文档库 最新最全的文档下载
当前位置:文档库 › 更换油动机伺服阀操作步骤

更换油动机伺服阀操作步骤

更换油动机伺服阀操作步骤
更换油动机伺服阀操作步骤

高压主汽门、高/中调门油动机伺服阀

更换的操作步骤

(草稿)

1.在机组高压抗燃油压力已经建立的情况下更换汽机高、中调门和高压主汽门伺服阀操作。

2.特别是在机组带负荷情况下更换伺服阀,应尽量在低负荷下进行,防止负荷大幅度波动。

3.办理热控工作票,切除机跳炉保护。

4.运行人员在操作员站上进入控制逻辑页面,操作对应油动机控制逻辑的手/自动站,将其切为手动,其它油动机控制应为自动状态。缓慢减少手/自动站的输出直到“0%”,在其过程中注意负荷的波动。

5.更换伺服阀前,运行人员首先关闭对应伺服阀前EH油管路上的滤网前后手动阀,并检查滤网旁路阀是否可靠关闭,以切断伺服阀供油。

6.切断EH油供油3分钟后方可开始拆除伺服阀。

准备工具及物品:干净抹布、绢布、医用手套、无水乙醇2~3瓶、内六角扳手(规格5/16 CR-V)、油盘、伺服阀O型密封圈

a)拆除伺服阀前,用干净抹布清洁伺服阀外部表面的油迹和污物,防止拆

除伺服阀过程中污染伺服阀油口表面。

b)解开伺服阀的接线(拧松并拆除伺服阀信号线插头)。

c)逐渐松动固定伺服阀的四颗内六角螺栓。将四颗螺丝按对角操作程序逆

时针旋动2~3圈后,轻轻敲击伺服阀阀体,让伺服阀与油动机本体脱离,观察EH油泄漏情况,并判断EH油油压。若发现EH油仍然带压,则迅

速拧紧伺服阀固定螺栓。

d)清洁双手,戴好防护手套,缓慢拆除伺服阀。拆除过程中防止O型密封

圈脱落。

e)在拆除伺服阀过程中,用油盘在伺服阀下部盛接漏油。

f)取下伺服阀,放入油盘中。

7.安装伺服阀:

a)所有密封圈要安装到位(P、T、A、B、X口),准确地将两种规格的O

型密封圈放入油口凹槽内。将伺服阀由水平位缓慢转为垂直位,并逐步

贴近油动机表面,操作时防止O型密封圈脱落和错位。

b)在安装前用无水乙醇冲洗伺服阀与油动机的两个结合面,保持接合面绝

对干净。

c)首先拧上伺服阀上部螺栓,然后拧上下部螺栓。最后按对角拧紧的程序

逐渐拧紧伺服阀所有螺栓。

d)恢复伺服阀的接线。插接信号插头时,注意插头上的止口位置和插座上

的止口槽对齐。

e)用抹布清洁伺服阀周围的EH油残留物。

8.由运行缓慢开启相对应伺服阀滤网前后截止阀,恢复相对应伺服阀的供油。9.更换完成后逐步调节对应油动机的手/自动站输出,直到算法块的输出接近其输入值。

10.将手/自动站切自动,然后退出逻辑页面。

11.恢复机跳炉保护

热工

2008-8-19

汽轮机原理及运行.

汽轮机原理及运行 随着工业生产的蓬勃发展,工业污染物的排放,对大气、自然环境的影响和危害越来越大。国家为保护环境,加大了对工业生产污染物排放的监管力度,国务院专门召开会议部署全国节能降耗减排的工作。我省焦化、炭黑、水泥等高温冶炼企业比较多,这些企业在生产过程中必然产生大量焦煤气、热量,而这些能源和热能大都没有被再利用,而以不同的排放方式,白白地浪费掉了,还造成了大气环境污染。事实上,要做到脱硫除尘、净化排放,必须将余热温度降到250゜C以下才能实现,而排放的余热全都在250゜C上,是根本无法脱硫除尘的。那么,唯一的办法就是将余热再利用,首选发电,实现能量再利用,既提高了原材料利用率,又净化了排放物,大大减少CO2、SO2排放量。 一直以来,这样的好事为什麽没有企业做呢?原因就在于,利用余热、余气进行发电的机组功率较小,不易并入大电网,或是地处与系统弱联系的区域,根本无网可并。自发自用,单独运行,又苦于发电机组不能稳定运行。故而形成目前不能不生产、可排放又超标的困难局面。 余热减排发供电微电网稳定运行综合控制系统的研发,是针对利用余热发电、热电联产的自备电厂运行不稳定、耗能高的问题而进行的。主要应用于焦化、炭黑、水泥等高温冶炼企业,利用余热发电、热电联产的自备电厂的微电网设

备在线数字化状态检测与监控的工艺改造,彻底改造通过气门排放蒸汽调节负荷的传统方法,实现了既稳定运行,又节能降耗减排。其适用范围和区域主要是产生余热、余气的高温冶炼企业,电网覆盖薄弱地区、电网末端或电网未到达区域,自建的供、用电微电网。 针对这种状况,山西博赛克电力技术有限公司潜心研究开发余热减排发供电微电网稳定运行综合控制系统技术,彻底解决了这些发电机组的运行不稳定问题,真正实现了无网支撑、无忧运行,被称为“自备电厂的革命性技术”,具有国内领先水平。是一项电力、电网节能降耗技术。 其社会经济意义主要是:能为上述状况提供完整的工艺改造解决方案,可使这些企业的余热自备电厂的发电设施充分发挥效能,既节能又高效,净化污染物排放,而且用电用户可以使用到与大电网等质的电能,满足生产、生活需求。山西省长治地区沁新公司2×6000KW煤矸石自备电厂的工艺改造和2×12MW焦化余热自备电厂建设,都是采用了余热减排发供电微电网自稳定综合控制系统技术。 事实雄辩地说明,应用该技术改造余热自备电厂通过气门排空进行负荷调节的传统方法,彻底解决了自备电厂运行的弊端,使之高效节能、安全稳定运行。肯定可以带动一大批焦化、炭黑、水泥等高温冶炼企业,充分利用余热、余气进行发电。一是由于余热、余气的充分利用,提高了原材料

