文档库 最新最全的文档下载
当前位置:文档库 › Latest Quaternary thrusting recorded by a flight of strath terraces in the northeastern margin

Latest Quaternary thrusting recorded by a flight of strath terraces in the northeastern margin

Latest Pleistocene to Holocene Thrusting Recorded by a Flight of Strath Terraces in the Eastern Qilian Shan,NE Tibetan Plateau Jianguo Xiong 1,2,Youli Li 2,Yuezhi Zhong 2,Honghua Lu 3,Jinghao Lei 2,Weilin Xin 2,Libo Wang 2,Xiu Hu 2,and Peizhen Zhang 1,41School of Earth Sciences and Engineering,Sun Yat-Sen University,Guangzhou,China,2Key Laboratory of Earth Surface Processes,Ministry of Education,Peking University,Beijing,China,3Key Laboratory of Geographic Information Science of Ministry of Education,School of Geographic Sciences,East China Normal University,Shanghai,China,4Institute of Geology,China Earthquake Administration,Beijing,China

Abstract At the eastern Qilian Shan mountain front in the NE Tibetan Plateau,the Minle-Damaying Fault

(MDF),the southernmost fault of the North Frontal Thrust (NFT)system,has previously been proposed as an inactive structure during the Holocene.Here we present a detailed record of six strath terraces of the Xie River that document the history of active deformation of the MDF.One optically stimulated luminescence dating sample constrains abandonment of the highest terrace T 6at 12.7±1.4ka.The formation ages of the lower terraces (T 4–T 1)are dated by AMS 14C dating.The cumulative vertical offsets of the MDF recorded by these terraces are determined as 12.2±0.4m (T 6),8.0±0.4m (T 5),6.4±0.4m (T 4),4.6±0.1m (T 3),and 3.2±0.2m (T 1c )by an unmanned aerial vehicle system,respectively.A long-term vertical slip rate of the MDF of 0.9±0.2mm/yr is then estimated from the above data of terrace age and vertical offset by a linear regression.Assuming that the fault dip of 35±5°measured at the surface is representative for the depth-averaged fault dip,horizontal shortening rates of 0.83–1.91mm/yr are inferred for the MDF.Our new data show that the proximal fault (the MDF)of the NFT system at the eastern Qilian Shan mountain front has remained active when the deformation propagated basinward,a different scenario from that observed at both the western and central Qilian Shan mountain front.

1.Introduction

Since the Early Cenozoic,the India-Eurasia collision has exerted a major control on the tectonic and topo-

graphic development of the Asian inland (Figure 1a)(e.g.,Avouac &Tapponnier,1993;Najman et al.,2001;

Tapponnier et al.,2001;Zhang et al.,2004).A striking result of the collision is the growth of the Tibetan

Plateau that today reaches average elevations of >4km.The progressive outward growth of the plateau

has caused propagation of thrusting and folding into its surrounding sedimentary basins that accommodate

Cenozoic crustal shortening (e.g.,Burch ?el et al.,1999;Heermance et al.,2008;Molnar &Tapponnier,1975;

Sobel et al.,2006;Tapponnier et al.,2001;Thompson et al.,2015).The Qilian Shan (Shan means “mountains ”

in Chinese)on the northeastern margin of the plateau is one of the major ranges that formed over the past

~10Myr in response to the outward growth of the plateau (e.g.,Tapponnier et al.,1990,2001;Wang et al.,

2016;Zheng,Zhang,Ge,et al.,2013;Zheng,Zhang,Zhang,et al.,2013).The history of uplift and growth of

the Qilian Shan is thus crucial to understand the process and the mechanism of upward and outward growth

of the Tibetan Plateau (e.g.,Hetzel et al.,2004,2006;Pan et al.,2013;Tapponnier et al.,1990;Zheng et al.,

2017;Zheng,Zhang,Ge,et al.,2013;Zheng,Zhang,Zhang,et al.,2013).

The Qilian Shan is located in the northeastern margin of the Tibetan Plateau,which comprises several WNW

trending mountain ranges (Figure 1a).The crustal shortening of the range is mainly linked kinematically to

thrusting of several NW trending reverse faults (Tapponnier et al.,1990;Zhang et al.,2004).Separating the

Qilian Shan to the south from the sedimentary basins of the Hexi Corridor to the north,these structures

de ?ne the steep mountain front of the range (Figure 1a).Previous studies have utilized low-temperature ther-

mochronology (e.g.,George et al.,2001),sedimentology and magnetostratigraphy (e.g.,Fang et al.,2005;

Wang et al.,2016;Zheng et al.,2017),geological and geodetic investigations (e.g.,Zhang et al.,2004),or dat-

ing of deformed geomorphic surfaces using exposure and luminescence dating (e.g.,Hetzel et al.,2004,2006;

Hu et al.,2015;Pan et al.,2013)to constrain the timing and magnitude of the Cenozoic deformation along the

PUBLICATIONS

Tectonics

RESEARCH ARTICLE

10.1002/2017TC004648

Key Points:

?Deformed terraces document recent

activity of the Minle-Damaying Fault,a

structure previously proposed to be

inactive during the Holocene

?Vertical slip rates of the fault averaged

over the last 12.7kyr are on the order

of 1mm/yr

?Distribution of active deformation

across the eastern Qilian Shan

foreland is different to the western

and central foreland Correspondence to:

H.Lu,

hhlv@https://www.wendangku.net/doc/082590369.html,

Citation:

Xiong,J.,Li,Y.,Zhong,Y.,Lu,H.,Lei,J.,

Xin,W.,…Zhang,P.(2017).Latest

Pleistocene to Holocene thrusting

recorded by a ?ight of strath terraces in

the eastern Qilian Shan,NE Tibetan

Plateau.Tectonics ,36,2973–2986.

https://https://www.wendangku.net/doc/082590369.html,/10.1002/2017TC004648

Received 4MAY 2017

Accepted 8NOV 2017

Accepted article online 22NOV 2017

Published online 13DEC 2017?2017.American Geophysical Union.All Rights Reserved.

Qilian Shan.Nonetheless,the detailed depositional and geomorphic responses to the ongoing growth of the

Qilian Shan still need to be further understood.

Along the margins of active orogenic belts,detailed sedimentological and geomorphological investigations

are necessary to understand the tectonic evolution of mountain belts (e.g.,Burch ?el et al.,1999;Lavé&

Avouac,2000;Li et al.,1999;Li &Yang,1998;Lu et al.,2010,2015,2017;Molnar et al.,1994;Thompson

et al.,2015).In particular,deformed river terraces are very useful in reconstructing the history of active

deformation and understanding the kinematics of active structures.Two prerequisites exist when utilizing

river terrace to constrain the history of active deformation.One is to establish a robust chronology for

terrace formation and/or abandonment,and the other is to precisely determine the magnitude of deforma-

tion (e.g.,a vertical offset)recorded by the abandoned terrace tread (e.g.,Burbank &Anderson,2012;Yang

&Li,2011).

Here we present a detailed record of the latest Quaternary ?uvial terraces of the Xie River,the upper reach of

the Dongda River ?owing across the eastern Qilian Shan (Figure 1b);the terraces have been sequentially

deformed by thrusting of the Minle-Damaying Fault (MDF),a structure at the eastern Qilian Shan

mountain

Figure 1.(a)Active tectonics in the northeastern Tibetan Plateau and adjacent regions (Yuan,2003;Zheng,Zhang,Zhang,

et al.,2013)based on a digital elevation model.Insert map showing topography of the Asian Inland.Boundary fault means

fault with unknown kinematics.NFT:the north frontal thrust system,GF:Gulang Fault,and LMF:Laohushan-Maomaoshan

Fault.(b)Active faults and river systems along the eastern Qilian Shan mountain front.HC Basin:Huangcheng Basin.See

Figure 1a for the location of Figure 1b.The earthquake data (since the year AD 1917)are downloaded from the website of

USGS:https://https://www.wendangku.net/doc/082590369.html,/earthquakes.

front that has previously been proposed to be inactive during the Holocene(Figure1b)(IG,LERI,China Earthquake Administration,1993).A combination of AMS14C dating and optically stimulated luminescence (OSL)dating was used to constrain the timing of terrace formation and/or abandonment.An unmanned aerial vehicle(UAV)photogrammetry system was then utilized to generate a digital elevation model(DEM) and determine accurate vertical offsets of the MDF at the Xie River.The main aims of this paper are to(1)reveal the latest Quaternary activity of the MDF(timing,magnitude,and rate)and further to(2)discuss the implica-tions of our results for active deformation at the northeastern margin of the Tibetan Plateau.

2.General Setting and Active Tectonics of the Study Area

2.1.General Setting

The Cenozoic growth of the Qilian Shan is controlled by the northeastward propagation of the Tibetan Plateau.Unconformities between Neogene and Jurassic sedimentary rocks(GGB,1989)indicate that major tectonic deformation occurred during Late Mesozoic or Early https://www.wendangku.net/doc/082590369.html,te Cenozoic deformation along the Qilian Shan range has been controlled by a thrust system that de?nes the basin-mountain boundary (Gaudemer et al.,1995;IG,LERI,China Earthquake Administration,1993).In the eastern Qilian Shan between the Xida River and the Xiying River(Figure1b),ranges comprise mainly Paleozoic and Mesozoic low-grade metamorphic and sedimentary rocks,Late Cenozoic sedimentary strata,and Caledonian granite.Thrusting on the faults at the mountain front places Paleozoic and Mesozoic rocks above Late Cenozoic sedimentary strata(GGB,1989;IG,LERI,China Earthquake Administration,1993).In the drainage basin of the Xie River(Figure1b),the major rock types include Devonian conglomerate and sandstone as well as Lower Carboniferous conglomerate,sandstone,and shale.A small amount of Lower Silurian sedimentary rocks and Lower Ordovician volcanic and metamorphic rocks are found in the upper reach of the Xie River.

2.2.Active Tectonics Along the Eastern Qilian Shan

Active faults in the eastern Qilian Shan deformation zone comprise the Lenglongling Fault and the North Frontal Thrust(NFT)system that includes several northeast vergent thrust faults,that is,the Minle-Damaying Fault(MDF),Huangcheng-Taerzhuang Fault,Fengle Fault,and Kangningqiao Fault(Figure1b). Along the mountain crest of the eastern Qilian Shan,the southeast striking Lenglongling Fault is a sinistral strike-slip fault with a vertical component(Figure1b)(He et al.,2010).The Lenglongling Fault is the western segment of the Haiyuan Fault and bifurcates eastward into the Laohushan-Maomaoshan Fault(LMF)to the southeast and the Gulang Fault(GF)to the east(Figure1a)(He et al.,2010).This left-lateral strike-slip fault system has been active during the Quaternary and exhibits a high seismicity with a series of major historical Earthquakes(e.g.,the Haiyuan M s8.7earthquake of16December1920and the Menyuan M s6.4earthquake of26August1986)(He et al.,2000,2010;Lasserre et al.,2002;Zhang et al.,1987).The late Pleistocene rate of sinistral slip on the Lenglongling Fault has been estimated to4.3±0.7mm/yr(He et al.,2010).

To the north of the Lenglongling Fault,the NFT system dominates the tectonic and topographic patterns of the eastern Qilian Shan(Figure1b).The MDF is the southernmost fault in the NFT system,which separates the eastern Qilian Shan to the south from the Minle Basin to the north(Figure1b).This fault roughly dips southward at an angle varying along the strike(IG,LERI,China Earthquake Administration,1993).On the west bank of the Xie River,a surface dip of35±5°of the fault has been measured in the?eld (Figures2a–2d).The MDF has previously been proposed to have been inactive during the Holocene(IG, LERI,China Earthquake Administration,1993).However,in this study we show that a?ight of well-developed and deformed latest Quaternary terraces of the Xie River records active thrusting of the MDF over the latest Quaternary(Figure2c).The Huangcheng-Taerzhuang Fault,to the north of the MDF,has also been active in the Holocene with average vertical slip rates estimated to0.54–0.8mm/yr on the eastern segment of the fault(Chen,2003).At least one major history Earthquake,the Gulang M s8earthquake of 23May1927,occurred on this fault(Gaudemer et al.,1995).Between the western Huangcheng-Taerzhuang Fault and the eastern MDF,a zone of the sinistral shear has formed a pull-apart basin,that is,the Huangcheng Basin(Figure1b).The frontal thrusts of the NFT system,the Fengle Fault,and the Kangningqiao Fault de?ne the basin-mountain boundary near the cities of Yongchang and Wuwei (Figure1b).The average vertical slip rate of the Fengle Fault has been estimated as2.8±1.3mm/yr with a horizontal shortening rate of~2.5mm/yr over the past~30kyr(Champagnac et al.,2010).Although

Figure2.(a)Google Earth image showing the geomorphic framework at the mountain front of the Xie River and(b)the interpreted distribution of the terraces based on detailed?eld investigations.(c)Photo showing the fault scarps of the Xie River terraces caused by thrusting of the Minle-Damaying Fault.(d)Outcrop of the Minle-Damaying Fault dipping southwestward with an angle of35±5°.(e)II-II0terrace-to-river cross section on the hanging wall of the Minle-Damaying

Fault showing the geomorphic framework.See Figure2b for the location of this cross section.

the general framework of the active thrust system at the eastern Qilian Shan mountain front is well characterized(Figure1b)(IG,LERI,China Earthquake Administration,1993),the detailed characteristics (timing,magnitude,and rate)of the fault system remain unclear.Until now,no estimate of the Holocene slip rate of the MDF is available.This hinders better understanding of the process and the mechanism of the northeastward growth of the Tibetan Plateau.

