文档库 最新最全的文档下载
当前位置:文档库 › 极限的求法

极限的求法

极限的求法

张洪宾

摘要 本文介绍了如何求解极限问题。 关键词 极限的求解 ,表达式,化简

引言 极限理论是数学分析的重要理论,贯穿于数学分析的始终,求解极限是解决微积分的基本前提,级数问题中必不可少的,也是考研过程中必须攻克的一关。

而它之所以难,往往在于表达式复杂,如n 项连加、连减、连乘、连除,或

是多种函数混合在一起引起计算困难,如0

lim x →。

因此,我们认为解决极限问题,其关键在于化繁为简,将复杂表达式化成单一的再求解,则迎刃而解。化简方法很多,我们认为优先考虑等价无穷小代换,其次再考虑其他方法。

本文结构 1、介绍等价无穷小代换

2、对等价无穷小代换的补充公式

3、迫敛性和定积分

4、几种特殊的方法

5、无表达式的解决方法

6、附表一张:具体的解题思路 1、等价无穷小代换

等价无穷小代换是指在某种特殊情形下,用简单的n kx 代换s i n x cos x tan x

ln x arcsin x arctan x 等函数,将求解复杂的函数的极限化简成求普通的极限问题,再配合其他方法,则容易解决,这也是其最大的优点所在。而且,也能局部使用等价无穷小代换,将复杂问题简单化。常用代换:

sin x ~arcsin x ~tan x ~arctan x ~1x e -~ln(1)x +~x 。(1)1a x +-~ax 。

(0)x →。但是,等价无穷小代换并非能解决所有化简问题,如若出现相同无

穷小量相减时,则不能用此方法否则会与实际结果不同。究其原因,等价无穷小代换是忽略高阶无穷小量的泰勒公式的一阶展开式,而不同的高阶无穷小相减时,不一定为零。

例1、0()

ln(1)

sin 2lim 31

x x f x x →+

-=5 ,求20()lim x f x x → (北京市数学竞赛题) 解析:根据等价无穷小原理,0x →,()ln(1)~sin 2f x x +

()

~sin 2f x x

()2f x x

31~x

-ln 3

x ,则原式简化为0

()

2lim ln 3

x f x x

x →=2

()lim

2ln 3

x f x x →=5,整理得

2

()lim

10ln 3x f x x

→= 。

解:0

()

ln(1)

sin 2lim

31

x x f x x →+

-=0()

2lim ln 3x f x x x →=20()lim 2ln 3x f x x →=5 ,

20()lim 10ln 3x f x x

→= 。 2、洛必达法则和太勒公式

等价无穷小代换的确是化简的妙法,若将洛必达法则与其配合,则效果 更佳。而泰勒公式亦能弥补等价代换的不足,有时也比洛必达法则好用。 1)洛必达则

它是专门用来解决不定式极限问题的。可将各种不定式极限转化为0

∞ 型,再求解;而在其化简过程中若适当运用等价无穷小可使过程简单化。

例2、求

lim x

x →解析:此题给人第一感觉复杂,无从下手。但若静下心来,想一想,则可发现,根据等价无穷小原理,0x →时

,1-2

1~

2

x

,则原题化简为

2sin 1

lim

12x

x x e x

→-+,而又满足用洛必达法则的

0型,则迎刃而解。

解:0

lim

x

x →0

2

sin 1

lim

12x

x x e x

→-+=0

cos lim

x

x x e

x

→-=0

sin lim

11

x

x x e

→--=-。

2) 泰勒公式法

泰勒公式是用多项式逼近函数的一种有效工具,而且在求某些极限过程 中亦很有效,其间穿插着等价无穷小的部分运用,可将复杂函数简化许多, 而且还能解决相同等价无穷小量相减的情况。 例3:求2

22

2

cos lim

sin tan x

x x e

x x

-→-?。

解析: 若用等价无穷小代换,则分子会出现2

2

x

-

+

2

2

x

=0的现象,这是等价无

穷小的盲区,却可部分运用等价无穷小代换,将分母化为4x 。再考虑洛必达法则,虽然满足条件,但分母求导太复杂,且需多一步使函数简化。其次运用洛必达法则,亦复杂难用,而泰勒公式则能避免此问题。

解: 2

22

2

cos lim

sin tan x

x x e

x x

-

→-?=0

lim

→x 4

2

2

cos x

e

x x

-

-

=0

lim

→x ()

()

44

2

224

4

2

2!2121!

42

1x

x x x x

x

x

???

