 ,水的黏度μ=9.81*10^-6,根据公式水的流速 2 900d V u π =(m/s),雷诺数 μ ρ du = Re,流体阻力 ρ 1000 ? ? = P H f ,阻力系数2 2 Lu d H f = λ,ξ= gu2 f' Δ 2 ρ P ,并以标准单位换算得 光滑管数据处理结果如下表 序号流量m3/h 流速m/s 阻力系数λ雷诺数Re 流体阻力J/kg 1 3. 2 2.8309 0.01689357609.8021 3.3845 2 3 2.6539 0.01721554009.1895 3.0313 3 2.8 2.4770 0.01733250408.5768 2.6585 4 2.6 2.3001 0.01728246807.9642 2.2857 5 2.4 2.1231 0.01810743207.351 6 2.0405 6 2.2 1.9462 0.01761239606.7389 1.6677 7 2 1.7693 0.01855236006.1263 1.4519 8 1.8 1.5924 0.01903532405.5137 1.2066 9 1.6 1.4154 0.01939128804.9010 0.9712 10 1.4 1.2385 0.01995425204.2884 0.7652 粗糙管数据处理结果如下表 序号流量m3/h 流速m/s 阻力系数λ雷诺数Re 流体阻力J/kg 1 3. 2 2.5677 0.029********.4782 4.6401 2 3 2.4072 0.029********.3233 4.0319 3 2.8 2.2467 0.03003848008.168 4 3.6101 4 2.6 2.0862 0.029********.013 5 3.1000 5 2.4 1.9258 0.029********.858 6 2.6487 6 2.2 1.7653 0.03067537720.7038 2.2759 7 2 1.6048 0.2959734291.5489 1.8149 8 1.8 1.4443 0.03081230862.3940 1.5304 9 1.6 1.2838 0.03099727433.2391 1.2164 10 1.4 1.1234 0.0313*******.0842 0.9418 序号流量m3/h 光滑管压差(KPa)粗糙管压差(KPa)局部阻力压差(KPa) 6 2.2 1.665 2.272 0.548 7 2 1.449 1.812 0.441 8 1.8 1.204 1.528 0.255 9 1.6 0.969 1.214 0.255 10 1.4 0.764 0.940 0.206

流体流动阻力测定实验报告

《实践创新基础》报告 姓名: 班级学号: 指导教师: 日期: 成绩: 南京工业大学化学工程与工艺专业

实验名称:流体流动阻力测定实验 一、实验目的 1 测定流体在圆直等径管内流动时的摩擦系数λ与雷诺数Re的关系,将测得的λ~Re曲线与由经验公式描出的曲线比较; 2 测定流体在不同流量流经全开闸阀时的局部阻力系数ξ 3 掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律 4 学会倒U形差压计 1151差压传感器 Pt温度传感器和转子流量计的使用方法 5 观察组成管路的各种管件阀门,并了解其作用。 6 掌握化工原理实验软件库的使用 二、实验装置流程示意图及实验流程简述 来自高位水槽的水从进水阀1首先流经光滑管11上游的均压环,均压环分别与光滑管的倒U形压差计和1151压差传感器15的一端相连,光滑管11下游的均压环也分别与倒U 形压差计和1151压差传感器的另一端相连。 当球阀3关闭且球阀2开启时,光滑管的水进入粗糙管12,粗糙管上下游的均压环分别同时与粗糙管的倒U形压差计和1151压差传感器的两端相连。当球阀5关闭时,从粗糙管下来的水流经铂电阻温度传感器18,然后经流量调节阀6及流量计16后,排入地沟。 当球阀2关闭且球阀3打开时,从光滑管来的水就流入装有闸阀4的不锈钢管13,闸阀两端的均压环分别与一倒U形压差计的两端相连,最后水流经流量计,再排入地沟。