斜板除油原理

119 第六章 含油污水处理 海上油田污水来源于在油气生产过程中所产出的地层伴生水。为获得合格的油气产品,需要将伴生水与油气进行分离,分离后的伴生水中含有一定量的原油和其它杂质,这些含有一定量原油和其它杂质的伴生水称之为含油污水。 目前,国内海上油田污水处理工艺流程,由于污水水质差异较大,处理流程种类较多,现针对不同原水水质特点、净化处理技术要求,按照主要处理工艺过程,大致可划分为重力式除油、沉降、过滤流程;压力式聚结沉降分离、过滤流程和浮选式除油净化、过滤流程等几种基本处理流程。另有除油、混凝沉降、过滤、深度净化以及密闭隔氧等流程用于排放处理。 第一节 除 油 含油污水除油的主要方法有:重力沉降法、物理化学法、化学混凝法、粗粒化法、过滤法、浮选法、活性炭吸附法、生物法、电磁法。由于水质不同及要求处理的深度不同,单靠一种除油方法很难达到预期的目的,所以在现场使用时,都是几种方法联合使用。 一、自然除油 1.基本原理 自然除油是属于物理法除油范畴,是一种重力分离技术。重力分离法处理含油污水,是 根据油和水的密度不同,利用油和水的密度差使油上浮,达到油水分离的目的。 这种理论忽略了进出配水口水流的不均匀性、油珠颗粒上浮中的絮凝等影响因素,认为 油珠颗粒是在理想的状态下进行重力分离的,即假定过水断面上各点的水流速度相等,且油 珠颗粒上浮时的水平分速度等于水流速度;油珠颗粒是以等速上浮;油珠颗粒上浮到水面即 被去除。 含油污水在这种重力分离池中的分离效率为: /u E Q A (6-1) 式中 E ——油珠颗粒的分离效率; u ——油珠颗粒的上浮速度; /Q A ——表面负荷率; Q ——处理流量; A ——除油设备水平工作面积。 这里的分离效率是以大于浮升速度u 的油珠颗粒去除率来表示的,也就是除油效率。表面负荷率Q /A ,是一个重要参数,当除油设备通过的流量Q 一定时,加大表面积A ,可以减小油珠颗粒的上浮速度u ,这就意味着有更小直径的油珠颗粒被分离出来,因此加大表面积A ,可以提高除油效率或增加设备的处理能力。

二通插装阀的结构原理和功能分析续_图文(精)

第5期(总期第6期)2004年9月 流体传动与控制 FluidPowerTransmissionandControl No.5(Serial/No.6) Sep.,2004 二通插装阀的结构原理和功能分析(续) 黄人豪 (中船重工上海七。四研究所上海200031) 中图分类号:THl37 文献标识码:A 文章编号:器罢#端(2004)05—0044—003 我们曾不断强调二通插装阀与传统控制的单个液压阀有着很多的不同;尤其它是一种基于模块化的集成化控制元件和组合,因此,组件化和可配组的特征非常突出。为了充分反映这一些特征,二通插装阀的符号表示从一开始就表现出自己的独特和创新的一面,其中已被工业界广泛接受和普遍采用的符号是作为DIN24342标准附件中的符号表示。参见图5。 4、二通插装阀的图形符号表示 二通插装阀的座阀主级等在几何图形上可以用一些简单的二维图形以及特定的符号来表示,这些 图形应能包含原理构件的功能面以及连接这些功能面的线条或包容它们的轮廓。这些图形是它们的最小或基本的几何表示。

DIN24342的附录符号 X! 符4j洲即1219 方向控制座阀绌棚~:^,…1 ^:主油ux:控制u ~、、。—.—。—J= AB^. A,L—U}k:? I^ … ^^。 方内控制带缓冲尾部和}f程限制^^:^}【<l 审]肄x 事缱毫融丧 L…...~,一…f。 Io AA:A口汕觚作用面积AB:B口油压作用面积如:x口油腻作用面积l磬…毋ache[1嘲蟊固,.劳毋蟊?器 …构田…构田帆再]]驿

厂L r..一[】:=囱萨一 L一一~,?ln [野 P L一一一。?IA 鹭 舜魏椰审 ~ava方向控髑度一缩构 方向控制座朗结构.^^:^>1 一对一[尊 1. 厂L 捃鼍j虿零 ^^:《1巨一… 方向控制!L—t凸珂 【~一..-L:二_l—J 带缓冲尾椰 图5IS07368/DIN24342标准中列出的图形符号(部份1)

汽轮机使用说明书

N30-3.43/435型汽轮机使用说明书 1、用途及应用范围 N30-3.43/435型汽轮机系单缸、中温中压、冲动、凝汽式汽轮机。额定功率30MW,与汽轮发电机配套,装于热电站中,可作为电网频率为50HZ地区城市照明和工业动力用电。 其特点是结构简单紧凑、操作方便、安全可靠。汽轮机不能用以拖动变速旋转机械。 2、主要技术数据 2.1 额定功率:30MW 2.1 最大功率:33MW 2.3 转速:3000r/min 2.4 转向:从机头看为顺时针方向 2.5 转子临界转速:1622.97r/min 2.6 蒸汽参数: 压力: 3.43MPa 温度:435℃ 冷却水温:27℃(最高33℃) 排汽压力(额定工况):0.0086MPa 2.7 回热抽汽:4级(分别在3、6、8、11级后) 2.8给水加热:2GJ+1CY+1DJ 2.9 工况: 工 况 项 目进汽量抽汽量排汽量冷却水温电功率汽耗Go Gc Ge Ne t/h t/h t/h ℃kW Kg/kw·h 额定工况131.0 0.0 102.77 27 30007.1 4.366 夏季凝汽工况135.5 0.0 107.98 33 30029.4 4.512 最大凝汽工况145.0 0.0 114.14 27 33055.7 4.387 最大供热工况143.5 20.0 93.51 27 30049.2 4.776 70%额定负荷工况93.0 0.0 73.93 27 21013.9 4.426 50%额定负荷工况69.5 0.0 56.47 27 15009.0 4.631 高加切除工况122.0 0.0 107.8 27 30032.7 4.062 2.10 各段汽封漏汽流量 前汽封后汽封