?????+???? ??-+--++

-

οο

=0

lim

→x ()

4

4

4

12

1x

x x ο+-

=12

1-

3、迫敛性和定积分法

对于那些N 项连续运算的极限求解问题,等价无穷小代换可能失效,此 时可考虑一下其他方法:迫敛性,定积分等。 例4

、求lim n →∞

+

???+

???+

,而

lim

lim

1n n →∞

→∞

==,由迫敛性可知所求极限为1。

解:设n a =

,n c =

,n b =

+

+???+

n n n a b c ≤≤,又lim lim 1n n n n a c →∞

→∞

==,所以lim 1n n b →∞

=

例5、求111lim (

)1

2

2n n n n

→∞

+

+???+

++

解析:若用迫敛性,则出现1lim 22

n n n a n

→∞

=

=,lim 11

n n n c n →∞

=

=+,

1111lim (

)1

2

1

2

2n n n n

→∞

≤+

+???+

≤++的情形,显然无法解决,若对

其变形:原式=

1111(

)

12111n n

n

n

n

+

+???+

+

+

+

=

1

1

111i i n

n

=?

+

,取极限,即为

10

11dx

x

+?

解:111lim (

)1

2

2n n n n →∞

+

+???+

++=lim

n →∞

1111(

)

12111n n

n

n

n

+

+???+

+

+

+

=1

101

11lim 1i n

i n

n

→=?

+

=10

11dx x

+?

ln 2

= 。

4、导数定义法和拉格朗日中值定理法

有些特殊极限需用特殊方法求,如导数定义法,垃格朗日中值定理法。 1)导数定义法

导数是用极限定义的,若反其道而用之,也可将极限化简为求某一函数 在一定点的导数,巧用0

000

()()

()lim x x f x f x f x x x →-'=-。

例6、

求lim 1)n n →∞

-

解析:要想解决该极限,需要想办法

将lim 1)n n →∞

化简为0()f x ',

1

1)10

n a a n n -=

-,则(),()ln x x f x a f x a a '==这样则使原问题简化许多。

解:1

lim 1)lim

ln 10

n n n a a n a

n →∞

→∞

--==-

2)拉格朗日中值定理法

与导数定义法类似,将b

a b f a f --)

()(化简为()f ξ',再求()f ξ'的极限,不失为

化简之妙法。 例7、求tan 0

lim

tan x

x

x e e

x x

→--

解析:次题虽满足洛必达法则和等价无穷小代换,但二者均无发解决此题,而此函数却行如拉格朗日中值定理,()x f x e =,则原式可简化为步

()(tan )

()tan f x f x f x x

ξ-'=-,(,tan )

x x ξ∈。

解:tan 0

lim

tan x x

x e e

x x

→--=0

lim lim 1x

x x e e ξ→→==,ξ位于x 与tan x 之间。

5、极限定义法

上述各种方法都是在有表达式情形下才有效,而无表达式时,只能用极限定义法了。

例8、若3

lim ()x f x a →=,求0

lim ()x f x →。

解析;由3x =易知,0

lim ()x f x →=a 。再用δε-语言证明即可。

解:因为30

lim ()x f x a →=,所以,0ε?>,0δ?>,00x δ<-<时,3()f x a ε-<.

而3

00δ

<

<,则

3

()f a f x a ε??

-=-

?

,所以0

lim ()x f x →a =.

以上比较系统的叙述了解决极限问题的思路与方法,下面附表一张,清楚地

描述出上述思路与方法。

数学极限的求法

数学极限的求法 常见:夹逼准则, 无穷小量的性质,两个重要极限,等价无穷小,洛必达 法则, 中值定理, 定积分, 泰勒展开式。后四种不常见。另外求代数式极限可参见课本P48上。证明极限用定义证。 1:利用等价无穷小代换求极限 当x 趋于0时等价,例如x ~x sin ~x tan ~x arcsin ~x arctan ~ )1ln(x +~1-x e x n x ax x x x x x x x x x n a 1 ~,~1)1(,21~ cos 1,~arcsin ,~tan ,~sin 2+-+- 当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。 例:求 43 03 lim (sin )2x x x x →+ 解: sin 2 2x x ∴4303lim (sin )2x x x x →+= 43 03lim () 2x x x x →+= 4330lim 8x x x x →+=8 2:利用极限的四则运算性质求极限 进行恒等变形,例如分子分母约去趋于零但不等于零的因式;分子分母有理化消除未定式;通分化简;化无穷多项的和(或积)为有限项。 例;求极限

