文档库 最新最全的文档下载
当前位置:文档库 › 螺旋桨

螺旋桨

螺旋桨
螺旋桨

螺旋桨

螺旋桨负责把引擎的功率转变为向前的推力,重要性不言而喻,螺旋桨推进飞机的原理与火箭、导风扇飞机、喷射机不同,也与船用螺旋桨不同,火箭等前进是因为动量守恒的关系,如果飞机也是靠动量守恒的原理前进,那螺旋桨就要把空气尽量快尽量多往后吹去,那螺旋桨的形状就应该像电扇叶片一样宽且短,而不是像现在我们看的细细长长的,导风扇扇叶形状类似船用螺旋桨,效率却很差,因为导风扇引擎、加速管及支撑等物件挡住了不少气流,而且导风扇后送的空气速度不够快,质量更不够多。

我们应该把桨叶看成一片小型的机翼,引擎转动的速度加上飞机前进的速度,使桨叶对空气产生相对的速度,桨叶的截面本来就是一个翼型,然后因伯努利定律产生升力,只是此时的升力是向前的,称为推力,使飞机向前,历史上有名的竞速机GeeBee,得过很多次世界冠军,也有不少模型像真机,请读者注意其螺旋桨与机身的比例,它螺旋桨向后的气流三分之二以上被引擎及机身偏折,根本没往正后方吹,使人不禁怀疑它怎麼飞,可是它还是世界竞速冠军呢,所以记得螺旋桨的风大不大与推力毫无关系。

螺旋桨可依不同方式分类,我们真正有兴趣的是直径与螺距,将於下节讨论,其余分类如下:

依桨叶数:

单桨:竞速机常用,可避免吃到前叶的尾流,效率最佳,但另一端要配平。

双桨:最常见的型式,合理的效率,容易平衡。

三桨以上:像真机或桨叶长度受限时使用,效率稍差。

依推力方向:

拉力桨:即正桨,从飞机前面产生拉力使飞机向前。

推力桨:即反桨,从飞机后面产生推力使飞机向前,少数引擎可逆转,双引擎飞机其中一个引擎逆转用反桨以抵销反扭力。

依材值:

木桨:刚性好,重量轻,但易损坏。

塑胶桨:便宜,选择性多,较不易损坏。

碳纤桨:最好,最贵。

第二节螺旋桨的选择

我们仔细看一支螺旋桨

上面除了公司的标志外如:[APC],另外还有一组数字12x9,这是选择螺旋桨最

重要的一组数字,12代表这支螺旋桨直径是12英寸,9代表螺距是9英寸,另一组数字305x227是公制,单位是mm,代表意义完全一样,直径的意思大家

都了解,螺距的意思是螺旋桨旋转一圈,依螺旋桨的角度,理论上螺旋桨前进的距离,当螺旋桨旋转时桨上的点因距离轴心的不同,行走的距离也不同[=2 x 3.1416 x r],现在的螺旋桨都是定螺距桨,就是旋转一圈桨上每一点的螺距都

一样,所以越靠近轴心,桨叶角越大,桨尖部分角度就比较小,当然还有一种定螺角桨,这种桨桨上每一点角度都一样,当旋转一圈桨上每一点的螺距都不一样,越靠桨尖越大,最常见的就是竹蜻蜓,相信大家都玩过,另外也常见於初级橡皮筋动力飞机,因为制作非常简单。

你买一个新引擎,引擎的说明书会建议你,试车时用多大的桨,像真机用多大的桨,特技机又用多大的桨,弄得你迷迷糊糊,在这里说明一下,试车时用的桨一般都比较大,是防止万一不小心转数过高,使新引擎烧毁,没其他意思,像真机及特技机用的桨不同,最主要是因为飞机速度不同的关系,特技机一般飞行速度比较快,希望螺旋桨在高速飞行时比较有效率,像真机一般来说翼面负载大,希望螺旋桨在低速时比较有效率,起飞、降落时才不会出差错,没人会管它极速快不快,我们假设引擎输出的最大功率是一定值,输出功率在螺旋桨到达恒定转速时要克服的是螺旋桨的阻力,我们前面说过应该把桨叶看成一片小型的机翼,螺距越大就是桨叶角越大,相当於机翼攻角越大,当然阻力就越大,螺旋桨越长,面积及桨端切线速度也越大,阻力也越大,既然最大功率是一定值,我们只好在直径与螺距上作妥协。