3.The Xie River Terraces

3.1.Terrace Classi?cation

Where the Xie River crosses the MDF,we mapped and characterized a?ight of six?uvial strath terraces that were deformed above the thrust fault.The geomorphic characterization of terraces in the study area along the Xie River(Figure2)involved three components.First,?uvial terraces were mapped in the?eld and using Google Earth images.Second,sedimentology(color,thickness,grain size,roundness,composition,etc.)and geomorphology(height above the modern river and extent of dissection)of the?uvial sediments overlying the bedrock were characterized.Third,based on the mapping,terraces were divided into six levels:T1to T6 increasing systematically in elevation(Figure2).

All six terraces(T1–T6)are beveled into the southwest dipping Lower Carboniferous sandstone and shale,and planated bedrock surfaces(called“strath surfaces”)are clearly exposed along the west bank of the river (Figures2and3).The straths are covered with a continuous layer of?uvial deposits that is about2–4m thick (for terraces T1to T5)and up to about7–10m thick(for terrace T6)(Figures2e and3).Based on these observa-tions,the terraces at the mountain front of the Xie River are de?ned as strath terraces.The distribution of the low terraces T1and T2is relatively restricted(Figures2a and2b).Terrace T1is subdivided into three secondary terraces T1a,T1b,and T1c based on the difference in height above riverbed(Figure2).The higher terraces T3to T6are widely distributed along the west bank of the river(Figures2a and2b).The surfaces of all terraces are relatively planar and continuous(Figures2a and2c),and no obvious erosion and dissection was observed in the?eld.This observation implies a relatively late timing of abandonment of the terrace caused by river incision.In striking contrast with terraces T1–T5,the?uvial deposits of terrace T6are covered by~2.1m thick aeolian loess(Figures2e and4).The terraces are mainly composed of subrounded to rounded pebble-to cobble-sized gravels with the largest boulders reaching several decimeters in diameter(Figure3).The?uvial gravels on all terraces have a similar distribution of clast lithologies and include mainly sedimentary rocks (sandstone and conglomerate)with a small amount of metamorphic rocks.

3.2.Terrace Formation and/or Abandonment Age

3.2.1.AMS14C Dating

The time of terrace formation for the low terraces T1to T4was estimated using AMS14C dating.Charcoal was collected from layers of sand and silt overlying the terrace gravels(Figure3).A total of11AMS14C dating samples were taken in the?eld.In order to well constrain the terrace formation ages,four sets of paired sam-ples were collected(Table1).The pair HC26-27and the pair HC29-30were processed each from one single piece of charcoal(Figures3c and3g).In contrast,the pairs HC22-23and HC31-32were collected from the same outcrop but in different positions(Figures3a and3f).

Following standard procedures(Vries&Barendsen,1954),the complete sample preparation was performed either at the Beta Analytic(?ve samples)or the Radiocarbon Dating Laboratory of Peking University(six sam-ples)(Table1).The charcoal of each sample was pretreated using the acid-alkali-acid(AAA)sequence to remove contaminants(Vries&Barendsen,1954).The sample was?rst gently crushed and then dispersed in deionized water.It was then washed with hot hydrochloric acid(HCl)to eliminate carbonates followed by an alkali(NaOH)wash to remove secondary organic acids.The alkali wash was followed by a?nal acid rinse to neutralize the solution before drying.Finally,the processed samples were transformed into graphite following standard procedures(Santos et al.,2004).The AMS radiocarbon measurements of the prepared gra-phite samples were performed at both the Beta Analytic(?ve samples)and the AMS Center,School of Physics, Peking University(six samples).Based on the approach of Talma and Vogel(1993),the14C ages of the sam-ples were determined with Libby’s half-life(5,568years),the Northern Hemisphere14C calibration curve IntCal13(Reimer et al.,2013),and OxCal V4.2(University of Oxford,2017).Dates are reported as years before present(present=AD1950).

locations.

3.2.2.Optically Stimulated Luminescence Dating

To estimate the age of the highest terrace T 6of the Xie River,we took an optically stimulated luminescence

(OSL)dating sample from the bottom of the ~2.1m thick loess sediments capping the ?uvial deposits

(Figures 2b and 4).Fresh sediments were exposed with a shovel before using a plastic hammer to drive a

20cm long steel pipe with a diameter of 5cm into the freshly exposed deposits.The pipe containing the

sample remained sealed with opaque materials before processing in the lab.

Following standard procedures (Aitken,1998),preparation and measurements of the OSL sample were car-

ried out at the OSL Laboratory of the Institute of Geology and Geophysics,Chinese Academy of Sciences.

In order to insure maximal shielding,2–3cm of the sample was removed from each end of the pipe and only

the sample in the center of the steel pipe was analyzed in the lab.About 20g of loess from the center of the

steel pipe were used for water content measurement,and an uncertainty of 10%was assigned.The rest of the

loess was ?rst dried and then was treated with 10%hydrochloric acid (HCl)and 10%hydrogen peroxide

(H 2O 2)to remove carbonates and organic materials,respectively.Grains <90μm were obtained by mechan-

ical dry sieving,and then were etched with 40%HF for about 80min to remove feldspar as well as etch the

outer alpha dosed layer of quartz grains.Before ?nal rinsing and drying,HCl (10%)was used again to

dissolve

Figure 4.Photograph of ~2.1thick loess sediments capping the terrace deposits of T 6,from which the OSL sample was

taken.See Figure 2b for the location of the sampled section.

Table 1AMS 14C Dating Data of the Xie River Terraces

Sample no.

a Sampled terrace level Sample location Terrace elevation at the sampling site (m)

b Sampling depth (m)

c Conventional 14C age (a BP)Calibrate

d 14C cal ag

e (cal a BP)d Terrace formation age (cal a BP)HC22

T 437°50047.00″N 3005±50.606445±357360±705825±130HC23*

101°34028.10″E 3005±50.909160±3010320±80HC29

37°50057.38″N 2984±50.545200±305953±50HC30*

101°34044.60″E 2984±50.684980±305698±60HC24

T 337°50052.70″N 2992±50.73995±304471±604471±60101°34039.52″E HC26

T 237°50053.25″N 2985±40.973130±253363±403288±150HC27

101°34042.23″E 2985±40.873130±253363±40HC28*

37°50054.76″N 2982±50.972970±303138±80101°34044.18″E HC31*

T 1b 37°51004.17″N 2969±4 1.162710±302807±602511±300HC32

101°35003.63″E 2969±40.852225±252215±70HC33*

T 1b 37°51006.01″N 2962±40.601480±301360±501360±50101°35011.08″E Note .The AMS 14C dating procedure is performed at the Beta Analytic (for the samples marked by the asterisk)and the Radiocarbon Dating Laboratory of Peking

University,respectively.a The dating material of all the samples is charred material,and the pretreatment on all the samples is acid/alkali/acid.The sampling locations and the sampled sections are shown in Figures 2b and 3,respectively.b The terrace elevation was obtained by a Garmin handheld GPS.c The sampling depth was measured by a tape with the scale of 1cm.d Based on the IntCal13database (Reimer et al.,2013),a simpli ?ed approach (Talma &Vogel,1993)is used to calibrate 14C dates.Reported 14C ages used Libby ’s half-life (5,568years)and were referenced to the year AD 1950.The age uncertainty is two sigma.

any residual ?uorides after etching.The etched grains were sieved again through a 63μm mesh and then

mounted as a monolayer on 9.8mm diameter aluminum discs using silicone oil as an adhesive.Grains cov-

ered the central ~3mm diameter portion of each disc,corresponding to several hundreds of grains per ali-

quot.Luminescence measurements were performed on a Ris?TL/OSL DA-15reader.First,the purity of the

samples was tested by measuring the infrared stimulated luminescence (IRSL)and 110°C thermolumines-

cence (TL)peak that is indicative of feldspar.We used a 90Sr/90Y beta source with a dose rate of 0.09Gy/s

for dosing and blue light emitting diodes (λ=470±20nm)and infrared (λ=830nm)LED units for stimula-

tion.Equivalent dose (De )of the quartz was determined by using the Simpli ?ed Multiple Aliquot

Regenerative-dose (SMAR)procedure (Wang et al.,2006).Signals of initial 0.64s of stimulation were inte-

grated for growth curve construction after subtracting background (last 5s).To determine the environmental

dose rate,U,Th,and K contents in the samples were measured using an ELEMENT Plasma Mass Spectrometer

with a relative measurement error of <5%.The cosmic ray dose rate was estimated according to Prescott and

Hutton (1994).The environmental dose rate was determined based on the conversion relation between dose

rate of quartz and the contents of U,Th,and K and water content (Aitken,1998).Finally,OSL date for the mea-

sured sample was calculated from the acquired De and environmental dose rate.

3.2.3.Determination of Terrace Formation and/or Abandonment Age

Ages for T 1to T 4obtained by AMS 14C dating are shown in Table 1.Except for the paired samples HC22-23

that have about 3,000years of difference in age,the small range of radiocarbon ages of the sample pairs

HC29-30and HC31-32obtained in two different labs (Table 1)lends con ?dence in our AMS dating.For the

terrace T 4,the paired AMS 14C samples HC22and HC23yielded two ages that are not within the uncertainty

bounds:7.36±0.07ka and 10.32±0.08ka (Table 1and Figure 3f),both of which are signi ?cantly older than

the ages of the paired samples HC29and HC30(5.95±0.05ka and 5.7±0.06ka)taken from the same terrace

(Table 1and Figure 3g).The scattered and older ages of HC22and HC23might be attributed to reworking of

older deposits upstream and different sources of charcoal.We thus discarded these two older ages

(7.36±0.07ka and 10.32±0.08ka)and did not use them to constrain the formation age of terrace T 4.We

then calculated mean terrace ages for the sample pairs using the accepted 14C age data of the samples taken

from the three terraces T 4,T 2,and T 1a ,and estimated the formation ages of terraces T 4,T 3,T 2,T 1a ,and T 1b to

5.83±0.13ka,4.47±0.06ka,3.29±0.15ka,2.51±0.3ka,and 1.36±0.05ka,respectively (Table 1).The errors

assigned to the mean ages include the nominal values of the involved individual (two or three)ages.

Provided (1)that the charcoal got transported by the river into the terrace deposits and did not form in situ

from organic material and (2)that there are no postdepositional formation processes working on the terrace

sediments,such as bioturbation,any of the above radiocarbon ages from the charcoal is a maximum age of

the deposition of the sampled terrace sediment horizon.Therefore,the calibrated radiocarbon ages of the

sampled charcoal fragments found in the ?uvial sediments (Table 1)provide a maximum age for the forma-

tion of terraces T 1–T 4.

The OSL sample taken from the bottom of the loess overlying the terrace sediments of T 6constrains the ter-

race abandonment to 12.7±1.4ka (Table 2and Figure 4).It is reasonable to assume that loess begins to accu-

mulate on the terrace after abandonment of the terrace (e.g.,Hu et al.,2015;Lu et al.,2014;Pan et al.,2013).

Hence,the age of the basal loess provides a reliable minimum age on the timing of terrace abandonment,

and the OSL age of 12.7±1.4ka may be slightly younger than the actual time of terrace abandonment.

No suitable material for OSL or AMS 14C dating was found in the terrace deposits of T 5and T 1c ;thus,their

formation or abandonment ages remain unconstrained.

Table 2

Calculated Values of Equivalent Doses,Annual Doses,and OSL Ages

Sample no.

Sample location Sampled layer (m)U a (ppm)Th (ppm)K (%)Water content (%)b Equivalent doses (Gy)Annual doses (Gy/kyr)OSL age (ka)c HC-T6-1d 37°51035.03″N

The lower part of ~2.1m thick loess capping the

terrace gravels of T 6 3.8115.6 1.88 6.149.7±1.7 3.90±0.1712.7±1.4

101°35028.9″E a The contents of U,Th,and K were determined using an ELEMENT Plasma Mass Spectrometer.The uncertainty of 5%was taken.b

An uncertainty of 10%is assigned to the water content.c The age uncertainty is two sigma.d Location of the dating sample and the sampled terrace cross section are shown in Figures 2b and 4,respectively.

4.Vertical Offset of the Minle-Damaying Fault

by Morphometry

Photogrammetry acquired by an unmanned aerial vehicle (UAV)sys-

tem equipped with a camera has progressively become an important

tool to obtain landscape surveys.Images obtained by a UAV photo-

grammetry system can be used to generate a digital elevation model

(DEM).In this work,a DW-01UAV with an octorotor,a Canon EOS 5D

Mark II camera,a MX-20transmitter,a MikroKopter-tool ground con-

troller,and a navigation board was used to obtain areal imagery.