油动机的工作原理

油动机的工作原理 主汽门控制的油系统如图1所示,主要由伺服阀(MOOG阀),卸荷阀,油动机组成,油动机下缸进油打开汽门,油动机上缸与有压回油相通,汽门上部装有复位弹簧,当油动机下缸泄油时,汽门在上部弹簧回复力的作用下关汽门,油动机下缸的进油或泄油是由伺服阀控 制的,而伺服阀接受伺服卡的驱动电信号,控制伺服阀的进油或泄油量,打闸停机时遮断电磁阀(AST电磁阀)动作,将安全油压(AST油压)泄去,这时卸荷阀打开,油动机下缸油压经卸荷阀迅速泄去,主汽门在弹簧回复力的作用下也迅速关闭,因此正常停机后,油动机 下缸与有压回油是相通的。 原理基本相似。 图1汽门控制EH油系统 2.2伺服阀的工作原理 图2是伺服阀的工作原理图。 MOOG J761—003伺服阀是双喷嘴挡板式伺服阀,由两级液压放大及机械反馈系统所组成。第一级液压放大是双喷嘴和挡板系统;第二级功率放大是滑阀系统。 伺服阀线圈接受一正向电流指令信号时,线圈将会产生电磁力作用于衔铁的两端,衔铁因此而带动挡板偏转,挡板的偏转将减少某一个喷嘴的流量,进而改变了与此喷嘴相通的滑阀一侧的压力,推动滑阀朝一边移动,滑阀上的凸肩打开了EH压力油供油口,同时滑阀另一凸肩打开油动机的进油口,油动机进油,汽门打开,汽门的位置发送器LVDT输出的反馈信号增大,指令与反馈信号的偏差在不断减少,至伺服阀的开阀驱动指令也在不断减小,当伺服阀的输出指令与弹簧回复力平衡时,挡板回到中间位置,滑阀处于平衡状态,油动机此时停止进油,汽门位置保持不变;反之线圈接受负向电流信号时,滑阀向另一边移动,滑阀凸肩关闭进油口,另一凸肩打开回油口,油动机泄油,其它动作与开阀原理相同。

斜板除油技术

二、压力聚集小间距侧向流除油沉降一体罐 1.设备确定依据 (以下简称除油沉降一体罐) 2、设备叙述及特点 2.1 我公司除油沉降一体罐是根据粗粒化原理和斜板浅层理论自行研制开发的一种高 效率、操作方便、维护使用寿命简单、运行稳定、长的新型除油设备。该设备粗 粒化段填料采用高强度、耐磨、不易溶涨的填料,分离段填料采用316L不锈钢 斜板填料。 2.2 我公司除油沉降一体罐与普通斜板除油器的区别在于该设备在分离段前加设粗粒 化段,利用填料的大比表面积及对小油珠和小水珠的不同吸附力,增加废水中小 油珠的碰撞机率,增大油珠粒径,从而提高设备的除油效率。 2.3我公司除油沉降一体罐与普通先粗粒化再隔油相比的优点:该设备利用斜板浅层 理论,增大了油水分离高度,提高油水分离效率,缩短污水运行的水力停留时间,从而大大缩小了分离段的固定尺寸,使之成为设备化产品。 2.4 我公司除油沉降一体罐使用最短寿命以15年设计,易损件(密封、垫片等)符合 国家标准要求。 2.5 我公司除油沉降一体罐维修简单:在调试完毕投入正常运行六个月时应对产品详 细检查一次,一年后仅需按维护保养规程由操作人员对设备进行常规维护。 2.6 整套设备由斜板除油器主体、主管汇、排油管汇、排气管汇、底座、扶梯平台等 部分组成。 2.7 针对业主使用工况,我们在设备的设计、制造及安装时详细对以下几个方面进行 了充分考虑: a)、结构 设备整体为封闭型。 为减小进出水对设备内水体流态的冲击,除油沉降一体罐内部采用了进口缓冲区和出口缓冲区,保证进水和出水的均匀稳定; 主管汇及支管线采用立式多层空间布置,结构紧凑,布局美观,减少设备占地面积; 管道对焊接口处均采用专用设备(半自动坡口机)加工及管汇焊接工装,充分保证焊缝及内外表面质量。 b)、防腐 容器内关键零部件斜板采用316L不锈钢材料,罐内壁经喷砂处理后涂刷环氧酶沥青防腐涂料六道。 容器外壁和设备外表面经喷砂处理后涂漆防腐,底漆面漆各两道,颜色:绿E-mail:jd.hbc@https://www.wendangku.net/doc/0a3077897.html,2-- 1 http://www.chenglu-group

二通插装阀控制技术资料

二通插装阀控制技术 一、二通插装阀特点 二通插装阀及其控制技术是70年代初发展起来的一项新技术,由于这种新型的液压阀具有流阻小、通流能力大,密封性好、适用于水介质、响应快、抗污能力强、具有多机能、可以高度集成等优点。因此,这种阀的出现很大程度上满足了液压技术向高压、大流量、集成化发展的要求,得到了世界各国的普遍重视,发展异常迅速。 二、二通插装阀的基本结构和工作原理 1.二通插装阀的基本结构 一个二通插装阀主要有插入元件、先导元件、控制盖板和插装块体四个部分组成,如下图所示:

插入元件阀芯的受力分析 在忽略阀芯重量和摩擦阻力时,阀芯的受力平衡式为: F合=PcAc-PaAa-PbAb+F1+F2 Pc__控制腔C的压力 Pa__工作腔A的压力 Pb__工作腔B的压力 Aa__工作腔A的面积 Ab__工作腔B的面积 Ac__控制腔C的面积(Ac=Aa+Ab)

F1__弹簧力 F2__稳态液动力 当F合>0时,阀芯关闭;当F合<0时,阀芯开启;当F合=0时,阀芯停在某一平衡位置。 由此可以看出插入元件的工作状态由三个腔的工作压力决定。工作腔的压力由工作负荷等条件决定,不能任意改变,所以只能通过改变控制腔的压力来实现对二通控制阀的控制 三、几种常用插装阀 1、方向流量控制插入元件 1)A型方向阀插入元件,结构形式如图一所示

特征是具有较大的面积比(α=Aa/Ac),一般为1:1.1左右。 B腔面积很小,B→A流动时开启压力很高,所以一般只允许A →B的单向流动。A腔作用面积大,流动阻力小,具有较大通流能力,