特技机希望螺旋桨在高速飞行时比较有效率,像真机希望螺旋桨在低速时比较有效率,我们再提醒一次应该把桨叶看成一片小型的机翼,既然是机翼,同样就会有攻角、失速问题,甚至诱导阻力情形也一样,为了找出最佳攻角,请参看,合成的气流速度等於螺旋桨的切线速度加上飞机前进的速度[假如你对向量不熟悉的话,因为是相对运动,你可以假设你是一只蚂蚁趴在螺旋桨前缘,你不动,让气流来吹你,想像一下因螺旋桨旋转加上飞机前进,你脸上吹的是那方向来的风],

螺距太大而飞行速度不够快,则攻角太大而失速,这种情形在这里叫螺旋桨打滑,螺距太小而飞行速度太快,则攻角太小,效率则很差,所以结论是高速飞机用小桨大螺距,低速飞机用大桨小螺距。以前在莱特兄弟时代,飞机做好以后要拉一个绑在树上磅秤来测拉力,现在飞行场上偶而也有人这麼做,现在我们知道这是多余的,测得的拉力因没有飞机前进的速度,所以只有在飞机静止时有效,飞机有了速度后就不准了。

螺距最好的解决办法当然是使用变距螺旋桨,可依飞行速度不同改变螺距,二次大战后大部分的螺旋桨飞机都已使用变距螺旋桨,可依飞行速度变换螺距以取得更佳的效率,万一引擎熄火还可以打顺桨,使螺旋桨的阻力减至最低增加滑行距离。日本MK模型出过一组60级用的可变距桨,但在美国模型飞机禁止用可变距桨,怕飞出来伤人,此外螺旋桨靠轴心部分效率很差,所以很多场合乾脆装上机头罩减低阻力。

第三节螺旋桨角度的计算

现在螺旋桨选择性多,价格便宜,模型玩家很少自行制作,但偶而想玩橡皮筋动力飞机时,就不得不自己动手了,请各位不要瞧不起橡皮筋动力飞机,高级室内橡皮筋动力飞机的螺旋桨会随著橡皮筋扭力自动改变螺距,而且整架飞机不超过20公克,

橡皮筋动力飞机因为转速比引擎飞机慢,螺距比[螺距/直径]一般1.0~1.6左右,引擎飞机的螺距比大都在0.8以下。

定螺角桨:因为定螺角桨只有一部分效率好,所以我们螺距以距离轴心70~80%的部位为准,螺旋桨靠轴心部分效率很差,所以靠轴心30%以内部份根本不做桨叶,只剩一根轴。

定螺距桨:因定螺距桨每个断面角度均不一样,假设要制作一支直径为D英吋螺距为p英寸的桨。

第四节引擎的选择

模型飞机使用的引擎有很多种,现在因为大多数人都使用热灼引擎(glow engine)及汽油引擎,大家几乎忘了还有其他模型引擎如:

1柴油引擎:其实他是烧乙醚而不是烧柴油的,只是它跟跟柴油引擎一样没有火星塞,直接压缩爆发,但真正的柴油引擎是将空气压缩后再喷入燃料爆发,而模

型柴油引擎是将先空气与燃料混合后再压至爆发,二次大战后欧洲国家管制甲醇及硝基甲烷,所以柴油引擎流行一阵子。

2二氧化碳引擎:使用一个二氧化碳气瓶,借压缩的二氧化碳气体推动活塞驱动螺旋桨,没有任何点火装置也不用燃料,常用於自由飞模型。

3脉冲喷射引擎:又叫火管,跟二次大战德国V1火箭一样的引擎,属於喷射引擎的一种,声音吵得吓死人,中国大陆飞燕公司有生产两种尺寸,非常便宜,美国还有公司出套件,让人自行制作,号称喷出的火焰有十公尺远。

很多人选择引擎的原则是,选择只要塞的下引擎室的最大引擎,这其实是一个不正确的观念,我们知道飞行的阻力与速度平方成正比,当飞机速度已经很高,这时候要增加一点点速度马力要增加很大,选择超过适当排气量的引擎,不但重量增加,因耗油量也增加,所以装上更大的油箱,翼面负载增加的结果使飞行攻角增大,阻力也因而增大,所以效果很差,更不要提对飞机结构的影响了,要改善飞行效率应从改善飞机的空气动力著手,而不是一味加大引擎,此外竞速飞机尽量选择高转速、低扭力的短冲程引擎,像真机尽量选择低转速、高扭力的长冲程引擎或四冲程引擎,以使螺旋桨发挥最大效率。

很多人不晓得模型引擎的大小如32、120代表什麼意思,美国的引擎采用英制,32代表0.32立方英寸,120就代表1.20立方英寸,一立方英寸是16.39 CC(立方公分),所以32引擎排气量是5.24(=0.32*16.39)立方公分,但世界上其他国家如德国等生产的引擎已渐渐采用公制。