Three aerial surveys at an altitude of about 200m were performed

(Figure 5a).In total,141images covering an area of 0.51km 2were

acquired (Figure 5a).The horizontal and vertical precision of the images

is about 0.5m and 0.2m,respectively.Agisoft PhotoScan was used for

photo alignment,dense cloud building,mesh building,and texture

building.This standard procedure provided a high-density point cloud

to generate a DEM (Figure 5b),and the resolution of the DEM is con-

trolled by 16ground control points (Figure 5c).The DEM transferred

from the obtained aerial images was then used to extract topographic

pro ?les perpendicular to the fault scarp of the MDF (Figures 5b and 6).

Finally,the vertical offset of the MDF recorded by each terrace was pre-

cisely determined by averaging the offsets of three parallel pro ?les

(Figures 5b and 6).Assuming that erosion and/or sedimentation is zero,

the determined vertical offsets recorded by the strath terrace treads

can be used to represent the vertical component (rock uplift)of thrust-

ing of the MDF.

The vertical offsets of the fault scarp recorded by the Xie River terraces

(Figures 2c and 6)clearly reveal the recent history of thrusting of the

MDF.Since terrace T 6was formed,the cumulative vertical offset of

the MDF is 12.2±0.4m (Figure 6).Both seismic events and/or continu-

ous thrusting of the MDF may have contributed to the total offset since

abandonment of terrace T 6.The cumulative vertical offset recorded by

the terrace treads decreases sequentially,that is,the younger terrace

recording less vertical offset (Figure 6).

5.Estimates of Deformation Rates on the

Minle-Damaying Fault

Using the formation ages of the faulted Xie River terraces and the ver-

tical offsets recorded by each terrace tread,the slip rate of the terrace

surface above the MDF is calculated,and the uncertainty is estimated

based on the uncertainties of the ages and the vertical offsets.First,

we calculate the vertical slip rate (vertical component of the fault slip

rate)of the MDF by dividing the age of each terrace by the vertical off-

set of the terrace across the fault scarp.Thus,we obtain a vertical slip

rate of 0.96±0.11mm/yr for T 6.This rate is of the same magnitude

as 1.1±0.07mm/yr recorded by the terrace tread of T 4and

1.03±0.04mm/yr recorded by the T 3terrace tread,respectively.The

similarity of vertical slip rates calculated across three different time

intervals supports the notion that the MDF had a relatively constant

Holocene vertical slip rate over at least the past 12.7kyr.Finally,we esti-

mate a vertical slip rate of 0.9±0.2mm/yr from the formation ages of

these three terraces and the vertical offsets recorded by their terrace

treads by a linear regression using Isoplot (Figure 7).Combined

with

Figure 5.(a)Composite image of the area covering the Minle-Damaying Fault obtained by a DW-01unmanned aerial vehicle photogrammetry system.Yellow dots show the camera positions ~200m above the ground.(b)Digital elevation model (DEM)generated from the obtained aerial images using Agisoft PhotoScan.Topographic pro ?les extracted from the DEM are shown in Figure 6.(c)Sixteen ground control points with associated horizontal and vertical errors which control the resolution of the constructed DEM.The horizontal error of each ground control point is shown as a vector.

the fault dip of 35±5°that was measured on the west bank of the Xie

River (Figures 2c and 2d),and provided that the measured surface dip

of the fault is representative of the subsurface dip,this vertical slip rate

yields an estimated shortening rate (horizontal component of the fault

slip rate)of 0.83–1.91mm/yr on the MDF.As shown in section 3.2.3,the

AMS 14C dates on the charcoal fragments from the terrace deposits of

T 1–T 4and the OSL dates on the overlying loess of T 6provide a maxi-

mum and minimum age for the terrace formation and abandonment,

respectively.Thus,the obtained rates of vertical slip and shortening

for the MDF from these ages would be a little bit underestimated and

overestimated,respectively.

6.Discussion

6.1.Implications for Active Deformation Along the Eastern

Qilian Shan

Along the eastern Qilian Shan,active deformation is driven mainly by

slip on a series of thrust faults.At the mountain front of the Xie River,

continuous deformation of the MDF during the latest Quaternary is

supported by a ?ight of successively deformed strath terraces

(Figures 2c,5,and 6).The vertical slip rate over the last 12.7kyr was esti-

mated as 0.9±0.2mm/yr (Figure 7),which is of the same order of mag-

nitude as the vertical slip rates of the other reverse faults of the NFT

system at the eastern Qilian Shan mountain front (Figures 8and 9).

For example,at the eastern segment of the Huangcheng-Taerzhuang

Fault,Chen (2003)has estimated Holocene vertical slip rates to

0.54–0.8mm/yr by topographic surveying on the fault scarps recorded

by river terrace treads and thermoluminescence dating (Figures 8

and 9).Based on AMS 14C dating and paleoseismic trenching,the

Holocene vertical slip rate of the Kangningqiao Fault has been esti-

mated as 0.44±0.08mm/yr (Figures 8and 9)(Ai et al.,2017).

However,there is an exception to these estimates on vertical slip rates.

At the eastern segment of the Fengle Fault near the Xiying River

(Figures 1b and 9),Champagnac et al.(2010)have estimated the

long-term rate of vertical slip of the Fengle Fault as 2.8±1.3mm/yr

over the past ~30kyr by 10Be exposure dating and topographic survey-

ing.Tectonically,the Kangniangqiao Fault and the Fengle Fault are con-

sidered as the eastern and western segments of the Southern Wuwei

Basin Fault,respectively (Figures 1b and 9);both of the faults would be expected to have a similar rate of deformation.Relative to the low rate of vertical slip of 0.44±0.08mm/yr from the Kangningqiao Fault

(Ai et al.,2017),however,the rate from the Fengle Fault proposed by

Champagnac et al.(2010)is exceptionally high and has been argued to be overestimated due to uncertainties in age control and/or fault offset estimates (Hetzel,2013;Hu et al.,2015).If the vertical slip rate of

2.8±1.3mm/yr of Champagnac et al.(2010)is ignored,vertical slip rates are comparable on different faults in the NFT system along the eastern Qilian Shan (Figures 8and 9).

When combining the estimated vertical slip rates of thrust faults along the eastern Qilian Shan and the mea-sured fault dips at the surface,Chen (2003)has estimated the Holocene rates of horizontal shortening of the Kangniangqiao Fault and the Huangcheng-Taerzhuang Fault as ~0.9mm/yr and 0.8–1.1mm/yr,respectively.Recent studies show that distributed folding in response to thrusting on blind faults has accomplished a considerable portion of the deformation (e.g.,Hetzel et al.,2006;Hu et al.,2015).For example,in the area between the Huangcheng-Taerzhuang Fault and the Kangningqiao Fault (Figures 1b and 9),formation of the Nanying anticline has resulted from thrusting on such a blind fault with an estimated

crustal

Figure 6.Topographic pro ?les crossing the fault scarps of the Minle-Damaying Fault.For each terrace,the vertical offset of the Minle-Damaying Fault is

estimated by calculating the arithmetic mean of three values based on the three topographic pro ?les.

shortening rate of 0.9±0.3mm/yr (Hu et al.,2015).Together with our

estimate of horizontal shortening rate of 0.83–1.91mm/yr on the

MDF,a total of 3–4mm/yr of crustal shortening inferred from active

tectonic studies occurs across the eastern Qilian Shan mountain front.

Taking into account the possibility of unrecognized blind thrusts that

accommodate the crustal shortening,the actual shortening rate across

the eastern Qilian Shan mountain front might be underestimated.On

the larger scale,it appears that the cumulative rate of NNE directed

shortening across the eastern Qilian Shan mountain front is higher

than that along the western Qilian Shan mountain front,where the

rate of crustal shortening has estimated to at most ~2mm/yr (Hetzel

et al.,2006).

6.2.Pattern of Active Deformation in the NE Tibetan Plateau

Crustal shortening in the NE Tibetan Plateau has successively

encroached into the Hexi Corridor.This outward migration of deforma-

tion has resulted in formations of a thrust fault system and fold-and-fault zones (e.g.,Li &Yang,1998;Tapponnier et al.,1990;Zheng et al.,2017;Zheng,Zhang,Ge,et al.,2013;Zheng,Zhang,Zhang,et al.,2013).A series of relatively small mountain ranges have thus devel-

oped,such as the Hei Shan,Jintanan Shan,Heli Shan,and Longshou Shan in the northern Hexi Corridor and the Yumu Shan and the

Laojunmiao anticline in the southern Hexi Corridor (Figure 9).Based

on detailed geologic and geomorphic investigations,the onset of mountain building in the Jintanan Shan and the Heli Shan in the northern side of the Hexi Corridor (Figure 9)has been constrained to ~1.5–1.6Ma and ~1to <3Ma,respectively (Zheng,Zhang,Ge,et al.,2013;Zheng,Zhang,Zhang,et al.,2013).These ages are younger than the formation age of 3.7±0.9Ma of the Yumu Shan (Palumbo et al.,2009)as well as the onset of deformation of the Laojunmiao anticline at ~4.9–3.6Ma (Fang et al.,2005;Zheng et al.,2017)in the southern Hexi Corridor (Figure 9).This difference in age suggests that the deformation front along the northeastern margin of the Tibetan Plateau has reached the northern side of the Hexi Corridor (i.e.,the southern Gobi-Alashan Block)since about 2Ma (Figure 9)(Zheng,Zhang,Ge,et al.,2013).

When the deformation front migrated toward the north-northeast

(Zheng et al.,2017),some more proximal (southern)structures in the

NFT system at the Qilian Shan mountain front (such as the Red Sand

River Fault)have been proposed to become inactive (Hetzel et al.,

2004,2006).Along the western Qilian Shan mountain front,when the

deformation propagated northward into the southern Hexi Corridor,

the Yumen anticline developing above the Yumen Fault (near the

city of Yumen,Figure 9)became active,whereas the proximal basin-

mountain boundary thrust became inactive (Hetzel et al.,2006).

Along the central Qilian Shan mountain front,a similar history of defor-

mation has been documented,where the proximal Red Sand River

Fault became inactive when the Zhangye Fault to the north of the

Red Sand River Fault (near the city of Zhangye,Figure 9)was active

(Hetzel et al.,2004).

A different scenario is observed at the eastern Qilian Shan mountain front (Figure 9).Our new data show that the proximal fault (here it is the MDF)of the NFT system along the eastern Qilian Shan remains active,even though the distal structures of the NFT system (the Huangcheng-Taerzhuang Fault,the Fengle Fault,and the Kangningqiao Fault,Figures 1b,8,and 9)are tectonically active during the Holocene (e.g.,Ai et al.,2017;Champagnac et al.,2010;Chen,2003;Hu et al.,2015).A similar pattern of deformation has been

documented

Figure 8.I-I 0cross section with vertical exaggeration.Topography was extracted

from the ASTGTM2DEM with the resolution of 30m.See Figure 1b for location.

The vertical slip rates of the Fengle fault (Kangningqiao Fault),the Huangcheng-

Taerzhuang Fault,and the Lenglongling Fault are from Ai et al.(2017),Chen

(2003),and He et al.(2000),respectively.All these faults approximately dip

southward or southwestward,with dip angles that vary along strike and are

commonly estimated to ~40–70°(the Minle-Damaying Fault,IG,LERI,China

Earthquake Administration,1993),~40–80°(the Huangcheng-Taerzhuang

Fault,Chen,2003),and ~40–90°(the Fengle Fault and the Kangningqiao Fault,

Ai et al.,

2017).Figure 7.Long-term vertical slip rate of the Minle-Damaying Fault (MDF)estimated from the formation and abandonment ages of the terraces T 6,T 4,and T 3and the vertical offset recorded by these three terrace treads by a linear regression using Isoplot.The gray shaded envelope displays the uncertainty of

the regression.The data of terrace age and vertical offset are from Tables 1and 2and Figure 6.

in the southern Chaiwopu Basin,a piggyback basin in the easternmost part of the northern Chinese Tian Shan foreland (Lu et al.,2015).There,thrusting on the frontal thrust fault,the Banfanggou Fault,in the southern Chaiwopu Basin has driven continuous growth of the Saerqiaoke anticline during the late Quaternary (Lu et al.,2015).In contrast,?eld observations and measurements on bedding attitudes indicate late Quaternary activity of the proximal Junggar Frontal Thrust Fault (Lu et al.,2015),which separates the northern Chinese Tian Shan range to the south from the Chaiwopu Basin to the north.We propose that the spatial pattern of deformation,as observed along the Qilian Shan mountain front (Hetzel et al.,2004,2006;this study),could have been driven by the eastward migration of deformation along the NFT system in the NE Tibetan Plateau,but the detailed mechanism behind the spatial pattern of deformation on the NFT is unclear and needs further work.7.Conclusion At the mountain front of the eastern Qilian Shan,NE Tibetan Plateau,a ?ight of six strath terraces document the history of active deformation of the Minle-Damaying fault (MDF),where the fault is cut by the northeast-ward ?owing Xie River.Continuous thrusting of the MDF has faulted six Xie River terraces.Terrace pro ?les extracted from a high-resolution digital elevation model (DEM)that was obtained by an unmanned aerial vehicle (UAV)system are used to measure the accumulated vertical offset of the MDF.Together with the ter-race ages constrained by OSL and AMS 14C dating,we obtain an average vertical slip rate of 0.9±0.2mm/yr across the past 12.7±1.4ka.The estimated vertical slip rate of the MDF is comparable with the Pleistocene-Holocene rates from the other thrust faults in the NFT system along the eastern Qilian Shan.Our new data also show that the proximal fault of the NFT system along the eastern Qilian Shan,NE Tibetan Plateau,has remained active when the deformation propagated northeastward into the southern Hexi Corridor.References Ai,S.,Zhang,B.,Fan,C.,&Wang,Y.(2017).Surface tracks and slip rate of the fault along the southern margin of the Wuwei Basin in the late Quaternary.Seismology and Geology ,39(2),408–422.(in Chinese with English abstract).Aitken,M.J.(1998).An Introduction to Optical Dating .Oxford:Oxford University Press.Avouac,J.-P.,&Tapponnier,P.(1993).Kinematic model of active deformation in central Asia.Geophysical Research Letters ,20(10),895–898.

https://https://www.wendangku.net/doc/082590369.html,/10.1029/93GL00128

Figure 9.Map showing slip rates on faults (white boxes)as well as constraints on the onset of mountain building (gray boxes)in the southern and northern Hexi Corridor.“(~10kyr,10Be)”shows the time interval of slip rate record and the corresponding dating method:10Be:10Be exposure dating;AMS 14C:AMS carbon-14dating;OSL:optically stimulated luminescence dating;TL:thermoluminescence dating.Numbers represent the names of the faults:1:Yumen Fault;2:Jiayuguan Fault;3:Zhangye Fault;4:Red Sand River Fault;5:Huangcheng-Taerzhuang Fault.