开启压力一般与选用的弹簧有关,A →B 时开启压力一般为(0.03-0.28)MPa。2)B型方向阀插入元件结构和A型相似,特征是具有较小的面积比,一般为1:2或1:1.5,由于B腔面积的增加,B→A流动时的开启压力下降,允许B→A和A→B的双向流动。由于A腔的作用面积较小,阀口直径也相应减小,同样的流量下,其压降将比A型的略又增加。开启压力也取决于选用的弹簧,一般为(0.05-0.5)MPa。 以上两种形式的插入元件在启闭过程中的一个共同特点就是启闭快,只要阀芯从阀座上稍一抬起便马上接通油路,并且阀口流道截面增加很快。能实现快速换向的要求,缺点是,容易造成换向时回路液压冲击

DEH操作说明书

哈汽控制工程有限公司 二00八年九月1日 目录 概述 第一节操作盘介绍 第二节数据显示 第三节运行方式选择 第四节控制方式选择 第五节试验

概述 DEH—汽轮机数字式电液控制系统,由计算机控制部分和EH液压系统组成。 典型的DEH计算机控制部分结构见附图。 一对控制柜和端子柜中主要包括: ?冗余电源 ?冗余主控计算机(DPU) ?各种功能卡:阀门控制卡(VPC)、测速卡(SDP)、模拟量输入卡(AI)、开关量输入卡(DI)、模拟量输出卡(AO)、开关量输出卡(DO)。 人机接口主要包括:一个操作员站、一个工程师站、一个后备手操盘及打印机等。 工程师站、操作员站与控制DPU通过冗余数据高速公路(以太网)相连。I/O卡与控制DPU 之间,通过冗余I/O网相连。后备手操盘通过硬接线直接连到阀门控制卡。当控制DPU以上的设备发生故障时,均可由后备手操盘直接控制阀门位置。冗余的控制DPU之间的切换,以及手动/自动之间的切换,对系统的控制来说均是无扰的。 在自动情况下,操作员主要通过操作员站的鼠标和键盘,进行各种控制操作和图象操作。操作员指令通过操作员站传到控制DPU,由I/O卡执行输出控制。机组状态及结果在CRT上显示。 典型的EH液压系统包括供油系统、油管路、油动机、危急保安系统组成。一般机组均采用高压抗燃油系统。其供油系统提供压力为14.5Mpa的压力油。油动机采用单侧进油方式,即阀门开启靠压力油,而关闭靠弹簧力,以保证阀门可靠关闭。油动机与阀门采用一对一方式,每一个阀门由一个单独的高压油动机驱动。对可调节的阀门,其油动机上有一个电液伺服阀及2个LVDT位置传感器。由DEH中的一块VPC卡控制一个这样的油动机,精确地控制阀门位置。DEH 根据控制要求,控制每个进汽门,从而达到控制机组转速、负荷、压力等的目的。对仅作安全型式的阀门,往往设计成2位式控制。如大多数主汽门和中压主汽门,当安全油建立时自动打开,安全油泄去时紧急关闭。油动机上的关闭电磁阀,用于阀门关闭试验。 危急保安系统包括OPC电磁阀、AST电磁阀、隔膜阀等。OPC电磁阀为2只并联结构,当OPC 电磁阀带电时,OPC安全油泄去,紧急关闭调节汽门。AST电磁阀为四只串/并联结构,当AST电磁阀失电时,AST安全油泄去,同时泄去OPC安全油,关闭所有阀门,停机。隔膜阀与低压安全油接口,低压安全油失去时,通过隔膜阀泄去AST安全油,紧急关闭阀门,停机。 本手册介绍DEH的操作方法。具体的汽机运行规程应根据汽轮机、发电机等主设备的要求,结合电厂的实际情况制定。 第一节操作盘介绍 一、图像画面上的软操作盘 在DEH画面上设计了六块软操盘,操作员对DEH的操作指令一般都在这些软操盘上输入。1. 升速控制操作盘

油动机和错油门摘录

油动机和错油门摘录 四、油动机pilot valveu 作用油动机将由调速器输入的二次油信号转换成油缸活塞的行程,并通过杠杆系统操纵调节汽阀的开度,使进入汽轮机的蒸汽流量与所要求的流量或功率相适应。油动机的错油门从二次油路中得到信号,并控制作为动力的压力油进入油缸活塞的上腔或下腔。u 结构油动机主要由错油门、连接体、油缸和反馈系统组成。双作用油动机由油缸体、活塞、活塞杆及密封件组成,活塞杆上装有反馈导板及与调节汽阀杠杆相接的关节轴承。断流式错油门的滑阀和套筒装在其壳体中,错油门滑阀的上端是转动盘,转动盘与弹簧座之间装有推力球轴承,弹簧的作用力取决与调节螺栓杠杆的位置。u 作用原理二次油压的变化使错油门滑阀产生上下运动。当二次油压升高时,滑阀上移,由接口通入的压力油进入油缸活塞上腔,而下腔与回油口相通,于是活塞向下移动,并通过调节汽阀杠杆系统使调阀开度增大。与此同时,反馈导板、弯角杠杆将活塞的运动传递给杠杆,杠杆便产生与滑阀反向的运动使反馈弹簧力增加,于是错油门滑阀返回到中间位置。汽轮机调节汽门的开度是和其对应油动机的行程成比例的。而油动机的行程,又跟其对照的错油门动作行程成比例,错油门的动作,是靠错油门中间的活塞来回移动来实现。在机组运行过程中,由于汽机处于一个动态平衡状态,那么错油门中的活塞也是处于一个动态平衡状态,这就得靠:在错油

门活塞的一端进入一股压力油,靠这股压力油的流量变化,来控制错油门中活塞的位置,从而控制油动机的行程,以达到控制调门的位置,控制汽机转速或负荷的目的。这股压力油,其来源为调节系统的压力油。通过截流,由电液转换器控制进入错油门的流量。另外,在错油门的另一端,有小量的回油,保证错油门中的油具有流动性,防止因长时间不流动造成的油质恶化。这股起调节作用的油就叫脉冲油,其压力,就叫脉冲油压。同步器有两个作用,在汽机空转时可以改变转速,在汽机带负荷时可以改变负荷。当同步器顺时针方法摇动时,错油门上移,于是就油动机的活塞下方就接通了高压油,活塞上方则接通了回油,于是油动机活塞上移,开大调速汽门,汽机负荷(或转速)上升,当调节达到要求后,反馈装置使调节过程停止,系统处于一个新的稳定状态。下移的过程则相反。在这个过程中,错油门起了一个关键的作用,那就是一次放大的作用,你说的压力变换器就是感受脉冲油压的器件。电网的频率发生变化了,汽机的转速必然发生变化,主油泵的出口油压也发生变化,从而导致脉冲油压发生变化,脉冲油压一变化,就会使错油门活塞上移或下移,从而改变机组功率或转速。这就是一次调频。如果是人工改变这个过程,那就称为二次调频。错油门、油动机的工作原理如下:w; c1 p% ]3 N+ V * x、 A0 |0 F; X2 p; S、 R (1) 脉冲油的变化使错油门阀芯产生上下运动,控制压力油进入油缸的上腔和下腔,推动活塞运动及调节汽门开闭。同时,反馈