三、简述实验操作步骤及安全注意事项 1 操作步骤 (1)排管路中的气泡。 打开阀1、2、3、6,排除管路中的气泡,直至流量计中的水不含气泡为至,然后关闭阀6。 (2)1151压差传感器排气及调零。 排除两个1151压差传感器内气泡时,只要打开压差传感器下面的考克7、8、9、10,当软管内水无气泡时,排气结束,此过程可反复多次,直至无气泡为至。 压差传感器排气结束后,用螺丝刀调节压差传感器背后Z旋扭,使相应的仪表数字显示在0左右,压差传感器即可进入实验状态。 (3)U形压差计内及它们连接管内的气泡的排除。 关闭倒U形压差计上方的放空阀,打开U形压差计下方的排水考克,再打开U形压差计下方与软管相连的左右阀,关闭左右阀中间的平衡阀,直到玻璃管中水不出现气泡,然后关闭U形压差计下方与软管相连的左右阀,打开上方的放空阀和下方的排水考克,令玻璃管内水位下降到适当高度,再打开左右阀中间的平衡阀,倒U形压差计两玻璃管内的水位会相平,否则重复上过排汽过程,直至两玻璃管内的水位相平。 测定光滑管直管阻力、粗糙管直管阻力、局部阻力的三个倒U形压差计的排气方法相同,再此不再一一介绍。特别注意的是,实验过程不能碰撞玻璃管,以免断裂。 (4)直管阻力的测定。 打开阀2,关闭阀3,调节阀6,流量从2m3 /h开始,分别记录相应的光滑管及粗糙管的倒U形压差计两玻璃管内的指示剂高度差,流量每次增加1 m3/h, 直至最大流量。在测量过程应密切注意转子流量计中的流量变化,因为四套实验装置的水流量会相互干扰。(5)局部阻力的测定。 关闭阀2,排开阀3,调即阀6,取三个不同的流量,如2、3、4m3/h,记录相应指示剂高度差。水温可在最后测,测一次即可。 2 注意事项 开关阀门时,一定要缓慢开关,以防止仪表受损。 四、实验装置的主要设备仪器一览表

最新Au电迁移对电路的影响

A u电迁移对电路的影 响

Au电迁移对电路的影响 电迁移是导电金属材料在通过高密度电流时,金属原子沿着电流运动方向(电子风)进行迁移和质量可控的扩散现象,它与金属材料的电流密度和温度数值密切相关。当凸点及其界面处的局部电流密度超过电迁移门槛值时,高速运动的电子流形成的电子风与金属原子发生剧烈碰撞,进行部分的冲量交换,迫使原子沿着电子流方向运动,从而发生凸点互连的电迁移。通常电迁移能在阴极造成金属原子的流失而产生微空洞,使互连面积减小导致断路,在阳极造成金属原子的堆积而形成凸起的“小丘”,导致短路,从而引起IC及元器件失效。电迁移是引起IC及电子产品失效的一种重要机制。因此,有必要针对Au的电迁移特性进行研究,明确Au电迁移对电路的影响。 某限幅低噪声放大器在交付用户使用一段时间后出现输出不稳定现象,在确认失效样品电参数后,开封检查观察到内部没有短路、断路现象或明显的缺陷区。由于放大管中主要功能元件是两级砷化镓金属半导体场效应晶体管(MESFET),采用新的同型号的MESFET将其置换后,功能恢复正常。根据以上检测排除,最终锁定场效应管失效。 笔者借助扫描电子显微镜和X射线能谱仪对该MESFET中的异常导电层不同微区进行了微观分析,找出了产生此问题的原因。 1实验

实验仪器为日本JEOL公司生产的JSM-6490LV型扫描电子显微镜(SEM),配有美国EDAX公司生产的Genesis2000XMS型X射线能谱仪(EDS)附件。 实验样品为失效的GaAs-MESFET,图1为其结构图,衬底材料是具有高电阻率的本征砷化镓,在沟道上制作栅极金属,与n型半导体之间形成肖特基势垒接触,源极和漏极金属与n+型半导体之间形成欧姆接触。该MESFET采用 n+-GaAs-Au欧姆接触系形成源漏接触电阻和Al-W-Au的砷化镓肖特基势垒接触系统。 2结果与讨论 2.1 Au导电层的微观形貌和成分对比分析