Acknowledgments

This study is ?nancially supported by

the Natural Science Foundation of China

(grants 41571001,41371031,41590861,

and 41661134011),the Special Funds

for Earthquake Research from China

Earthquake Administration (grant

201408023),and Guangdong Province

Introduced Innovative R&D Team of

Geological Processes and Natural

Disasters (grant 2016ZT06N331).The

DEM presented in this paper are

uploaded to the Baidu cloud disk

(https://https://www.wendangku.net/doc/082590369.html,/s/1hsjEqDe;this

link is permanently valid).Gong Zhijun,

Zhao Junxiang,and Zhang Jiafu (at

Peking University)are especially

thanked for their help on the OSL dating

and the data analysis.We also thank Yao

Yifan and Cheng Lu for their help on the

aerial image processing.Zheng Wenjun

(at Sun Yat-Sen University)is thanked

for thoughtful discussions.Aaron Bufe,

one anonymous reviewer,and the

Editor Nathan A.Niemi are especially

thanked for their constructive

comments and language improve-

ments on the earlier version of the

manuscript,which resulted in the great

improvement of this manuscript.

Burbank,D.W.,&Anderson,R.S.(2012).Tectonic Geomorphology(2nd ed.).Chichester,UK:John Wiley.

Burch?el,B.C.,Brown,E.T.,Deng,Q.D.,Feng,X.,Li,J.,Molnar,P.,…You,H.(1999).Crustal shortening on the margins of the Tien Shan, Xinjiang,China.International Geology Review,41(8),665–700.https://https://www.wendangku.net/doc/082590369.html,/10.1080/00206819909465164

Champagnac,J.D.,Yuan,D.Y.,Ge,W.P.,Molnar,P.,&Zheng,W.J.(2010).Slip rate at the north-eastern front of the Qilian Shan,China.Terra Nova,22,180–187.https://https://www.wendangku.net/doc/082590369.html,/10.1111/j.1365-3121.2010.00932.x

Chen,W.B.(2003).Principal features of tectonic deformation and their generation mechanism in the Hexi Corridor and its adjacent regions since late Quaternary.PhD thesis.Institute of Geology,China Seismological Bureau,Beijing,pp.52–55(in Chinese).

Fang,X.M.,Zhao,Z.J.,Li,J.J.,Yan,M.D.,&Pan,B.T.(2005).Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift.Science in China Series D,48,1040–1051.https://https://www.wendangku.net/doc/082590369.html,/

10.1360/03yd0188

GGB(1989).Regional Geology of Gansu Province(p.692).Beijing:Geological Publishing House.(in Chinese).

Gaudemer,Y.,Tapponnier,P.,Meyer,B.,Peltzer,G.,Shunmin,G.,&Chen,Z.T.(1995).Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the“Tianzhu gap”,on the western Haiyuan Fault,Gansu(China).

Geophysical Journal International,120(3),599–645.https://https://www.wendangku.net/doc/082590369.html,/10.1111/j.1365-246X.1995.tb01842.x

George,A.D.,Marshallsea,S.J.,Wyrwoll,K.-H.,Chen,J.,&Lu,Y.(2001).Miocene cooling in the northern Qilian Shan,northeastern margin of the Tibetan Plateau,revealed by apatite?ssion-track and vitrinite-re?ectance analysis.Geology,29(10),939–942.https://https://www.wendangku.net/doc/082590369.html,/10.1130/ 0091-7613(2001)029%3C0939:MCITNQ%3E2.0.CO;2

He,W.G.,Liu,B.C.,Yuan,D.Y.,&Yang,M.(2000).Research on slip rates of the Lenglongling active fault zone.Northwestern Seismology Journal,22(1),90–97.(in Chinese with English abstract).

He,W.G.,Yuan,D.Y.,Ge,W.P.,&Luo,H.(2010).Determination of the slip rate of the Lenglongling Fault in the middle and eastern segments of the Qilian Mountain active fault zone.Earth,30,131–137.(in Chinese with English abstract).

Heermance,R.V.,Chen,J.,Burbank,D.W.,&Miao,J.(2008).Temporal constraints and pulsed Late Cenozoic deformation during the structural disruption of the active Kashi foreland,northwest China.Tectonics,27,TC6012.https://https://www.wendangku.net/doc/082590369.html,/10.1029/2007TC002226 Hetzel,R.(2013).Active faulting,mountain growth,and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides.Tectonophysics,582,1–24.https://https://www.wendangku.net/doc/082590369.html,/10.1016/j.tecto.2012.10.027

Hetzel,R.,Niedermann,S.,Tao,M.,Kubik,P.W.,&Strecker,M.R.(2006).Climatic versus tectonic control on river incision at the margin of NE Tibet:10Be exposure dating of river terraces at the mountain front of the Qilian Shan.Journal of Geophysical Research,111,F03012.https:// https://www.wendangku.net/doc/082590369.html,/10.1029/2005JF000352

Hetzel,R.,Tao,M.,Stokes,S.,Niedermann,S.,Ivy-Ochs,S.,Gao,B.,…Kubik,P.W.(2004).Late Pleistocene/Holocene slip rate of the Zhangye thrust(Qilian Shan,China)and implications for the active growth of the northeastern Tibetan Plateau.Tectonics,23,TC6006.https://doi.

org/10.1029/2004TC001653

Hu,X.F.,Pan,B.T.,Kirby,E.,Gao,H.S.,Hu,Z.B.,Cao,B.,…Zhang,G.L.(2015).Rates and kinematics of active shortening along the eastern Qilian Shan,China,inferred from deformed?uvial terraces.Tectonics,34,2478–2493.https://https://www.wendangku.net/doc/082590369.html,/10.1002/2015TC003978

IG,LERI,China Earthquake Administration(1993).The Qilian Mountain-Hexi Corridor Active Fault System(p.340).Beijing:Seismological Press.

(in Chinese).

Lasserre,C.,Gaudemer,Y.,Tapponnier,P.,Meriaux,A.S.,Van der Woerd,J.,Yuan,D.Y.,…Caffee,M.W.(2002).Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault,Qinghai,China.Journal of Geophysical Research,107(B11),2276.https://https://www.wendangku.net/doc/082590369.html,/

10.1029/2000JB000060

Lavé,J.,&Avouac,J.-P.(2000).Active folding of?uvial terraces across the Siwaliks Hills,Himalayas of central Nepal.Journal of Geophysical Research,105(B3),5735–5770.https://https://www.wendangku.net/doc/082590369.html,/10.1029/1999JB900292

Li,Y.L.,&Yang,J.C.(1998).Tectonic geomorphology in the Hexi Corridor,north-west China.Basin Research,10(3),345–352.https://https://www.wendangku.net/doc/082590369.html,/

10.1046/j.1365-2117.1998.00070.x

Li,Y.L.,Yang,J.C.,Tan,L.H.,&Duan,F.J.(1999).Impact of tectonics on alluvial landforms in the Hexi Corridor,Northwest China.

Geomorphology,28(3-4),299–308.https://https://www.wendangku.net/doc/082590369.html,/10.1016/S0169-555X(98)00114-7

Lu,H.H.,Burbank,D.W.,Li,Y.L.,&Liu,Y.M.(2010).Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland.Basin Research,22,249–269.https://https://www.wendangku.net/doc/082590369.html,/10.1111/j.1365-2117.2009.00412.x

Lu,H.H.,Wang,Z.,Zhang,T.Q.,Zhao,J.X.,Zheng,X.M.,&Li,Y.L.(2015).Latest Miocene to Quaternary deformation in the southern Chaiwopu Basin,northern Chinese Tian Shan foreland.Journal of Geophysical Research,120,8656–8671.https://https://www.wendangku.net/doc/082590369.html,/10.1002/ 2015JB012135

Lu,H.H.,Wu,D.Y.,Cheng,L.,Zhang,T.Q.,Xiong,J.G.,Zheng,X.M.,&Li,Y.L.(2017).Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland.Geomorphology,299,12–23.https://https://www.wendangku.net/doc/082590369.html,/10.1016/j.geomorph.2017.09.037

Lu,H.H.,Zhang,T.Q.,Zhao,J.X.,Si,S.P.,Wang,H.,Chen,S.J.,…Li,Y.L.(2014).Late Quaternary alluvial sequence and uplift-driven incision of the Urumqi River in the north front of the Tian Shan,northwestern China.Geomorphology,219,141–151.https://https://www.wendangku.net/doc/082590369.html,/10.1016/j.

geomorph.2014.05.001

Molnar,P.,Brown,E.T.,Burch?el,B.C.,Deng,Q.D.,Feng,X.Y.,Li,J.,…You,H.C.(1994).Quaternary climate change and the formation of river terraces across growing anticlines on the north?ank of the Tianshan,China.Journal of Geology,102(5),583–602.https://https://www.wendangku.net/doc/082590369.html,/10.1086/ 629700

Molnar,P.,&Tapponnier,P.(1975).Cenozoic tectonics of Asia:Effects of a continental collision.Science,189(4201),419–426.https://https://www.wendangku.net/doc/082590369.html,/

10.1126/science.189.4201.419

Najman,Y.,Pringle,M.,Godin,L.,&Oliver,G.(2001).Dating of the oldest continental sediments from the Himalayan foreland basin.Nature, 410(6825),194–197.https://https://www.wendangku.net/doc/082590369.html,/10.1038/35065577

Palumbo,L.,Hetzel,R.,Tao,M.X.,Li,X.B.,&Guo,J.(2009).Deciphering the rate of mountain growth during topographic pre-steady state:An example from the NE margin of the Tibetan Plateau.Tectonics,28,TC4017.https://https://www.wendangku.net/doc/082590369.html,/10.1029/2009TC002455

Pan,B.T.,Hu,X.F.,Gao,H.S.,Hu,Z.B.,Cao,B.,Geng,H.P.,&Li,Q.Y.(2013).Late quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain,China.Geomorphology,184(430),84–97.https://https://www.wendangku.net/doc/082590369.html,/10.1016/j.geomorph.2012.11.020

Prescott,J.,&Hutton,J.(1994).Cosmic ray contributions to dose rates for luminescence and ESR dating:Large depths and long-term time variations.Radiation Measurements,23(2-3),497–500.https://https://www.wendangku.net/doc/082590369.html,/10.1016/1350-4487(94)90086-8

Reimer,P.J.,Bard,E.,Bayliss,A.,Beck,J.W.,Blackwell,P.G.,Ramsey,C.B.,…van der Plicht,J.(2013).IntCal13and Marine13radiocarbon age calibration curves0–50,000years cal BP.Radiocarbon,55(04),1869–1887.https://https://www.wendangku.net/doc/082590369.html,/10.2458/azu_js_rc.55.16947

Santos,G.M.,Southon,J.R.,Druffel-Rodriguez,K.C.,Grif?n,S.,&Mazon,M.(2004).Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation:A report on sample preparation at the KCCAMS Facility at the University of California,Irvine.