镀前除油工艺

镀前除油工艺 1.有机溶剂除油 油脂多和要求高的零件,常用氯烃类有机溶剂如二氯甲烷、三氯乙烷和三氯乙烯等来除油。通过溶剂的浸渍、喷淋和蒸汽三重处理,将油脂溶解除去;加热的溶剂变成气体挥发,通过冷凝管冷凝成露滴落下,净化后进行回收,溶剂可往复循环使用。这一过程要求在专用的密闭容器中进行。二氯甲烷的毒性在有机溶剂中是比较小的,少量逸出只会污染空气,但不会污染水体。用这种方法除油需要有一套专用设备,设备投资较大;加上这几年来石油化工产品随着国际油价的一路飙升,价格也是扶摇直上,因此用这种方法进行除油的成本比较高,所以除油脂确实多、产品几何形状复杂而要求又比较高的外,一般不用此方法。 有机溶剂除油不能作为最后除油工序,因为其表面还会有少量油脂,待镀件还不能全部亲水。为此需增加一道电解除油工序。电解除油液中,可加氢氧化钠和碳酸钠,以作为导电介质,另外还需加YC 除油剂添加剂1~2mL/L。钢铁件最好阴阳极交替进行,以避免氢脆。 2.酸洗除油一步法除油 一般钢铁和铜及其合金零件可以采用酸洗除油一步法来除油。这种方法除油效果好,还能除抛光膏(除蜡),在除油的同时,把零件表面的锈和氧化膜也同时除去了,时间只要1~2min。配方为硫酸200~250g/L,OP-10乳化剂10~15g/L,硫脲3~5g/L,温度65~75℃。

铜件除油可用硫酸150~200g/L,PC-3铜件除油除膜剂30~35g/L,温度65~75℃。这一配方也可用于铜铁组合零件,铜离子不会置换到铁零件上。 在酸洗除油一步法过程中,溶液表面会浮着一层油脂,要及时用勺子把它沓到油水分离器中去。通过油水分离和过滤,这种油脂可回收。要方便的话,可把除油槽设计有溢油口,将上浮的油让其从溢油口流出,然后用塑料泵泵到油水分离器中去。所以要将表面浮油除去,一是不让其流入水体,造成污染,二是避免浮油粘污零件。 这种溶液到铁离子积累过多时,需要更换。 更换下来的溶液经过滤和冷冻,还可回收硫酸亚铁,冷冻过滤后的溶液仍可继续使用,这样就可将污染减少到最低的程度。 3.碱液除油 碱液除油已是多年延用的老工艺了。经典的配方有氢氧化钠、碳酸钠和磷酸三钠所谓“三碱”组成,而且温度很高,往往要达到90℃左右。其实这种除油溶液配方对现在的零件已大多不能起到好的效果。高温条件下的碱溶液,只能对动物和植物油起皂化作用,也就是油脂变成水溶性的肥皂被清洗去;但现在的电镀零件上的油脂极大多数是矿物油,矿物油是不能与碱液起皂化反应的,所以只能借溶液的高温将油脂脱除一些,而不能彻底除去。

30T/h全套除油设备操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 30T/h全套除油设备操作规程 (标准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

30T/h全套除油设备操作规程(标准版) 1.打开超声波除油器出液阀,打开溶合泵泵前泵后阀、有机输送泵泵前泵后阀、提升泵泵前泵后阀。关闭超声波除油器放空阀。 2.打开纤维球除油器进液阀和出液阀、打开截渣器进液阀和出液阀、打开气振压缩机和溶合压缩机出气阀、开启空压机。 3.关闭纤维球除油器反冲出水阀、水气反冲阀、反洗进气控制阀、反洗进气出水控制阀、反洗进水阀、进气阀。 4.开机:送上电源,把旋转纽打在手动上;开启电磁阀,待容气罐空气压力达到0.2MPa时关闭电磁阀;开启容合泵,待容气罐液压达到0.4MPa时,开启容气罐出口阀;然后把旋转纽打在自动上,待运转五分钟后打开超声波除油器进液阀,开始进液。 5.停机:停机前五分钟,关闭超声波除油器进液阀,停止进液;然后把旋转纽打在停上,同时关闭容气罐出口阀。

48小时关闭恒流式除油器出液阀,使液面抬高,有机流入油渣槽,待有机基本流入油渣槽后,打开恒流式除油器出液阀。120小时关闭超声波除油器出液阀,使液面抬高,有机流入油渣槽,待有机基本流入油渣槽后,打开超声波除油器出液阀。 云博创意设计 MzYunBo Creative Design Co., Ltd.

液压控制阀介绍——插装阀

液压控制阀介绍 ——插装阀 一、概述 二通插装阀是插装阀基本组件(阀芯、阀套、弹簧和密封圈)插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀,早期又称为逻辑阀。 1、二通插装阀的特点 二通插装阀具有下列特点:流通能力大,压力损失小,适用于大流量液压系统;主阀芯行程短,动作灵敏,响应快,冲击小;抗油污能力强,对油液过滤精度无严格要求;结构简单,维修方便,故障少,寿命长;插件具有一阀多能的特性,便于组成各种液压回路,工作稳定可靠;插件具有通用化、标准化、系列化程度很高的零件,可以组成集成化系统。 2、二通插装阀的组成 二通插装阀由插装元件、控制盖板、先导控制元件和插装块体四部分组成。图1是二通插装阀的典型结构 图1 二通插装阀的典型结构