第五节导风扇

很多很漂亮的像真喷射机,但机头或机尾装了一个引擎,在天上飞时离得远看上去还好,摆在地面展示时,那引擎与螺旋桨实在煞风景,要把引擎与螺旋桨藏起来,在涡轮引擎还没出来前导风扇是惟一选择,导风扇是利用高转速活塞引擎[24000rpm左右]推动类似涡轮扇叶,将大量空气往后加速,可以模拟出类似涡轮引擎的效果,图中桨毂的白漆是量转速用的,导风扇虽然效率差,但因现代喷射机都很流线,机翼也不大,所以阻力小,像真喷射机飞行速度也不慢,但起飞滑行加速比较慢。

导风扇飞机最需要注意的地方就是空气的进出通道,进口的通道除了截面积要足够外,也要做得非常流线,避免粗糙、突出物或沟缝,必要时只好在肚子挖”作弊孔”以增加空气进入量,出口的通道除了要做得非常流线外,还要有一点渐缩,以增加排气速度,还有一点要特别注意的,因为导风扇进气口吸力很强,所有零

件、电线都要固定好.

第六节涡轮引擎

模型涡轮引擎经过这几年的发展已渐渐成熟,虽然价位还不是一般人能接受,从早期危险的丙烷燃料到现在的煤油或JP 燃料[煤油+汽油],我们可以期待起动方式更方便,价位更低能让一般人接受的引擎出现,模型涡轮引擎是一个具体而微的涡轮喷射引擎,涡轮引擎推进的原理是引擎前端将空气吸入后,由压缩器加压,再至燃烧室燃烧,膨胀后的高压气体由后方排出,因动量守恒原理而得到向前的推力,高压气体同时也推动涡轮,涡轮再把动力传给压缩器,涡轮发动机因输出动力方式的差异可分为:

1涡轮喷射发动机:最典型的喷射引擎,原理如前所述,模型涡轮引擎就是属於这种。

2涡轮扇发动机:跟涡轮喷射发动机很类似,但有旁通气流,请注意.发动机风扇吸入的空气有部分没经过燃烧室就直接加压后排出,那就是旁通气流,优点是比较经济,缺点是飞机最大速度会稍为慢,商用喷射机旁通比都很大,所以发动机看起来都很胖。

3涡轮旋桨发动机:这也是一种喷射发动机,但是以螺旋桨方式输出动力,跟活塞发动机比,喷射发动机零件少很多,重量也轻,比较好维修保养,又因为它没有活塞、曲轴、顶杆等的往复运动,所以震动也减少很多,玩过遥控飞机的人都知道,震动是很多问题的根源。

4涡轮轴发动机:这也是一种喷射发动机,但输出的轴马力最大,刚好用在直升机上,现代直升机都是采涡轮轴发动机,所以以后有人跟你说那架直升机是喷射引擎的,你也不要吃惊。

[图5-7]的后半截是一个后燃器,后燃器的原理是因为空气经过燃烧室燃烧后,只消耗到不到10%的氧气,后燃器里面的空气因刚从燃烧试室出来,当然很热,而且还有很多氧气,那乾脆就直接把燃料喷进去,再一次燃烧进一步加热空气增加推力,代价当然是效率非常差,但紧急时涡轮喷射型发动机几乎可以增加100%的推力。

涡轮发动机转速很高,怠速时的转速都比活塞引擎的全速还高,所以实机发动机起动时一般都要另外以电源车或气源车先将引擎预转至点火速度,涡轮发动机还有一些需注意的特性,活塞引擎的功率几乎与转速成正比,但涡轮发动机在转速达最高转速的50%时输出的功率还不到20%,且低转速时燃料消耗比约为全速

时的三倍,所以低转速时既耗油又没效率,还有油门的反应比活塞引擎慢很多,此外因发动机需要大量空气,改变飞行姿态时如进气道设计不好会使压缩器转子失速,所以涡轮发动机不适合作特技机的动力,但因飞行速度冲压的因素飞机起飞后涡轮发动机效率会变好