Radiocarbon,46,165–173.https://https://www.wendangku.net/doc/082590369.html,/10.1017/S0033822200039485

Sobel,E.R.,Chen,J.,&Heermance,R.V.(2006).Late Oligocene-Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations.Earth and Planetary Science Letters,247,70–81.https://https://www.wendangku.net/doc/082590369.html,/10.1016/

j.epsl.2006.03.048

Talma,A.S.,&Vogel,J.C.(1993).A simpli?ed approach to calibrating14C dates.Radiocarbon,35(02),317–322.https://https://www.wendangku.net/doc/082590369.html,/10.1017/ S0033822200014077

Tapponnier,P.,Meyer,B.,Avouac,J.-P.,Peltzer,G.,Gaudemer,Y.,Guo,S.,…Dai,H.(1990).Active thrusting and folding in the Qilian Shan,and decoupling between upper crust and mantle in northeastern Tibet.Earth and Planetary Science Letters,97(3-4),382–403.https://https://www.wendangku.net/doc/082590369.html,/

10.1016/0012-821X(90)90053-Z

Tapponnier,P.,Xu,Z.,Roger,F.,Meyer,B.,Arnaud,N.,Wittlinger,G.,&Yang,J.(2001).Oblique stepwise rise and growth of the Tibet Plateau.

Science,294(5547),1671–1677.https://https://www.wendangku.net/doc/082590369.html,/10.1126/science.105978

Thompson,J.A.,Burbank,D.W.,Li,T.,Chen,J.,&Bookhagen,B.(2015).Late Miocene northward propagation of the northeast Pamir thrust system,northwest China.Tectonics,34,510–534.https://https://www.wendangku.net/doc/082590369.html,/10.1002/2014TC003690

University of Oxford(2017).OxCal/ORAU.Retrieved from https://https://www.wendangku.net/doc/082590369.html,/oxcal/OxCal.html

Vries,H.L.,&Barendsen,G.W.(1954).Measurements of age by the carbon-14technique.Nature,174(4442),1138–1141.https://https://www.wendangku.net/doc/082590369.html,/

10.1038/1741138a0

Wang,W.T.,Zhang,P.Z.,Pang,J.Z.,Garzione,C.,Zhang,H.P.,Liu,C.R.,…Yu,J.(2016).The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau:A sedimentary archive from the Jiuxi Basin.Journal of Geophysical Research,121,2235–2257.https://https://www.wendangku.net/doc/082590369.html,/

10.1002/2015JB012689

Wang,X.L.,Lu,Y.C.,&Zhao,H.(2006).On the performances of the single–aliquot regenerative–dose SAR protocol for Chinese loess–?ne quartz and polymineral grains.Radiation Measurements,41,1–8.https://https://www.wendangku.net/doc/082590369.html,/10.1016/j.radmeas.2005.02.010

Yang,J.C.,&Li,Y.L.(2011).Active Tectonic Geomorphology.Beijing:Peking University Press.(In Chinese).

Yuan,D.Y.(2003).Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the late Cenozoic time,PhD thesis,Beijing:Institute of Geology,CEA.pp.106–145(in Chinese with English abstract).

Zhang,P.Z.,Shen,Z.,Wang,M.,Gan,W.,Bürgmann,R.,Molnar,P.,…You,X.(2004).Continuous deformation of the Tibetan Plateau from global positioning system data.Geology,32,809–812.https://https://www.wendangku.net/doc/082590369.html,/10.1130/G20554.1

Zhang,W.,Jiao,D.,Zhang,P.Z.,Molnar,P.,Burch?eld,B.C.,Deng,Q.,…Song,F.(1987).Displacement along the Haiyuan fault associated with the great1920Haiyuan,China,earthquake.Bulletin of the Seismological Society of America,77(1),117–131.

Zheng,D.W.,Wang,W.T.,Wan,J.L.,Yuan,D.Y.,Liu,C.R.,Zheng,W.J.,…Zhang,P.Z.(2017).Progressive northward growth of the northern Qilian Shan-Hexi Corridor(northeastern Tibet)during the Cenozoic.Lithosphere,9(3),408–416.https://https://www.wendangku.net/doc/082590369.html,/10.1130/L587.1 Zheng,W.J.,Zhang,H.P.,Zhang,P.Z.,Molnar,P.,Liu,X.W.,&Yuan,D.Y.(2013).Late Quaternary slip rates of the thrust faults in western Hexi Corridor(Northern Qilian Shan,China)and their implications for northeastward growth of the Tibetan Plateau.Geosphere,9(2),342–354.

https://https://www.wendangku.net/doc/082590369.html,/10.1130/GES00775.1

Zheng,W.J.,Zhang,P.Z.,Ge,W.P.,Molnar,P.,Zhang,H.P.,Yuan,D.Y.,&Liu,J.H.(2013).Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor,NW China)and its implications for northeastward growth of the Tibetan Plateau.Tectonics,32,271–293.https:// https://www.wendangku.net/doc/082590369.html,/10.1002/tect.20022

【四年级作文】我爱那美丽的校园

【四年级作文】我爱那美丽的校园 在我的心间一直认为我们的校园是最美好的,无论是在春或夏,还是秋或冬,看到的总是一番美好的景象,是梦幻的,是美丽的。 春天,走入校门口,走进黄线区域内,就是学校的怡心园。有许多的同学在玩耍,给怡心园增添了许多生气,那坐在怡心园石凳上安静看书的同学又给怡心园增添了几分书香味。雪慢慢融化,化成水去滋润那尚未睡醒的植物,第一个报到的是蚂蚁,小蚂蚁们刚过了一个冬天的休息时间,便开始忙碌起来,小花慢慢地展开自己娇嫩的小脸,大树爷爷又开始站岗,在那儿静静地看着我们,太阳快落山了,小蚂蚁也收工了,一切都要休息了。晚上,繁星点点,怡心园安静了,偶尔有一声鸟叫,那平静的星空,又给怡心园添上了几丝梦幻。 夏天,同学们最爱去的地方自然是篮球场的玉兰树下了,玉兰树开花了,它不像其他树,一棵树开许许多多的花儿,玉兰花的花瓣儿大大的,那白里透红的玉兰花真像一个大大的舞台啊! 秋天,桂花树开花了,一朵朵小小的,黄黄的桂花,真香啊!下课铃响了,同学们立刻聚集在桂花树下,有的时不时跳起来,想闻一闻那新鲜的桂花香,有的在守着桂花树,一有掉下来的桂花,它们就立刻接住,把它们装进一个漂亮的小包里,做成香包,把桂花的香味传遍校园的每一个角落。 感谢您的阅读,希望文章能帮助到您。 冬天,雪花飘飘,给大地穿上了一身雪衣裳,处处都是雪白一片,就算是在冬天,我们也丝毫感觉不到寒冷,每天放学,篮球场就变成了一个极乐园,同学们有的打雪仗,雪把他们冻得手掌通红,他们也似乎察觉不到,有的拿着橡皮泥在堆雪人,堆出来的雪人各式各样,有的像乌龟,有的又像纪律严明的小军队,可好玩了! 啊,这美丽的学校,这如画的学校! 感谢您的阅读,祝您生活愉快。

描写公园景色的作文12篇

描写公园景色的作文12篇 描写公园景色的作文描述公园景色的作文(一):公园我家旁边有一个美丽的公园。 一进门,映入眼帘的是那争奇斗艳的百花,五颜六色, 艳丽动人。 春天来了,正是百花齐放的时候,各种花都争先恐后的开放了,月季花也不甘示弱,开出一朵朵迷人的花。远远望去,翠绿的枝叶衬着一朵朵深红色的花,艳丽多姿,充满生气。走进一看,花瓣一层一层的,像位美丽的少女。 盛夏时节,茉莉花开放了。细长的花瓣雪白雪白的,洁白无暇。像雪花一样柔软滋润。它的花蕊是黄色的,上面满是花粉。那桃形的花骨朵也惹人喜爱,就像用白玉雕成的。有时候阳光照射在洁白的花朵上,显得晶莹耀眼。夜晚,当银白的月光洒在大地上。从绿叶间露出来的茉莉, 更显出它的高雅气质。 秋天,五颜六色的菊花争艳斗放。有红的、黄的、绿的、白的,还有粉红色的。红的像火,黄的如金,绿的似翡翠,白的像雪花,粉的如彩霞。朵朵傲霜吐艳,竞相开放。 冬天,当百花凋谢时,梅花却傲然挺立,像松柏那样傲风霜,斗严寒。梅花千姿百态,那些似开未开的花,外面的花瓣已经绽开,可里面却还紧紧的抱在一齐,这多像一个害羞的女孩呀!梅花不与百花争艳,这种精神多么可贵。描述公园景色的作文(二):

公园 马草江公园真美啊!美无处不在,马草江公园就是一个美的聚集点! 初入马草江公园,我就已经为眼前的美丽景致而不能自拔,马草江公园的美无法用语言来表达。进入公园,会看到一条清澈见底的小河。鱼儿在水里把尾巴悠闲地摆来摆去,不时地探出头来,似乎对眼前的事物都充满了无限的好奇心。 河边有几个婀娜多姿的少女,正摆动着她们的手臂,优美的舞姿牵动着人们的心。 河对面是一座宽大的桥。桥静静地屹立在那里,有一种神圣不可侵犯的威严。走下桥,一阵香气扑鼻而来,使人心旷神怡。突然,映入眼帘的是一群水仙花,她们弯着腰,抬着手,似乎在向人们打招呼,又好像是在和同伴们窃窃私语。 水仙花的领地上面是一片绿油油的草地,草地的四周有许多棵高大的树木,他们就像草地的守护神一般,无时无刻不在守护着这片可爱的草地。他们高大而坚屈的身影在这片草地上永垂不朽。 许多孩子在这片草地上打闹,玩耍,传来一片欢乐的笑声,久久不愿散去,似乎对这片草地难舍难分了。 我玩了一会儿,突然下起了蒙蒙细雨,雨中的马草江公园又有另一番迷人的风景。许多花朵绽开了他们美丽的笑脸,神气地站在小草中间,似乎在和小草相媲美呢!马草江公园真美

家乡的美景作文300字5篇

家乡的美景作文300字5篇 家乡是稻谷的圣地,春天是播种的季节,夏天农民们带着笑容来,把秧苗插入田中,秋天则是农民们最开心的季节。下面是小编整理的关于家乡美景的作文,欢迎阅读。 家乡的美景 我的家乡非常美丽,风景怡人,空气格外新鲜。我的家乡在青阳洪,那里一年四季风景都非常好,接下来我要介绍我的家乡了。那有许许多多有趣的东西,有清清的溪水、还有枝叶茂盛的丛林、和金灿灿的田野、还有高大漂亮的房子。 有一天,我帮爸爸妈妈打水,突然看见有一个若隐若现的背影,我走过去一看,那个若隐若现的背影原来是我最爱的奶奶啊!我马上过去看了一眼,原来奶奶在洗衣服啊,而且洗好了,我一看手中也没什么重的东西,立刻跑过去帮奶奶抬桶,我一边抬一边喊,我是大力士,什么也难不倒我! 我抬到了家门口,就抬不动了,奶奶马上扶我起来说,抬到这也不容易了,千万不要弃浽,要把一件事坚持的坐下去,这才是真正的男子汉! 我马上起来把捅拎进的家中! 从中我感受到了做一件事情,做一天是非常容易的,要是坚持的做下去那就不容易了。 家乡的美景 我的家乡——依安,它是一块美丽富饶的土地。这里的美景也数不胜数,随便说一个就会让你迷上依安。今天我就给你们说一说怡心园。 怡心园的四季都很美。 春天,积雪融化了,到处都会展现出盎然春意。晚上是散步的佳时,吃完晚饭一家人到怡心园散步是再好不过了。 其实夏天也不错! 夏天,太阳火辣辣地炙烤着大地。花坛中的花竞相开放,真是美不胜收。晚上仍有一些人在跳舞锻炼身体,那优美的舞姿让人如醉如痴。 你一定会问秋天是什么样子的? 秋天,整个怡心园被厚雾笼罩了这个天空,一切浸在乳白色的晨雾里,花草树木一片全白。

美丽的颐和园作文400字四年级

美丽的颐和园作文400字四年级 美丽的颐和园作文400字四年级 北京颐和园是清朝时期的皇家园林。风景秀丽的它,向世人展示中国皇家园林的美。 我们刚进颐和园,一座极有园林特色的,由白玉汉石砌成的拱桥就出现在眼前:石拱桥护栏雕着许许多多的龙,栏柱上雕刻着一只只威武的,形态不同的小石狮子。经过石拱桥,便看见了昆明湖。 昆明湖是颐和园一个大湖,从高处向昆明湖望去,昆明湖就像一个寿桃。昆明湖,是一个人工湖,我想,那该要用多少人力物力呀!昆明湖周围绿树成荫,景色宜人,湖水清澈,真令人心旷神怡。在昆明湖的北岸是一条雕梁画柱的长廊,这长廊长达700多米,有1万2千幅画,并且每幅画都没有相同的地方。 走到长廊尽头,就看见一座倚山而建的阁楼——香阁。香阁是慈禧太后游玩颐和园,在颐和园休息的地方。那里红漆梁柱,金漆木雕,金壁辉煌,里面还有不少奇珍异宝。 最后我们来到了颐和园的一个景点:苏州街。它是将江南民居生活浓缩到园内,苏州街环形而建,