控制盖板用以固定插装件,安装先导控制阀,内装棱阀、溢流阀等。控制盖板内有控制油通道,配有一个或多个阻尼螺塞。通常盖板有五个控制油孔:X、Y、Z1、Z2和中心孔a(见图2 )。由于盖板是按通用性来设计的,具体运用到某个控制油路上有的孔可能被堵住不用。为防止将盖板装错,盖板上的定位孔,起标定盖板方位的作用。另外,拆卸盖板之前就必须看清、记牢盖板的安装方法。 图2 盖板控制油孔 先导控制元件称作先导阀,是小通径的电磁换向阀。块体是嵌入插装元件,安装控制盖板和其它控制阀、沟通主油路与控制油路的基础阀体。 插装元件由阀芯、阀套、弹簧以及密封件组成(图3 )。每只插件有两个连接主油路的通口,阀芯的正面称为A口;阀芯环侧面的称作B口。阀芯开启,A 口和B口沟通;阀芯闭合,A口和B口之间中断。因而插装阀的功能等同于2 位2 通阀。故称二通插装阀,简称插装阀。 图 3 插装元件

电液转换器使用说明书

VOITH 电液转换器使用说明书型号:DSG-BXX113

目录 1.技术数据 (1) 2.安全指示 (3) 2.1 提示和标志的定义 2.2 正确使用 2.3 重要提示 2.4 担保 3.功能描述 (6) 3.1 设计 3.2 操作特点 4.包装、储存、运输 (7) 5.安装 (8) 5.1 组装 5.2 液压连接 5.3 电器连接 6. 试运行 (10) 6.1 运行检测 6.2 参数设定 7.操作 (11) 7.1 用手动旋钮操作 7.2 用设定信号操作 7.3 故障检修和排除 8. 维护和检修 (13) 9. 停机 (13) 10. 具有接线图的外部管线图 (14) 11. 附件 (15)

1.技术数据: 周围环境: 储存温度-40 (90) 工作环境温度-20 (85) 保护IP65 to EN 60529 适合于在工业空间内部安装 电气数据: 电压:24 VCD ±15% 电流:大约0.7A(对DSG-B05…DSG-B10型) 大约1A(对DSG-B30型) 最大3A 时间t ? 1 Sec 输入设置:0/4…20mA 输入阻抗大约25欧姆,具有抑制电路。 液压参数: 最小进口油压P in min: 1.5bar+最大输出P A max (对B05…B10型) 5bar+最大输出油压P A max (对B30型) 最大进口油压P in max :见表 压力流体:不易燃烧的原油或压力油油粘度:根据DIN51519,ISO VG32…ISO VG48 油温:+10℃ (70) 油纯度:根据NAS1638为7级 根据ISO4406为-/16/13级 泄漏量:当进口油压P in=10bar 时≤3 l/min (对DSG-B05… DSG-B10 ) 当进口油压P in=40bar 时≤5 l/min(对DSG-B30)

伺服阀的动作原理

电液伺服阀的工作原理 ?电液伺服阀由力矩马达和液压放大器组成。 力矩马达工作原理 磁铁把导磁体磁化成N、S极,形成磁场。衔铁和挡板固连由弹簧支撑位于导磁体的中间。挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。弹簧管弯曲产生反力矩,使衔铁转过θ角。电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。 前置放大级工作原理 压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。 功率放大级工作原理 当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。 电液伺服阀的分类 ? 1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。 2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射 流管式和偏转板射流式。 3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式 等。 4 按电机械转换装置可分为动铁式和动圈式。 5 按输出量形式可分为流量伺服阀和压力控制伺服阀。 电液伺服阀运转不良引起的故障 ? 1 油动机拒动 在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。尽管在机组启动前已进行油循环且油质化验也合格,但由于系统中的各个死角的位置不可能完全循环冲洗,所以一些颗粒可能在伺服阀动作过程中卡涩伺服阀。 2 汽门突然失控

错油门油动机原理与结构

错油门油动机结构与原理 油动机 油动机是调节汽阀的执行机构,它将由放大器或电液转换器输入的二次油信号转换为有足够作功能力的行程输出以操纵调节汽阀的开度。 油动机是断流双作用往复式油动机,以汽轮机油为工作介质,动力油用~0.8Mpa 的调节油。 油动机结构如图1所示。 图1 油动机 油动机主要由油缸、错油门、连接体和反馈机构组成。 错油门(8)通过连接体(7)与油缸(5)固连在一起,错油门与油之间的油路由连接体沟通,油路接口处装有O 形密封圈。连接体有铸造和锻件加工两种,图示为铸件形式。 1. 位杆 2. 调节螺栓 3. 反馈板 4. 活塞杆 5. 油缸(缸 盖) 6. 活塞 7. 连接体 8. 错油门(错 油门壳体) 9. 反馈杠杆 10. 调节螺钉 11. 调节螺母 12. 弯角杠杆 13. 杆端关节 轴承

油缸由底座、筒体、缸盖、活塞、活塞杆等构成。筒体与底座、缸盖之间装有O 形密封圈,它们由4只长螺栓组装在一起。油塞配有填充聚四氟乙烯专用活塞环。缸盖上装有活塞杆密封组件,顶部配装活塞杆导轨及弯角杠杆支座。 油缸靠底座下部双耳环与托架上的关节轴承、销轴连接并支撑在托架上。在油缸活塞杆(4)上端有拉杆(1)和杆端关节关节轴承(13),通过(13)使油缸与调节汽阀杠杆相连。 错油门结构如图2所示。 套筒(25、26、27)装在错油门壳体(8)中,其中上套筒(25)及下套筒(27)与壳体用骑缝螺钉固定,中间套筒(26)在装配时配作锥销与壳体定位固定。 图2 错油门 套筒与壳体中腔室构成5档功用不同的油路,对照图1可看出,中间是动力油进油,相邻两个分别与油缸活塞上、下腔相通,靠外端的两个是油动机回油,在工作时,油的流向由错油门滑阀控制、滑阀是滑阀体(17)和转动盘(16)的组合件,滑阀在套筒中作轴向、周向运动,在稳定工况,滑阀下端的二次油作用力与上端的弹簧(14)力相平衡,使滑阀处在中间位置,滑阀凸肩正好将中间套筒的油口封住,油缸的进、出油路均被阻断,因此油缸活塞不动作,汽阀开度亦保持不变。若工况发生变化,如瞬时由于机组运行转速降低等原因出现二次油压升高情况时,滑阀的力平衡改变使滑阀上移,于是, 在动力油通往油缸活塞上 14. 错油门弹簧 15. 推力球轴承 16. 转动盘 17. 滑阀体 18. 泄油孔 19. 调节阀 20. 放油孔 21. 调节阀 22. 喷油进油孔 23. 测速套筒 24. 喷油孔 25. 上套筒 26. 中间套筒 27. 下套筒 C 二次油 P 动力油 T 回油