(1)22 11lim 21x x x x →--- (2)3 2lim 3x x →-- (3) 3113lim()11x x x →--++ (4) 已知 11 1 ,1223(1)n x n n =++ +??-?求lim n n x →∞ 解:(1) 2211lim 21x x x x →---=1(1)(1)lim (1)(21) x x x x x →+--+=11lim 2 1x x x → ++=23 (2)(2)= 3 x →=3x →=14 (3) 311 3lim ( )11x x x →--++ =2312lim 1x x x x →---+=21(1)(2)lim (1)(1)x x x x x x →-+-+-+=212lim 1x x x x →---+=-1 (4) 因为 11 1 , 1223 (1)n x n n = +++ ??-? 111111 111 122334411n n n =-+-+-+- - +---11n =- 所以 1 lim lim(1)1 n n n x n →∞→∞=-= 3:利用两个重要极限公式求极限 (1) 0sin 1lim lim sin 1x x x x x x →→∞== (2)1 01lim(1)lim(1)x x x x x e x →∞→+=+= 例:求下列函数的极限[4] (1) 230lim lim cos cos cos cos 2222n n n x x x x →→∞?? ??????????

极限求法大全

极限求法大全 1.1利用极限的定义求极限 用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值 A ,这 种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限 值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是 密切相连的 例:lim f x A 的「S 定义是指: £>0, S = S ( x 0, £ ) >0, O v |x- X Q | x X O vs |f(x)-A| V£为了求S 可先对X O 的邻域半径适当限制, 如然后适当放 大I f(x)-A (x)(必然保证? (x)为无穷小),此时往往要用含绝对值的不 等式: I x+a I =|(x- X O )+( x o +a)| < |x- x °|+| x o +a| v| x °+a | +S 1 域|x+a|=|(x- X O )+( x o +a)| >| x °+a|-|x- X O | >| x °+a|- S 1 从? (x) VS 2,求出S 2后, 取3 = min( S 1,S 2),当 0 v |x- x 0 | VS 时,就有 |f(x)-A| V£ . 例: 设 lim X n a 贝V 有 lim __也―a . n n n 证明: 因为 lim x n n a ,对 0, N 1 N,),当n N 1时,X n -a -于是当 n N 1 时,X 1 X 2 … X n a X 1 X 2 ...x na 1.2利用极限的四则运算性质求极限 定理⑴:若极限lim f (x)和lim g(x)都存在,贝U 函数f (x) g(x), f (x) g(x)当 X X) X X O X x 0时也存在且 ① l in i f(x) g(x) 阿 f(x) l in i g(x) x X 0 x X 0 x ^0 ② lim f (x) g(x) lim f (x) lim g(x) XX ) X X ) X X) n n 其中A X 1 a X 2 a X N 1 是一个定数 ,再由 A n 2, 解得n 2A ,故取N max M, 2A 当n N 时, X 1 x 2 .. X n —+ — 2 2 n o

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

求极限的方法总结

求极限的几种常用方法 一、 约去零因子求极限 例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。 二、 分子分母同除求极限 求极限limx→∞x3-x23x3+1 ∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13 三、 分子(母)有理化求极限 例:求极限limx→∞(x3+3-x2+1) 分子或分母有理化求极限,是通过有理化化去无理式。 ()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x 0132lim 22=+++=+∞→x x x 例:求极限limx→01+tanx -1+sinxx3 30sin 1tan 1lim x x x x +-+→=() x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→= 41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。 四、 应用两个重要极限求极限

(2)limx→∞(1+1x)x=limx→0(1+x)1x=e 在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。 例:求极限limx→∞(x+1x-1)x 第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。 limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2 五、利用无穷小量的性质求极限 无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。 例:求limx→∞sinxx 因为sinx≤1, limx→∞1x=0,所以limx→∞sinxx=0 六、用等价无穷小量代换求极限 常见等价无穷小有: 当x→0时,x~sinx~tanx~arcsinx~arctanx~ln1+x~ex1, 1-cosx~12x2,(1+ax)b-1~abx 等价无穷小量代换,只能代换极限式中的因式。此方法在各种求极限的方法中应作为首选。 例:limx→0xln(1+x)1-cosx=limx→0xx12x2=2

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

极限求法总结.(精选)