旋翼的空气动力特点9页

旋翼的空气动力特点 (1)产生向上的升力用来克服直升机的重力。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。 (2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。 (3)产生其他分力及力矩对直升机;进行控制或机动飞行,类似于飞机上各操纵面的作用。旋翼由数片桨叶及一个桨毂组成。工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。桨叶一般通过铰接方式与桨毂连接。 旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。 先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω 绕轴旋转,并以速度Vo沿旋转轴作直线运动。如果在想象中用一中心轴线与旋翼轴重合,而半径为r的圆柱面把桨叶裁开(参阅图2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度(等于Ωr)和垂直于旋转平面的速度(等于Vo),而合速度是两者的矢量和。显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的:大小不同,方向也不相同。如果再考虑到由于桨叶运动所激起的附加气流速度(诱导速度) ),那么桨叶各个剖面与空气之间的相对速度就更加不同。与机翼相比较,这就是桨叶工作条件复杂,对它的分析比较麻烦的原因所在。 旋翼拉力产生的滑流理论 现以直升机处于垂直上升状态为例,应用滑流理论说明旋翼拉力产生的原因。此时,将流过旋翼的空气,或正确地说,受到旋翼作用的气流,整个地看做一根光滑流管加以单独处理。假设: 空气是理想流体,没有粘性,也不可压缩; 旋转着的旋冀是一个均匀作用于空气的无限薄的圆盘(即桨盘),流过桨盘的气流速度在桨盘处各点为一常数; 气流流过旋翼没有扭转(即不考虑旋翼的旋转影响),在正常飞行中,滑流没有周期性的变化。 根据以上假设可以作出描述旋翼在:垂直上升状态下滑流的物理图像,如下图所示,图中选取三个滑流截面,So、S1和S2,在So面,气流速度就是直升机垂直上升速度Vo,压强为大气压Po,在S1的上面,气流速度增加到V1= Vo+v1,压强为P1上,在S1 的下面,由于流动是连续的,所以速度仍是V1,但压强有了突跃Pl下>P1上,P1下一P1上即旋翼向上的拉力。在S2面,气流速度继续增加至V2=Vo+v2,压强恢复到大气压强Po。 这里的v1是桨盘处的诱导速度。v2是下游远处的诱导速度,也就是在均匀流场内或静止空气中所引起的速度增量。对于这种现象,可以利用牛顿第三用动定律来解释拉力产生的原因。 旋翼的锥体

螺旋桨扭角的设计依据是什么

螺旋桨扭角的设计依据是什么 螺旋桨 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

螺旋桨的几何形体及制造工艺

第二章 螺旋桨几何形体与制造工艺 螺旋桨是目前应用最为广泛的一种推进器,因而也就成为“船舶推进”课程研究的主要对象。要研究螺旋桨的水动力特性,首先必须对螺旋桨的几何特性有所认识和了解。 § 2-1 螺旋桨的外形和名称 一、螺旋桨各部分名称 螺旋桨俗称车叶,其常见外观如图2-1所示。 螺旋桨通常装于船的尾部(但也有一些特殊船在首尾部都装有螺旋桨,如港口工作船及渡轮等),在船尾部中线处只装一只螺旋桨的船称为单螺旋桨船,左右各一者称为双螺旋桨船,也有三桨、四桨乃至五桨者。 螺旋桨通常由桨叶和桨毂构成(图2-2)。螺旋桨与尾轴联接部分称为桨毂,桨毂是一个截头的锥形体。为了减小水阻力,在桨毂后端加一整流罩,与桨毂形成一光顺流线形体,称为毂帽。 桨叶固定在桨毂上。普通螺旋桨常为三叶或四叶,二叶螺旋桨仅用于机帆船或小艇上,近来有些船舶(如大吨位大功率的油船),为避免振动而采用五叶或五叶以上的螺旋桨。 由船尾后面向前看时所见到的螺旋桨桨叶的一面 称为叶面,另一面称为叶背。桨叶与毂联接处称为叶根, 桨叶的外端称为叶梢。螺旋桨正车旋转时桨叶边缘在前 面者称为导边,另一边称为随边。 螺旋桨旋转时(设无前后运动)叶梢的圆形轨迹称为梢圆。梢圆的直径称为螺旋桨直径,以D 表示。梢圆的面积称为螺旋桨的盘面积,以A 0表示: A 0 =4 π2 D (2-1) 图2-1 ε x 叶面参考线 侧投影轮廓 桨叶 叶根 d 桨毂 O D K 转向 梢圆 螺旋 桨直径O D (b ) Z 导边 叶背 随边叶面叶根 毂帽 叶梢(端) x (a )ε 图2-2