街的一边是古色古香的商铺,地是用花岗岩石建成的,另一边是水道,中间有小拱桥,好像回到古时。 颐和园有山有水,有亭台楼阁,真不愧为皇家园林。 广东广州番禺区东怡小学四年级:覃杰俊 美丽的颐和园作文400字四年级 北京颐和园是清朝时期的皇家园林。风景秀丽的它,向世人展示中国皇家园林的美。 我们刚进颐和园,一座极有园林特色的,由白玉汉石砌成的拱桥就出现在眼前:石拱桥护栏雕着许许多多的龙,栏柱上雕刻着一只只威武的,形态不同的小石狮子。经过石拱桥,便看见了昆明湖。 昆明湖是颐和园一个大湖,从高处向昆明湖望去,昆明湖就像一个寿桃。昆明湖,是一个人工湖,我想,那该要用多少人力物力呀!昆明湖周围绿树成荫,景色宜人,湖水清澈,真令人心旷神怡。在昆明湖的北岸是一条雕梁画柱的长廊,这长廊长达700多米,有1万2千幅画,并且每幅画都没有相同的地方。

美丽的公园作文300字

美丽的公园作文300字 第一篇:美丽的大岭山公园胡炫祺 在一个风和日丽的日子里,我和爸爸妈妈一起去了美不胜收、空气清新的大岭山公园游玩。 来到大岭山公园门口,便看见一个大牌子,上面写着一个大牌子:"大岭山公园欢迎您"。牌子下方有一个大花坛,花坛里盛开着五颜六色的花朵,美丽极了! 过了一会儿,我沿着小道走进了一片竹林,我感到好奇,竹林里会有些什么呢?想到这里,我就钻了进去,到里面看过究竟。嘿!里面竟是一些奇形怪状的石头,名叫"怪石群"。 我望着这些石头不由得笑出声来,你看!这些石头确实是"怪",有的像猴子,有些大象,还有些像狮子......乱石的形状真是千姿百态啊!(春游作文) 又走了一段路,就看见了一座大山,那山上的树木密密麻麻的,不可计数。到了山顶后才发现山的那边还有好多的山,有的山像一架太空飞箭,欲要飞向太空里;有的山像一棵巨大的树...... 我喜欢大岭山公园,因为这里真的是一个美丽的地方! 第二篇:美丽的象山公园

我去过很多风景优美的地方。但我最喜欢去的地方就是象山公园了。 来到象山公园,首先映入眼帘的是一个大牌子,上面写着:象山公园,走进去就会看见一个跳广场舞的地方,人们在那里翩翩起舞。旁边就有一个游泳馆,那里有很多教练在教小朋友们游泳。蓝蓝的天空上有几只小鸟在叽叽喳喳地歌唱,让人感觉走进了一幅优美的风景画。 继续往前走,会看见一片绿油油的草地,草地上有一棵棵既粗壮又高大的树,就像庄严的士兵守卫着象山公园。草地的旁边有一个湖,湖静得像一面明亮的镜子,岸边有一棵棵随风飘扬的柳树,柳枝像一条条翩翩起舞的头发。 湖的前面是一座山,人们可以沿着石阶爬山,石阶旁有一棵棵树,树下的草有些枯萎了,有些还是绿油油的。爬到山顶后,就会看见一块石碑,石碑上刻着许多精美的花纹。下面会有一条小溪,溪水很清很清,水里有一条条的小金鱼,可以在那里钓鱼,也可以把你钓到的小金鱼带回家。 象山公园真美啊!我喜欢风景优美的象山公园! 分页:123 第三篇:美丽的公园魏晓榆 星期六,阳光明媚,空气清新,我和父母到水乡公园游玩。

这儿真美作文描写美丽的校园5篇

这儿真美作文描写美丽的校园5篇 这儿真美作文三年级美丽的校园一 学校是我们学习的天地,使我们成长的乐园,我爱我的学校。 我们学校—----希望小学,广安。这儿鸟语花香简直是一座公园,来到这里你一定会舍不得离开,也许你认为我是在吹牛。可是你看了我下面的文章一定不会这样认为。 我们学校一进门就是一个宽阔的操场,在操场上阳光普照着大地,温暖着刚刚吐绿的树木花草。浮现在我眼前的,是热气腾腾的球场,队员飞奔在篮球场上;是整齐的广播操队伍,同学们做着整齐划一的动作;是跑道上的单行纵队,同学们在操场上你追我赶丝毫不让。每当下课同学们就像出笼的小鸟奔向操场上,低年级的同学们在操场上跳绳、捉谜藏,高年级的同学们在操场上打篮球、踢键子,好玩极了……就像一幅生机勃勃的画卷。主席台上有着庄严鲜红的国旗,每当星期一的早晨,伴着义勇军进行曲,五星红旗冉冉升起,同学们唱着国歌,从心里生出一种对祖国的热爱。 在操场上的周围是一排排树木,有枫树,柏树……每到秋天,枫树脱下绿色的外套换上了那红色的棉袄,秋风便簇簇落下来,同学们便都来到操场捡枫叶做标本。 操场的西边是一个大花坛,里面长着两寸多高的小草远远看去就像是铺了一层绿色的地毯,草地上栽满了白色的牧丹,紫色的丁香,粉色的月季,香气四溢的桂花…...每到夏天那盛开的花,就像一簇簇

燃烧的火焰。 操场北边是教学楼,在操场边站着就会听见朗朗的读书声,同学们在宽敞明亮的教室里学习有着良好的学习环境,同学们学习劲头更大了。 啊!我们的学校真美呀,这一会相信我不是吹牛吧!校园使我感到骄傲,我要用我自己的双手把校园打扮得更美丽。 这儿真美作文三年级美丽的校园二 我们的校园是一座美丽的大花园。 走进学校北大门口,就会看见三棵高大的大松树,他们高大威武,挺拔,粗壮。站在大松树下往上看就像是一个直插云天的小塔,重重叠叠的枝丫,漏下斑斑点细碎的日影。它最勇敢了,无论风吹雨打,它总是坚忍不拔地站在那里。它的肩背还那么挺拔,像是我们学校的站岗士兵。 再往里走,在道路两旁,有两条绿化带,生长着青青的小草,每天都伴随着我们的欢笑声,快乐的成长着。最好的就是“金秋八月,桂花飘香”的日子。绿化带里开满了桂花,黄黄的小小的花朵,别看它小,可是它的魅力无穷大:在校园里一呼吸,就能吸到桂花散发的淡淡清香。在“金秋八月,十里飘香”的日子里,我喜欢坐在校园里发呆,闻着桂花的淡淡清香,仿佛到了梦幻般的天堂,桂花就成了天堂花,散发着梦幻清香。 我们的校园是一个美丽的大花园,但是我还是喜欢校园这一处景物,真是美极了!

美丽的公园小学生作文

美丽的公园小学生作文 美丽的公园小学生作文 在学习、工作乃至生活中,大家或多或少都会接触过作文吧,作文是从内部言语向外部言语的过渡,即从经过压缩的简要的、自己能明白的语言,向开展的、具有规范语法结构的、能为他人所理解的外部语言形式的转化。相信写作文是一个让许多人都头痛的问题,以下是小编整理的美丽的公园小学生作文,希望对大家有所帮助。 美丽的公园小学生作文1 美丽的公园我们家旁边有一座美丽的公园。清晨,我来到公园的时候,一种芳香的气味迎面袭来,清晨公园有点凉,但是,,清晨公园的美丽都让你感觉不到凉。我走进公园的时候,我看见了一只小麻雀,一惊一乍的样子真可爱。我想捉住它,我悄悄地走了过去,它却一下子飞走了,哎,我真失望。中午,晴空万里,天上没有一丝云彩,太阳把地面烤得滚烫滚烫的,一阵热风刮来,大地便卷起一股热浪,火烧火燎地使人感到窒息。花草抵不住太阳的暴晒,都悄悄的地

下了头。可是,在公园里游玩的人们,有的在划船,船一走,湖面便荡起一阵阵微波,构成了一幅美丽的图画。有的在做碰碰车,你追我赶,神采飞扬,他们的欢笑声传到了每个人的心中,在这欢声笑语中,让人们感觉不到这天气的炙热。到了夜晚,漫天的繁星挂在天空中,显得那么的耀眼,那么的心旷神怡!我们的公园不仅仅有这些美丽的.地方,还有好多好多~~~~~~~ 快来吧,来我们美丽的公园里游玩。 美丽的公园小学生作文2 春天来了,我和弟弟来到了风景秀丽的公园里。我们高兴极了,飞快地跑到了河边的草坪上。小草刚刚睡醒觉,把头伸出了地面。野花也露出笑脸在草地上快乐地舞蹈。河边的柳树披上了新衣,嫩绿的柳条在微风中轻轻摆动。只有松树四季常青,还穿着那件墨绿的外衣。弟弟拿了个小竹篮对我说:“姐姐,我们采些春天的野花吧。”“好啊!”不多时,篮子里装满了各色的野花。 冬天来了,我和弟弟又来到了公园。啊,公园变了样!小草早已干枯了,草地上铺了条银白色的被子,柳树上挂满了毛茸茸的银条儿,只有松树仍然是绿绿的,还披着一件白色的雪外衣。我说:“弟弟快找把铁锨找来,我们来堆个雪娃娃。”不一会儿,一个有鼻子有眼睛的雪娃娃出现了,看,它正笑眯眯地望着我们。

四年级写校园作文400字左右-美丽的校园

四年级写校园作文400字左右-美丽的校园 校园是栽培桃李的田野。是学生成长的好地方。既然是好地方,就少不了一个美丽的环境。你的校园是不是很美丽呢?想不想跟大家描述一下你学习的地方呢?下面橙子来为你介绍四年级写校园作文400字左右。 美丽的校园 走进我的校园,首先映入眼帘的是两幢被漆成红色的大楼,它们分别是教学楼和综合楼。教学楼是我们上课的地方,从里面经常传出我们朗朗的读书声,我们在这里学习知识。综合楼是我们上电脑课、音乐课的地方,所以这里留下了我们许多的欢笑。 校园的中心有一棵大松树,它屹立在那里,像士兵一样守护着我们的校园。树下的乒乓球桌是我们锻炼的地方,活动课时,这里总有同学们挥着球拍跳跃的身影。花坛的旁边有一个小池塘,池水清澈,像一条透明的蓝绸子,静静地躺在大地的怀抱里。每到夏天,池塘里盛开着粉红色的荷花,和绿色的荷叶配在一起,可好看了! 再往里走,是一片绿茵茵的操场,我们在这里做操、跳绳、踢毽子……走上草地,好像又听见了运动会时同学们的助威声:“加油!加油!”操场的正前方,是校园里最庄严的地方——升旗台。每周一的早晨,我们全校师生一定会列队来到这里,在国歌的伴奏下向缓缓升起的国旗行少先队礼,成为升旗手,是同学们一致认为最光荣的事。上学期,我做升旗手的那天,心里自豪极了! 这就是我美丽的校园,我每天生活的地方,这里有我敬爱的老师、

可爱的同学,我在这里学习知识健康成长,这里是我另一个家! 亲爱的校园 每日清晨,我都像往常一样去熟悉的学校上学,这一切,是多么美好、平常,而在不久的将来,我就要离开我亲爱的校园,不舍、留恋与感激涌上心头。 回顾在校园中度过的六年时光,回想六年中的每分每秒,回忆那些一幕幕快乐美好的事——自习课与同学们一起朗读,音乐课与同学们一起唱歌,体育课与同学们一起运动...... 但最美的,还是我们这个大家庭——校园。校园处处都彰显着美:景色美,老师美,同学美...... 丝丝春雨唤醒了沉睡已久的校园,柳条随风摇摆,桃花咧嘴微笑,阳光照耀大地,校园里春暖花开、勃勃生机。声声“知了知了”的禅叫,表明炎热的夏天来了,树木越发茂盛,到处是一把把绿色的大伞,校园里阳光明媚、活力四射。秋风瑟瑟,教学楼旁的两排松树像英勇的士兵,一动不地守护者校园,校园里的桂花树开了美丽的桂花,空气中弥漫着馥郁的花香,校园里秋高气爽、桂花飘香。刺骨的寒风迎来了严冬,校园里最美的景物非梅花莫属了,一簇簇梅花在寒风中摇曳,散发出阵阵清香,校园里暗香疏影、银装素裹。 白天,老师在课堂上给同学们讲课;待到夜深人静时,老师在办公桌上认真仔细地批改作业。一月一年,都呕心沥血、无微不至、循循善诱、诲人不倦。 别看同学们个个淘气,却也个个天真善良、乐于助人。只要你有

话题作文 美丽的小花园作文(5篇)

话题作文美丽的小花园作文(5篇) 第一篇:美丽的小花园 走进温州国际育英学校的大门往右拐,就到了我们的乐园。美丽的小花园。那里一年四季景色迷人,尤其是春。夏两季景色更美,真是令人向往。 当春姑娘迈着轻盈的的步伐来到人间,我们的小花园便充满了勃勃生机,小草从土地里探出了小脑袋,给大地铺上了一条柔软的绿地毯,杏树也不甘示弱,抽出了新的枝条,长出了绿油油。翠生生的嫩叶,似乎每一片绿叶上都有一个新的生命颤动,可爱极了。在那绿叶之间,点着一朵朵由五片白皙的,嫩白的花瓣和金黄花蕊组成的杏花,小巧玲珑,美丽极了;蝴蝶花不服气了,风儿一吹一丛丛蝴蝶花就翩翩起舞,好象一只只美丽的蝴蝶在花丛中飞舞。 炎热的夏天不知不觉地到来,太阳用大火烤着大地,这时小花园里却是阴凉凉的,密密层层的枝叶把太阳挡在了小花园之外,不留一点缝隙,小花园成了乘凉的好去处。这时的小花园可热闹了,一些大哥哥大姐姐在被紫藤三角梅缠绕着的凉亭里悠闲看书,活波可爱的小朋友在小花园里嬉戏玩耍,我们也时常到这里漫步在凉亭的走廊上,散心说笑,一边欣周围的景物。 其实小花园的秋天也很美,芳香怡人的各种花儿开了。散发着清香,有一年阳春突然下起了一场雪,孩子们在小花园里打雪仗,堆雪人……快乐极了;我最喜爱小花园的春天和夏天!