极限的求法 1、利用极限的定义求极限 2、直接代入法求极限 3、利用函数的连续性求极限 4、利用单调有界原理求极限 5、利用极限的四则运算性质求极限 6. 利用无穷小的性质求极限 7、无穷小量分出法求极限 8、消去零因子法求极限 9、 利用拆项法技巧求极限 10、换元法求极限 11、利用夹逼准则求极限[3] 12、利用中值定理求极限 13、 利用罗必塔法则求极限 14、利用定积分求和式的极限 15、利用泰勒展开式求极限 16、分段函数的极限 1、利用极限的定义求极限 用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。 例:()0 lim x x f x A →=的ε-δ 定义是指:?ε>0, ?δ=δ(0x ,ε)>0,0<0x <δ?(x)<ε 为了求δ 可先对0x 的邻域半径适当限制, 如然后适当放大|f(x)|≤φ(x) (必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式: ||(0x )+(0x )|≤0x 0x <|0x |+δ1 域(0x )+(0x )|≥0x 0x >0x δ1 从φ(x)<δ2,求出δ2后, 取δ=(δ1,δ2),当0<0x |<δ 时,就有(x)<ε.

例:设lim n n x a →∞ =则有12 (i) n n x x x a n →∞++=. 证明:因为lim n n x a →∞ =,对110()N N εε?>?=,,当1n N >时,-2 n x a ε ∣∣<于是当 1n N >时,1212......n n x x x x x x na a n n +++∣+++-∣∣-∣= 0ε<<1 其中1 12N A x a x a x =∣-∣+∣-∣+∣-α∣是一个定数,再由2 A n ε <, 解得2A n ε> ,故取12max ,A N N ε?? ??=???????? 12 ...+=22n x x x n N n εεε+++>-α<当时,。 2、 直接代入法求极限 适用于分子、分母的极限不同时为零或不同时为 例 1. 求 . 分析 由于 , 所以采用直接代入法. 解 原式= 3、利用函数的连续性求极限 定理[2]:一切连续函数在其定义区间内的点处都连续,即如果0 x 是函数)(x f 的定义区间内的一点,则有)()(lim 00 x f x f x x =→。 一切初等函数在其定义域内都是连续的,如果()f x 是初等函

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

函数极限的十种求法

函数极限的十种求法 信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (3)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

求极限的方法总结__小论文

求数列极限的方法总结 数学科学学院数学与应用数学08级汉班 ** 指导教师 **** 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0 ! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0 ! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 2 211lim ,其中1,1<

函数极限的十种求法

函数极限的十种求法

设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1 左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1 f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-2 7.利用等价无穷小量代换求极限 例 8 求极限30tan sin lim sin x x x x →-. 解 由于()s i n t a n s i n 1c o s c o s x x x x x -=-,而 ()sin ~0x x x →,()2 1cos ~02 x x x -→,()33sin ~0x x x → 故有 2 3300tan sin 112lim lim sin cos 2 x x x x x x x x x →→?-=?=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x → ,()s i n ~0x x x →,而推出 3300tan sin lim lim 0sin sin x x x x x x x x →→--==, 则得到的式错误的结果. 附 常见等价无穷小量 ()sin ~0x x x →,()tan ~0x x x →,()2 1cos ~02 x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x α α+-?→. 8 利用洛比达法则求极限 洛比达法则一般被用来求00型不定式极限及∞∞ 型不定式极限.用此种方法求极限要求在

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1 (1 (2(3)若B ≠0 (4(5)[] 0lim ()lim ( )n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()222 22 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+= =-- 例2. 求3 x →

( )( ()( ) 3312 1 2 12 lim lim 312 x x x x x x x →→+-+++-=-++ ()( ) 3 lim 312x x x →=-++ 1 4= 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知()11112231n x n n = +++??-?L L ,求lim n n x →∞ 解: 观察 11=1122-? 111 =2323- ? ()()111=n 1n n-1n --? 因此得到 ()11112231n x n n =+++??-?L L 1111111 1223311n n n =-+-+-+---L L 1 1n =- 所以1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 ()() 00y f x x f x ?=+?- 如果 ()()000lim lim x x f x x f x y x x ?→?→+?-?=?? 存在, 则此极限值就称函数f(x)在点0x 的导数记为()0'f x 。

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1 设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥,所以可知数列n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A = 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

高等数学常用极限求法

求函数极限的方法和技巧 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由2 44122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取εδ= 则当δ<-<20x 时,就有 ε<--+-12 232x x x 由函数极限δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00

(IV )cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x = 25 4252322=++?+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() () ) 12102(65) 2062(103lim 2 23223 2 +++++--+---→x x x x x x x x x x x =) 65)(2() 103)(2(lim 222+++--+-→x x x x x x x =) 65() 103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44( lim 22 x x x ---→ 解: 原式=)2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→

相关文档