除油技术

一、油水分离设备产品介绍 油水分离设备采用全物理法安全、可靠、方便、有效的去除及回收含油污水中的分散油和乳化油,使处理后的排放水达到或超过油田排放标准(含油量小于10mg/L) 二、油水分离设备产品特色 1.结构合理、造型美观、占地面积小; 2.自动化水平高,可实现无人值班操作,劳动强度小; 3.系统操作方便,一次处理达到用户要求; 4.处理后出水指标达到即≤20mg/L; 5.可回收浮油,增加收益,运行成本低。 6.全物理法处理含油污水,不加药、无需反冲洗、不产生二次污染; 7.设备内滤芯采用新型滤材、新工艺由公司自主设计生产,使用寿命长,有效的保证的设备的处理效果; 三、油水分离设备性能及技术参数 处理量1~80m3/h 进水指标PH:6~9 油含量:<200mg/L 悬浮物:<200mg/L PH:6~9 油含量:≤10mg/L悬浮物:≤20mg/L 工作温度-20~50℃ 出水指标 达到油含量:≤10mg/L 工作压力0.1-0.5Mpa 防爆等级设备防爆等级:EXⅡBT4,完全满足油库对电气设备的要求 备注处理后COD≤100mg/L,仅限于石油类造成的COD含量值

四、油水分离设备工作原理及主要成件说明 1、工作原理 油水分离设备工艺流程图见附录1。此集成装置主要斜板分离器、高效水-油分离器(含预过滤器、重力分离器、高效聚结分离器、吸附过滤器)及相应的配套装置组成。工艺原理介绍如下: 1.污水通过污水泵送入斜板分离器中。污水泵具有较强的自吸能力,流量均匀,并且对油分没有机械剪切乳化的副作,适用于含油污水的输送。 2. 斜板分离器能有效去除水中的浮油和游离油,浮油上升到分离器表面并自流进入污油箱,而沉降的污泥定期排放。 3. 斜板分离器处理后的污水自流进入缓冲水箱,水箱上设有液位开关,具有高位和低位报警功能。当水位达到一定高度时,自动启动污水提升泵,当水位下降到一定位置时,自动停止提升泵。提升泵把污水送入预过滤器等后续设备进行处理。 4.预过滤器能有效过滤水中的细小悬浮颗粒(10μm),保护高效聚结分离器,延长其使用寿命预过滤器级,用以除去水中的杂质颗粒,防止以颗粒为核心而不能破乳除油,同时将水中的水包油进行破乳,然后输送至重力分离器内。 5. 重力分离器利用流程长的特性,使细小的油粒充分接触并逐渐长大并上浮,超过80%的油在这一级被聚集排出,只有很少量的细小油粒被输送到最后一级-高效聚结分离器内,因此重力分离器能够大大延了聚结滤芯的使用寿命。 6.高效聚结分离器用于去除水中残余的油分(乳化油),聚结滤芯将水中微细油滴聚结成为大的油滴,并使之迅速上浮,汇集于聚结分离器的集油室中,处理

插装阀原理图

1 插装阀概述 二通插装阀是插装阀基本组件(阀芯、阀套、弹簧和密封圈)插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀,早期又称为逻辑阀。 1.1 二通插装阀的特点 二通插装阀具有下列特点:流通能力大,压力损失小,适用于大流量液压系统;主阀芯行程短,动作灵敏,响应快,冲击小;抗油污能力强,对油液过滤精度无严格要求;结构简单,维修方便,故障少,寿命长;插件具有一阀多能的特性,便于组成各种液压回路,工作稳定可靠;插件具有通用化、标准化、系列化程度很高的零件,可以组成集成化系统。 1.2 二通插装阀的组成 二通插装阀由插装元件、控制盖板、先导控制元件和插装块体四部分组成。图1是二通插装阀的典型结构。

图1 二通插装阀的典型结构 控制盖板用以固定插装件,安装先导控制阀,内装棱阀、溢流阀等。控制盖板内有控制油通道,配有一个或多个阻尼螺塞。通常盖板有五个控制油孔:X、Y、Z1、Z2和中心孔a(见图2)。由于盖板是按通用性来设计的,具体运用到某个控制油路上有的孔可能被堵住不用。为防止将盖板装错,盖板上的定位孔,起标定盖板方位的作用。另外,拆卸盖板之前就必须看清、记牢盖板的安装方法。

图2 盖板控制油孔 先导控制元件称作先导阀,是小通径的电磁换向阀。块体是嵌入插装元件,安装控制盖板和其它控制阀、沟通主油路与控制油路的基础阀体。 插装元件由阀芯、阀套、弹簧以及密封件组成(图3)。每只插件有两个连接主油路的通口,阀芯的正面称为A口;阀芯环侧面的称作B口。阀芯开启,A口和B口沟通;阀芯闭合,A口和B口之间中断。因而插装阀的功能等同于2位2通阀。故称二通插装阀,简称插装阀。

伺服阀使用说明书

伺服阀使用说明书 伺服阀是DEH控制系统中电液转换的关键元件,它可将电调装置发出的控制指令,转变成相应的液压信号,并通过改变进入油动机油缸液流的方向、压力和流量,来达到驱动阀门、控制机组的目的。 1 结构特点 伺服阀是一个由力矩马达、两级液压放大及机械反馈所组成的系统。第一级液压放大是双喷嘴挡板系统;第二级放大是滑阀系统。其基本结构如图1所示。 1.1 力矩马达:一种电气—机械转换器,可产生与电指令信号成比例的旋转运动,用在伺服阀的输入级。力矩马达包括电气线圈、极靴和