第二篇:美丽的小花园 春天来了,我们学校的小花园景色格外的美丽,成了同学们的乐园。 小花园的花一到春天竞相开放,芬芳迷人!看!迎春花吹起了各色的小喇叭,好像在告诉人们春天来了;桃花绽开了美丽的笑脸,似乎在向人们展示自己美丽的花瓣;杜鹃花也不甘落后,它们争奇斗艳,仿佛在说:“我最漂亮!”而茶花就更美丽了。话题作文美丽的小花园作文(5篇)话题作文美丽的小花园作文(5篇)。粉红的、金黄的、雪白的、火红的,就像给茶树穿上了一件件漂亮的花衣裳。这些五彩缤纷的花儿,散发出淡淡的清香,吸引了一群群可爱的蜜蜂和蝴蝶,它们在花丛中飞来飞去,似乎在告诉人们“花儿真美!蜜儿真甜!” 小花园里种着各种各样的树,每一棵树有每一棵树的特点。柳树的枝条又细又长,碧绿碧绿的,真像一条条绿色的丝带,微风一吹,又像小女孩的长发,随风舞动,好看极了!柏树的叶子青翠欲滴,长得十分茂盛,就像一把利剑直插天空;铁树的叶子很独特,单独看一片叶子就像一根鸡毛,整体看就像小朋友踢的毽子,真有意思;海棠的叶子密密麻麻的,树型圆圆的,就像一个个绿色的大蘑菇;棕榈树的叶子大大的,多么像铁扇公主的芭蕉扇;而吊槐就更特别了,枝叶都向下垂着,还真像一把把大伞,非常漂亮。 小花园的草更有意思,一到春天,就从土里钻出来,穿上碧绿的衣裳,微风一吹,它们就跳起优美的舞蹈,好看极了! 春天的小花园真像一幅迷人的图画,让人百看不厌!我爱美丽的小花园。

初中美丽的校园作文精选5篇优秀范文合集

初中美丽的校园作文精选5篇优秀范文合集 时光荏苒,小学六年的时光就这样轻悄悄地溜走了,好像一滴水滴在时间的海洋里,没有声音,也没有影子,把懵懂无知的我们送进了中学校门。下面就是小编给大家整理的初中美丽的校园作文精选5篇优秀范文合集,希望大家喜欢! 初中美丽的校园作文1 时光荏苒,小学六年的时光就这样轻悄悄地溜走了,好像一滴水滴在时间的海洋里,没有声音,也没有影子,把懵懂无知的我们送进了中学校门。“校园”的含义,却并没有改变,依旧是那么温馨,那么美丽,令人浮想联翩…… 当太阳还没有将它的光泽撒向大地的时候,一声尖利的哨声划破了校园的宁静。这哨声,惊醒了昨夜凝聚的露珠,弄得它们一不留神从叶尖跌落;这哨声,也惊醒了巢中的雏雀,惊醒了我们这群酣睡中的孩子。我们揉着惺忪的睡眼,一路小跑来到操场。若是恰逢刚下过雨,偌大的操场上,布满了大大小小的水洼,男孩子们可有精神了,一脚踏进水里,顿时水花快乐地四处溅开。热闹起来的操场四周,是一棵棵苍劲挺拔的香樟。香樟像英武的战士,用身躯保护祖国的花朵;更像一位位老人,用慈爱的目光温暖着我们。难道不是吗?在春季,我们在它的怀抱里玩耍;在酷夏,我们在它的阴凉下避暑;在凉秋,我们在它的落叶上留言;在寒冬,我们在它的身边打雪仗……哦,这一切是多么美妙,简直就像一幅图画! 更吸引人的景致在教学楼前的艺术长廊,廊顶挂满了藤蔓,长廊两侧种满了各种各样的奇花异卉:野菊花,暗含幽香;小桂花,十里飘香;满天星,错落有致……金秋时节,随意翻开一片落叶,里面也隐藏着无限奥秘,有正在缓缓蠕动的绿毛虫,有挥舞大刀卖弄武艺的螳螂,还有叫不上名的“小毛球”,皆是惊喜。 校园里,遍地有生机,处处是风景。 “同学们,上课时间到了,请马上回到自己座位,做好课前准备。”悦耳的上课铃声响起,我们像一根根离弦的箭飞奔进教室。等同学们都笔挺挺地坐好,老师昂首阔步、春风满面地走进教室。三尺讲台上,老师轻轻按动鼠标,幻灯片就一张一张地切来切去。课堂内容精彩纷呈,老师演说激情飞扬。讲祖国的屈辱史,他慷慨悲愤,常使我们激动落泪;讲奇妙的几何题,他思路清晰,常使我们豁然开朗;讲生活的哲理,他深入浅出,常使我们如沐春风……不得不说,老师

四年级美丽的公园作文350字【八篇】

四年级美丽的公园作文350字【八篇】 四年级美丽的公园精选作文350字篇一 离我家不远,有一个美丽的公园。公园里有花朵、小草、大树,花朵们个个都很美丽,它们都聚在一起,仿佛在比美似的。 走进公园的风景屋,里面会有一座假山。水从假山上流下来,形成了小小的瀑布。下面是一个圆形水池,水池里开着几朵粉红的荷花,美丽极了! 在风景屋的后边是植物园,植物园有月季花、桂花、百合花……这里真是一片花的海洋呀! 顺着植物园边长长的廊子往前走,就到了人工湖。人工湖里有几条小金鱼,像美人鱼在海中游泳一样优雅地游着。把手伸进去摸它的尾巴,像面纱一样。有人在湖边漫步聊天,有人乘坐小船在湖中畅游,还有人在湖边看书、写字、做游戏、比赛跑步、跟小鱼一起玩水…… 这个公园多么美丽呀!我喜欢这里。 四年级美丽的公园精选作文350字篇二 离我家不远,有一个美丽的公园。 走进公园大门,迎面是一座上面许多小涧的假山,看起来里面有小虫子。湛蓝的水从灰色的假山上流下来,形成了小小而漂亮的瀑布。看到这样的瀑布,让我想起了一句诗是“飞流直下三千尺,疑是银河

落九天”。瀑布的下面是一个圆圆的水池,里面有许许多多的水。水面上还开着许多各种颜色的荷花,美丽极了! 绕过灰色的假山,我们来到了美丽又好看的月季园,这里简直就是花的海洋。里面全是各种各样的月季花。 顺着长长的廊子往前走,就到达了一个人工湖。有的在人工湖上漫步,有的在湖边聊天,有的人乘坐小船在湖中畅游,还有的人在湖边钓鱼,钓小虾,在树下看书,坐在草地上休息,野炊…… 这个公园真美,我太喜欢这里了。 四年级美丽的公园精选作文350字篇三 我家边上有一个小公园,一年四季会发生不同的变化。 春天,春暖花开,草长莺飞,春满人间,树木都抽出了嫩绿的枝条。柳树因为长出了新辫子,所以,时不时地在波光粼粼的河面上照镜子。公园里有宽阔的草坪,草坪上绿草如茵,花儿姹紫嫣红,山也千岩竞秀…… 夏日炎炎,暑气蒸人,树木长得郁郁葱葱,能帮助我们挡住太阳公公。草地上,各种各样的花开了:有红的、紫的、粉的、黄的……突然,起了暴风暴雨,雷声和闪电约好:闪电先出来提个醒,然后,雷声发出巨大的响声,把人们吓了一大跳。 秋天,落叶纷飞,公园的大树对落叶告别,落叶轻轻地飘下,仿佛在说:“妈妈,再见。您别伤心,明年再见。”

美丽的春天作文400字(6篇)

美丽的春天作文400字(6篇) 【第1篇】美丽的春天作文400字 春天是一个美丽的季节,如果说夏天是炎热的季节,秋天是丰收的季节,冬天是万物的结晶,那春天不正是春暖花开、万物复苏的季节吗?我今天要去寻找春天的气息。 我走到草地上,小草从土里迫不及待地探出了小脑袋,睁大了好奇的双眼,好像发现了新大陆似的。春姑娘给小草绿色,小草的那点绿,绿得沁人心脾,小草上的露珠晶莹剔透,好像一颗颗透明的宝石,我说:“小草是春天的气息呀!” 我走到美丽的花园,走到门口,我便闻到各式各样的香味,有玫瑰浓浓的香味、郁金香淡淡的清香……真令人陶醉啊!走到花园里,哇!桃花绽开了笑脸,银杏树笔直地站着,拿着长矛守护着花园,桃花掉落下来的花瓣,好像一只只蝴蝶在翩翩起舞,五颜六色,美丽极了!我说:“花儿是春天的气息呀!” 我走在回家的路上,一阵阵蒙蒙细雨下了下来,我一看,原来是春雨,我说:“春雨也是春天的气息。” 原来小草、花儿、春雨就是春的气息呀!五光十色的春天,我爱你! 【第2篇】美丽的春天作文400字

当冬爷爷悄悄离去后,春姐姐便已来临。 春天是一个百花盛开的季节,她是我在四季中最喜欢的季节,她虽不像夏天可以穿漂亮的裙子,也不像冬天又可爱的雪精灵,但她却有数不尽的花朵,有美丽的风景。 啊,春姐姐真是个伟大的画家,她把春天画得这么栩栩如生,你看远处的花儿是多么的美丽啊,再走近过去,一股芬芳味扑鼻而来,春天,是多么的充满诗意啊,望着那些花儿,我不禁想起了杨万里的《宿新市徐工店》。 春天不仅是一个百花盛开的季节,更是一个风景如画的季节,在春季去公园里游玩,是在适合不过了,春天充满着绿色,充满着新鲜的空气,偶尔,累的时候,去公园玩一趟,呼吸着新鲜空气,看看美丽的的景色,这是多么的令人心旷神怡啊! 春天是生机勃勃的,春天是万物复苏的,春天是百花齐放的,春天更是风景如画的,她能陶冶情操,让人不禁心旷神怡,这就是春天。 啊,我爱春天,我爱着春天的一切。 【第3篇】美丽的春天作文400字 冬去春来,杨柳土绿,大地更新。 春天是万物复苏的季节:看那随风摇摆的柳树,那细细的枝条,让你不禁想起《咏柳》的诗句来:碧玉妆成一树高,万条垂下绿丝绦。不知细叶谁裁出?二月春风似剪刀。松柏经过了严冬的考验,显得更

美丽的颐和园五年级作文400字

美丽的颐和园五年级作文400字 美丽的颐和园五年级作文400字 北京颐和园是清朝时期的皇家园林。风景秀丽的它,向世人展示中国皇家园林的美。 我们刚进颐和园,一座极有园林特色的,由白玉汉石砌成的拱桥就出现在眼前:石拱桥护栏雕着许许多多的龙,栏柱上雕刻着一只只威武的,形态不同的小石狮子。经过石拱桥,便看见了昆明湖。 昆明湖是颐和园一个大湖,从高处向昆明湖望去,昆明湖就像一个寿桃。昆明湖,是一个人工湖,我想,那该要用多少人力物力呀!昆明湖周围绿树成荫,景色宜人,湖水清澈,真令人心旷神怡。在昆明湖的北岸是一条雕梁画柱的长廊,这长廊长达700多米,有1万2千幅画,并且每幅画都没有相同的地方。 走到长廊尽头,就看见一座倚山而建的阁楼——香阁。香阁是慈禧太后游玩颐和园,在颐和园休息的地方。那里红漆梁柱,金漆木雕,金壁辉煌,里面还有不少奇珍异宝。 最后我们来到了颐和园的一个景点:苏州街。它是将江南民居生活浓缩到园内,苏州街环形而建,