电子迁移和热迁移的讨论

昨天的一个超频帖引出了“电子迁移”。其实与CPU相关的除了“电子迁移”外还有热迁移。 就针对本人读到的资料与自己的看法和大家进行讨论,同时说明一下对超频应该报以什么态度。(本人文科出身,物理水平绝大部分只停留在初中,有说的不对的地方请指出) 材料一 电子迁移-概念 “电子迁移”是50年代在微电子科学领域发现的一种从属现象,指因电子的流动所导致的金属原子移动的现象。因为此时流动的“物体”已经包括了金属原子,所以也有人称之为“金属迁移”。 电子迁移-迁移过程 在电流密度很高的导体上,电子的流动会产生不小的动量,这种动量作用在金属原子上时,就可能使一些金属原子脱离金属表面到处流窜,结果就会导致原本光滑的金属导线的表面变得凹凸不平,造成永久性的损害。这种损害是个逐渐积累的过程,当这种“凹凸不平”多到一定程度的时候,就会造成CPU内部导线的断路与短路,而最终使得CPU报废。温度越高,电子流动所产生的作用就越大,其彻底破坏CPU内一条通路的时间就越少,即CPU的寿命也就越短,这也就是高温会缩短CPU寿命的本质原因。 结论:其实从材料中不难看出,在CPU超频时,影响CPU寿命的主要有两点:1.电流密度(电流大小) 2.温度 而个人认为在超频的时候,关于温度方面,可以通过较好的散热大大减轻温度对CPU 寿命造成的影响,但是不得不说,一款再高端的散热装置也只能起到辅助作用,因为在CPU 核心温度已经产生了,而且会随着主频的提高而提高,破坏其实已经造成了~散热装置的作用只是不让产生的余热的堆积继续伤害CPU,而且让热传递的效果更好。虽然配备好的散热装置,可以有效地降低温度,而且用户也不能改变CPU内部的任何东西,只能在CPU外部搞一些动作了,只能做自己能做的~ 其实我认为最主要的还是电流,虽然电子流动的作用也受到温度的影响,但是通过上面说的,改善散热固然可以降低这种作用带来的伤害,但是当高主频高负载运行的时候,不考虑温度的情况下电流已经在增大了,而且超频幅度越高,电流越大,电子流动所产生的作用就越大,对CPU内部造成的伤害也就越大~如果这个时候再加上高温的影响,这种作用只会更强,对CPU的伤害也只会更强~~! 看来一部分人认为“温度越高对CPU的伤害越大,只要一味的追求低温就可以使CPU的寿命得到大大的延长”的这种看法比较片面。

流动状态的实验报告

中国石油大学(华东) 流体力学实验 实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 实验六、流动状态实验 一、实验目的 1.测定液体运动时的沿程水头损失)(f h 及断面的平均流速)(v ; 2.绘制流态曲线)lg (lg v h f 图,找出下临界点并计算临界雷诺数) (c Re 的值。 二、实验装置 流动状态室验的装置如图1-6-1所示。本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。 图1-6-1 流态实验装置 1. 稳压水箱 ; 2. 进水管 ; 3. 溢流管 ; 4. 实验管路 ; 5. 压差计 ; 6. 流量调节阀 ; 7. 回流管线 ; 8. 实验台 ; 9. 蓄水箱 ; 10. 抽水泵 ;11. 出水管

三、实验原理 1.液体在同一管道中的流动,当速度不同时有层流、紊流两种流动状态。层流的特点是流体各质点互不掺混,成线状流动。在紊流中流体的各质点相互掺混,有脉动现象。 不同的流态,其沿程水头损失与断面平均流速的关系也不相同。层流的沿程水头损失与断面平均流速的一次方成正比;紊流的沿程水头损失与断面平均流速的m 次方成正比)0.275.1(-=m 。层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速的关系与层流、紊流的不同。 2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为稳定流,此种情况下21 v v =。那么从A 点到B 点的沿程水头损失为 f h ,可由流量方程导出: h h h p z p z g v p z g v p z h f ?=-=+-+=++-++=2 1 2 2 1 1 2 2 2 2 2 1 1 1 )()() 2()2(γγγγ 2 1 h h 、分别是A 点、B 点的测压管水头,由压差计中的两个测压管读出。 3.根据雷诺数判断流体流动状态。雷诺数的计算公式为: ν Dv = Re D -圆管内径;v -断面平均速度;ν-运动粘度系数 当c Re Re <(下临界雷诺数)为层流,23202000Re ~=c ; 当c e R Re '>(上临界雷诺数)为紊流,120004000e R ~='c 之间。

相关文档