衔铁等组件。衔铁装在一个薄壁弹簧管上,弹簧管在力矩马达和阀的液压段之间起流体密封作用。衔铁、挡板和反馈杆刚性固接,并由薄壁弹簧管支撑。 1.2 先导级:挡板从弹簧管中间伸出,置于两个喷嘴端面之间,形成左、右两个可变节流孔。衔铁的偏转带动挡板,从而可改变两侧喷嘴的开启,使其产生压差,并作用于与该喷嘴相通的滑阀阀芯端部。1.3 功率放大级:由一滑阀系统控制输出流量。阀芯在阀套中滑动,阀套上开有环行槽,分别与供油腔P和回油腔T相通。当滑阀处于“零位”时,阀芯被置于阀套的中位;阀芯上的凸肩恰好将进油口和回油口遮盖住。当阀芯受力偏离“零位”向任一侧运动时,导致油液从供油腔P流入一控制腔(A或B),从另一控制腔(B或A)流入回油腔T。阀芯推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被移回到对中的位置。于是,阀芯停留在某一位置。在该位置上,反馈力矩等于输入控制电流产生的电磁力矩,因此,阀芯位置与输入控制电流的大小成正比。 1.4 特点: ●衔铁及挡板均工作在中立位置附近,线性好 ●喷嘴挡板级输出驱动力大 ●阀芯基本处于浮动状态,不易卡住 ●阀的性能不受伺服阀中间参数的影响,阀的性能稳定,抗干扰能力 强,零点漂移小

插装阀原理图

1插装阀概述二通插装阀是插装阀基本组件(阀芯、阀套、弹簧和密封圈)插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀,早期又称为逻辑阀。 1.1二通插装阀的特点 二通插装阀具有下列特点:流通能力大,压力损失小,适用于大流量液压系统;主阀芯行程短,动作灵敏,响应快,冲击小;抗油污能力强,对油液过滤精度无严格要求;结构简单,维修方便,故障少,寿命长;插件具有一阀多能的特性,便于组成各种液压回路,工作稳定可靠;插件具有通用化、标准化、系列化程度很高的零件,可以组成集成化系统。 1.2二通插装阀的组成 二通插装阀由插装元件、控制盖板、先导控制元件和插装块体四部分组成。图1是二通插装阀的典型结构。 图1二通插装阀的典型结构 控制盖板用以固定插装件,安装先导控制阀,内装棱阀、溢流阀等。控制盖板内有控制油通道,配有一个或多个阻尼螺塞。通常盖板有五个控制油孔:X、Y、Z1、Z2和中心孔a(见图2)。由于盖板是按通用性来设计的,具体运用到某个控制油路上有的孔可能被堵住不用。为防止将盖板装错,盖板上的定位孔,起标定盖板方位的作用。另外,拆卸盖板之前就必须看清、记牢盖板的安装方法。 图2盖板控制油孔 先导控制元件称作先导阀,是小通径的电磁换向阀。块体是嵌入插装元件,安装控制盖板和其它控制阀、沟通主油路与控制油路的基础阀体。

插装元件由阀芯、阀套、弹簧以及密封件组成(图3)。每只插件有两个连接主油路的通口,阀芯的正面称为A口;阀芯环侧面的称作B口。阀芯开启,A口和B口沟通;阀芯闭合,A口和B口之间中断。因而插装阀的功能等同于2位2通阀。故称二通插装阀,简称插装阀。 图3插装元件 根据用途不同分为方向阀组件、压力阀组件和流量阀组件。同一通径的三种组件安装尺寸相同,但阀芯的结构形式和阀套座直径不同。三种组件均有两个主油口A 和B、一个控制口x,如图4所示。 a)方向阀组件b)压力阀组件c)流量阀组件 1-阀套2-密封件3-阀芯4-弹簧5-盖板6-阻尼孔7-阀芯行程调节杆 图3-89插装阀基本组件 2插装阀主要组合与功能 2.1插装方向控制阀 插装阀可以组合成各式方向控制阀。 1作单向阀 如图5a和5b,将x腔和A或B腔连通,即成为单向阀。连接方法不同,其导通方式也不同。若在控制盖板上如图5c连接一个二位三通液动换向阀,即可组成液控单向阀。 图5 2.作二位二通阀 如图6a和6c连接二位三通阀,即可组成二位二通电液阀。 3.作二位三通阀 如图7连接二位四通阀,即可组成二位三通电液换向阀。 4.作二位四通阀 如图8连接二位四通阀,即可组成二位四通电液换向阀。 5.作三位四通阀O型换向阀 如图9连接三位四通阀换向阀和单向阀,即可组成三位四通阀中位为O型电液换向阀。 6.作多机能四通阀 如图10连接换向阀,利用对电磁换向阀的控制实现多机能功能。先导阀控制状态下的机能如表1。电磁铁的带电状态用符号“+”表示;断电状态用“-”表示。

小汽机使用说明书

N9.996-1.204型 9.996MW凝汽式(给水泵)汽轮机 安装使用说明书 (第一分册) 0--1004--2700--0050--17 青岛捷能汽轮机集团股份有限公司 2009年1月

青岛捷能汽轮机集团股份有限公司中国名牌 ?由原青岛汽轮机厂改制而成,2004年国有资本退出,改制为产权多元化的公司。 ?以150MW以下“捷能”牌电站汽轮机和工业拖动汽轮机为主导产品,以单机生产和电站总 成套为主营业务。 ?拥有冷凝式、背压式、抽汽式等十大系列400多个品种,年生产能力5000MW/500台,国内 中小型汽轮机最大的设计、造供应商。 ?在保持自主研发的基础上,和国内外知名公司和院校保持经常性的技术合作,如日本三菱 公司、西安交通大学、哈尔滨工业大学等,在三维扭叶片、机组自动控制技术、空冷机组设计、水泥、钢铁余热机组开发等高新技术研发和应用方面始终保持领先水平。 ?公司近几年先后投入近4亿元,对公司生产布局、硬件设备等进行了改造升级,大大提高 了机组质量的稳定性和生产的高效性,使公司机组的质量和产能跃升到了一个新的高度。 ?在行业内率先通过了ISO9001质量体系认证和ISO14001环境体系认证。 ?已生产各类汽轮机4000多台,产品遍布全国并远销东南亚等国家。 ?产品广泛应用于企业自备电站/供热、钢铁余热发电、水泥余热发电、生物质能发电、垃圾 发电、燃气-蒸汽联合循环、城市集中供热、工业拖动等行业。 ?组建有专业的配件安装分公司,让客户在设备安装、调试、运行监护、大修、故障处理、 人员培训到备品备件供应等方面,享受到长期性的“诚信、快捷、优质”的服务。 ?奉行“和谐、执行、创新、超越”的企业精神,努力为市场提供更加高效、更加安全和稳 定的汽轮发电机组。 ?荣誉 中国名牌产品 省优和部优产品 全国用户满意产品 省现场管理样板企业 全国AAA级信用企业 全国名优产品售后服务十佳单位 中国汽轮机发展史上唯一一块国家质量奖牌

相关文档
相关文档 最新文档