街的一边是古色古香的商铺,地是用花岗岩石建成的,另一边是水道,中间有小拱桥,好像回到古时。 颐和园有山有水,有亭台楼阁,真不愧为皇家园林。 美丽的颐和园五年级作文400字 北京颐和园是清朝时期的皇家园林。风景秀丽的它,向世人展示中国皇家园林的美。 我们刚进颐和园,一座极有园林特色的,由白玉汉石砌成的拱桥就出现在眼前:石拱桥护栏雕着许许多多的龙,栏柱上雕刻着一只只威武的,形态不同的小石狮子。经过石拱桥,便看见了昆明湖。 昆明湖是颐和园一个大湖,从高处向昆明湖望去,昆明湖就像一个寿桃。昆明湖,是一个人工湖,我想,那该要用多少人力物力呀!昆明湖周围绿树成荫,景色宜人,湖水清澈,真令人心旷神怡。在昆明湖的北岸是一条雕梁画柱的长廊,这长廊长达700多米,有1万2千幅画,并且每幅画都没有相同的地方。 走到长廊尽头,就看见一座倚山而建的阁楼——香阁。香阁是慈禧太后游玩颐和园,在颐和园休

美丽的公园四年级作文400字(精选10篇)

美丽的公园四年级作文400字(精选10篇)美丽的公园四年级作文400字(精选10篇) 在平时的学习、工作或生活中,大家都接触过作文吧,借助作文人们可以反映客观事物、表达思想感情、传递知识信息。你知道作文怎样写才规范吗?以下是小编精心整理的美丽的公园四年级作文400字(精选10篇),欢迎大家借鉴与参考,希望对大家有所帮助。 美丽的公园四年级作文400字1在我的家乡石河子,有许多有趣、好玩的地方,离我家近一点的有:景观河、世纪广场、人工湖、西公园……稍微远一点的有北湖风景区、蟠桃园旅游区、南山风景区等。这里面我最喜欢的要数西公园啦! 春天来了,我迫不及待地让妈妈带我去西公园。那里的花开得可鲜艳了,有红的、粉的、紫的、黄的……简直比我画画用的调色盘里的颜色还多还好看。我赶忙让爸爸妈妈给我照相,这里照一张,那里照一张,我觉得自己都变成花园里的一只小蝴蝶啦! 到了夏天,公园里绿树成荫,有高大、挺拔的白杨,

郁郁葱葱的松树,叶子像碧玉一样的柳树……。在这里随便哪一棵树下坐着看书,保证一天都凉爽舒适。还可以和小朋友们一起在草地上做游戏,追蝴蝶。草地上可以看到各式的小野花,最常见的是蒲公英,一阵微风吹来,它那白色的绒毛像降落伞一样飘散开去…… 公园里还有两个游泳池,一个是大人的,水深一些,一个水浅特别适合是小孩玩的。天气最热的时候,小朋友们在游泳池里打水仗,玩得可开心了。 要是玩累了,想看看西公园的风景,那就可以租一辆小小的景观车,自己开着车子围绕着公园四处转。我记得有一次我和哥哥坐在景观车上,走到半路哥哥把车停下了,让我来开,虽然我小心翼翼地开,可还是差一点冲进路边的草坪上,真是把我俩吓坏了,那真是一次难忘的经历呀! 我想,要是以后我长大了,工作再忙,但只要有空,我就一定会上约我的朋友去西公园,聊天、玩耍、打水仗…… 美丽的公园四年级作文400字2我想,我可以学到。因为,它是的一年四季里在发生着不同的变化,使它成为了有趣的公园。 春天,公园里百花齐放,迎春花美丽的绽放,花草村木都长出了嫩牙儿。小溪的冷冻日没了,沉睡的小溪醒来了,流水欢快地还唱起了歌。树上的小鸟从窝中飞出,用他优美的歌声,叫醒了沉睡着的土地公公。

美丽的公园小学生作文

美丽的公园小学生作文 导读:美丽的公园小学生作文1 美丽的公园我们家旁边有一座美丽的公园。清晨,我来到公园的时候,一种芳香的气味迎面袭来,清晨公园有点凉,但是,,清晨公园的美丽都让你感觉不到凉。我走进公园的时候,我看见了一只小麻雀,一惊一乍的样子真可爱。我想捉住它,我悄悄地走了过去,它却一下子飞走了,哎,我真失望。中午,晴空万里,天上没有一丝云彩,太阳把地面烤得滚烫滚烫的,一阵热风刮来,大地便卷起一股热浪,火烧火燎地使人感到窒息。花草抵不住太阳的暴晒,都悄悄的地下了头。可是,在公园里游玩的人们,有的在划船,船一走,湖面便荡起一阵阵微波,构成了一幅美丽的图画。有的在做碰碰车,你追我赶,神采飞扬,他们的欢笑声传到了每个人的心中,在这欢声笑语中,让人们感觉不到这天气的炙热。到了夜晚,漫天的繁星挂在天空中,显得那么的耀眼,那么的心旷神怡!我们的公园不仅仅有这些美丽的地方,还有好多好多~~~~~~~ 快来吧,来我们美丽的公园里游玩。 美丽的公园小学生作文2 春天来了,我和弟弟来到了风景秀丽的公园里。我们高兴极了,飞快地跑到了河边的草坪上。小草刚刚睡醒觉,把头伸出了地面。野花也露出笑脸在草地上快乐地舞蹈。河边的柳树披上了新衣,嫩绿的柳条在微风中轻轻摆动。只有松树四季常青,还穿着那件墨绿的外衣。弟弟拿了个小竹篮对我说:“姐姐,我们采些春天的野花吧。”“好

啊!”不多时,篮子里装满了各色的野花。 冬天来了,我和弟弟又来到了公园。啊,公园变了样!小草早已干枯了,草地上铺了条银白色的被子,柳树上挂满了毛茸茸的银条儿,只有松树仍然是绿绿的,还披着一件白色的雪外衣。我说:“弟弟快找把铁锨找来,我们来堆个雪娃娃。”不一会儿,一个有鼻子有眼睛的'雪娃娃出现了,看,它正笑眯眯地望着我们。 公园的景色秀丽,使人留连忘返。 美丽的公园小学生作文3 星期天的上午,爸爸、妈妈带我去日湖公园游玩。 踏进公园的大门,沿着弯弯曲曲的小路往里走,映入眼帘的是一棵棵茁壮的大树,它们像一位位士兵。草地绿油油的,像绿茵茵的地毯。树林里还有几只小猫在觅食,似乎找到了许多可恶的老鼠。 我们穿过这片茂密的树林,来到了观鱼池。观鱼池里的水清澈见底。很多人在划船。我扔了一些面包渣,小鱼儿争先恐后地去抢食物,生怕吃不到。鱼儿多得数不清,有些鱼儿是红色的,有些鱼儿是白色的,还有些鱼儿是橙色的。 我们又走过小桥,来到黄金沙滩。黄金沙滩的沙子被太阳晒了,显得更加灿烂。有些人在堆城堡,有些人躺在沙滩上晒太阳,还有些人在沙滩上追逐打闹。我们又跑过小路,来到荷花池,有些花儿还是花骨朵儿,没展开;有些花才展开一点点花瓣;还有些花瓣全部展开了,在微风中翩翩起舞。 时间过得好快,太阳已经落山了,我们依依不舍地离开了风景如

美丽的公园400字五年级学生作文

亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档美丽的公园400字五年级学生作文,这篇文档是由我们精心收集整理的新文档。相信您通过阅读这篇文档,一定会有所收获。假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。 美丽的公园400字五年级学生作文公园一年四季,就像一条无边的彩带,春的幽静、夏的火热、秋的灿烂、冬的祥和都在这条彩带上。下面就是我们给大家带来的美丽的公园400字作文,希望大家喜欢! 美丽的公园400字作文篇一 小雾岗公园一年四季风景优美,是个可爱的地方。 春天,小草探出小脑袋,惊奇地看着这个美丽的世界。树木抽出了新的枝条,一些叶子像小鸟的嘴巴,啄得小树发痒。花圃里的花五颜六色:黄的似金、粉的似霞、红的似火、白的似雪……鸡蛋花雪白雪白的,像一位仙女,她发出阵阵清香,惹得蝴蝶在她身边翩翩起舞。 夏天,榕树长得枝繁叶茂,像个长满“胡须”的老人,大树底下摆着几张石凳,石凳上坐无虚席,老人们有的在下棋,有的在看报,还有的在聊天……榕树旁还种着芒果树,树上结满了绿色的芒果,就像一个个小灯笼。在花圃里,风雨花开了,就像一

个个天气预报员,告诉大家要下雨了。牵牛花吹着紫色的小喇叭,吹得可起劲了! 秋天,榕树、芒果树的叶子变黄了。松柏还是那么苍翠,一阵风吹来,落叶随风飞舞,像一只只美丽的黄蝴蝶。花圃里,金桂树开花了,金桂飘香,沁人心脾。 冬天,四季常青的松柏在叶子落光的树中显得特别精神抖擞。梅花红艳艳的,枝头好像点燃了红红的火焰。 我爱美丽的小雾岗公园! 美丽的公园400字作文篇二 今天秋高气爽,妈妈带我去公园玩耍。 我和妈妈来到公园,进了大门后就能看见小池塘,池塘里的水清澈见底,水里有许多五彩缤纷的小金鱼在自由自在地游着。它们有红、有黄、有黑、有花......好美!池塘边的柳树枝条垂到水里,好像婀娜多姿的少女,把一头柔发垂到水里洗。 向前走,我们就来到了草坪,这片草坪就像一块绿油油的地毯,铺向远方。菊花儿五颜六色,争相开放。弯下腰闻一闻,一股股清香在你的身旁环绕。美丽的蝴蝶在菊花边跳起了轻盈的舞蹈,勤劳的蜜蜂一边在菊花里边“嗡嗡嗡”地演奏着美妙的歌曲,一边高高兴兴地采蜜。不远处,有一群孩子在家长的陪伴下,来到草坪上放风筝,草坪上空飘着各式各样的风筝和孩子们欢乐

写家乡景物的作文共8篇

写家乡景物的作文共8篇 【篇一:家乡的小河作文】我的家乡环境优美绿树成荫。西边的田野里有一条很清很清的小河。河里有鱼、有虾、有螃蟹。有的时候还能看见洁白的水鸟在河边捕鱼。妈妈和爸爸会在周末的时候带我去玩。 可是有一段时间,由于人们不爱护环境,不爱护小河,清清的河水不仅不清了,而且还散发出难闻的味道。河里的鱼、虾、螃蟹、都不知道跑哪去了,水鸟也不见了影子。人们都不喜欢小河的这个样子,于是决心要让小河重新漂亮起来。人们把小河里的垃圾捞了出来,小河里的水又变的和以前一样清了。人们又种上了荷花,荷花开出了许多红色、白色的花朵,可漂亮了。要是走在河边上,就可以闻到荷花的香味。小鱼、小虾又不知道从哪冒出来了,就连很久看不到的水鸟也回来了。 我可真高兴啊!因为我又可以去那玩了。 【篇二:我的家乡——微山作文】我的家乡在微山湖畔,这里是铁道游击队的故乡。这里还有微山湖---4A级的旅游景点。 微山湖很美,湖水碧绿,湖中央有座美丽的小岛,叫微山岛。远远望去,小岛就像一个点,微山湖就像一片绿地,美丽极了!夏天,万亩荷花开放了,有红的、粉的和白的,真是“接天莲叶无穷碧,映日荷花别样红”啊!要是这时候你撑着小船到湖里采莲蓬,准会采到许多又大又甜的莲蓬,让你吃个够。湖里的小鱼儿、鸭子在湖中嬉戏。 ————来源网络搜集整理,仅供个人学习查参考

鱼儿躲在荷叶下面,鸭子在湖面上游来游去,好像是在找小鱼填饱肚子。 太阳快要落山了,人们急忙赶去菜馆吃饭。大鲤鱼可好吃了!人们争着挑四个鼻孔的鲤鱼吃。“真好吃啊!我从来都没吃过那么好吃的鲤鱼!”一个小女孩说。“我也是。我也从来没吃过这么好吃的鲤鱼!”一个男孩大叫。人们吃完饭,在旅馆住了一夜。早晨,人们悄悄地对微山湖说:“再见了,美丽的微山湖!” 我的家乡那么美,你喜欢我的家乡吗?喜欢就来吧!热情好客的微山县人民等着你哦! 【篇三:家乡的龙门石窟作文】回到老家,重温龙门!一进大门,展现在我们眼前的是一座喷泉。这座喷泉十分美丽,喷泉里还有许多美丽的荷花,为喷泉增添了几分光彩。听讲解员阿姨说,这里的泉水能给人们带来好运。所以,人们都拿瓶子接一点,有的洗了手……喷泉里还有很多的小鱼。 绕过喷泉,来到了一个名叫白马寺的寺庙,这座寺庙为中国第一古刹。里面有许多的佛像。白马寺前有一条大河,河上有许多龙船,十分壮观。 走出白马寺,沿着小桥来到了一座大山。这座大山满山都是洞,动力有许多佛像。有的佛像是在守护着他左手边的洞口,手里拿着一把尖刀。有的佛像盘腿坐在洞里,他的两旁有两座佛像,都是他的弟子。有的佛像头上面有很多小佛像,十分精致。有的佛像头上有一圈金光。在龙门石窟上,有上百个、上千个佛像在洞里。我看见了一座

相关文档
相关文档 最新文档