当螺旋桨正车旋转时,由船后向前看去所见到的旋转方向为顺时针者称为右旋桨。反之,则为左旋桨。装于船尾两侧之螺旋桨,在正车旋转时其上部向船的中线方向转动者称为内旋桨。反之,则为外旋桨。 二、螺旋面及螺旋线 桨叶的叶面通常是螺旋面的一部分。为了清楚地了解螺旋桨的几何特征,有必要讨论一下螺旋面的形成及其特点。 设线段ab 与轴线oo 1成固定角度,并使ab 以等角速度绕轴oo 1旋转的同时以等线速度沿oo 1向上移动,则ab 线在空间所描绘的曲面即为等螺距螺旋面,如图2-3所示。线段ab 称为母线,母线绕行一周在轴向前进的距离称为螺距,以P 表示。 根据母线的形状及与轴线间夹角的变化可以得到不同形式的螺旋面。若母线为一直线且垂直于轴线,则所形成的螺旋面为正螺旋面如图2-4(a )所示。若母线为一直线但不垂直于轴线,则形成斜螺旋面,如图2-4(b )所示。当母线为曲线时,则形成扭曲的螺旋面如图2-4(c )及图2-4(d )所示。 母线上任一固定点在运动过程中所形成的轨迹为一螺旋线。任一共轴之圆柱面与螺旋面相交的交线也为螺旋线,图2-5(a )表示半径为R 的圆柱面与螺旋面相交所得的螺旋线BB 1B 2。如将此圆柱面展成平面,则此圆柱面即成一底长为2πR 高为P 的矩形,而螺旋 线变为斜线(矩形的对角线),此斜线称为节线。三角形B' B" B 2 " 称为螺距三角形,节线与底线间之夹角θ称为螺距角,如图2-5(b )所示。由图可知,螺距角可由下式来确定: tg θ = R P π2 (2-2) 三、螺旋桨的几何特性 1. 螺旋桨的面螺距 螺旋桨桨叶的叶面是螺旋面的一部分(图 2-6(a )),故任何与螺旋桨共轴的圆柱面与叶面的交线为螺旋线的一段,如图2-6(b )中的B 0C 0段。若将螺旋线段B 0C 0引长环绕轴线一周,则其两端之轴向距离等于此螺旋线的螺距P 。若螺旋桨的叶面为等螺距螺旋面之一部分,则P 即称为螺旋桨的面螺距。面螺距P 与直径 D 之比P /D 称为螺距比。将圆柱面展成平面后即得螺距三角形如图2-6(c )所示。 设上述圆柱面的半径为r ,则展开后螺距三角形的底边长为2πr ,节线与底线之间的夹角θ为半径r 处的螺距角,并可据下式来确定: (d ) (b ) (c )(a ) 图2-4 2" (b ) (a ) (b )(c ) (a )图2-6

螺旋桨概述

螺旋桨概述 1.概念 1.1结构 图1 螺旋桨示意图 图2 螺旋桨结构 螺旋桨由桨叶、浆毂、、整流帽和尾轴组成,如上图所示。 滑失:如果螺旋桨旋转一周,同时前进的距离等于螺旋桨的螺距P,设螺旋桨转速为n,则理论前进速度为nP。也就是说将不产生水被螺旋桨前后拨动的现象,然而事实上,螺旋桨总是随船一起以低于nP的进速V s对水作前进运动。那么螺旋桨旋转一周在轴向上前进的实际距离为h p(=V s/n),称为进距。于是我们把P与h p之差(P-h p)称为滑失。 滑失与螺距P之比为滑失比: S r=(P-h p)/P=(nP-V s)/nP=1-V s/nP

式中V s/nP称为进距比。 从式中可以得出,当V s=nP时,S r=0。即P=h,也就是螺旋桨将不产生对水前后拨动的现象,螺旋桨给水的推力为零。 因此我们可以得出结论:滑失越大,滑失比越高,则螺旋桨推水的速度也就越高,所得到的推力就越大。 1.2工作原理 船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。 另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。 1.3推力和阻力 以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。根据水翼原理,桨叶要受升力和阻力的作用,推动螺旋桨前进,即推动船艇前进。船艇运动会产生顶流和伴流。继续把船艇看成不动,则顶流以与艇速大小相等,方向相反的流速向螺旋桨流来,而伴流则以与艇速方向相同,流速为u r向螺旋桨流来。通过速度合成,我们可以得到与螺旋桨成攻角α,向桨叶流来的合水流。则桨叶受到合水流升力dL和阻力dD的作用,将升力和阻力分解,则得到平行和垂直艇首尾线的分力:

船舶原理 螺旋桨 螺距

第一章绪论 第二章螺旋桨的几何特征 一、主要内容 1、本课题的主要研究内容; 2、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的 概念; 3、螺旋桨的外形和名称及几何特征的有关专业术语。 二、重点内容 1、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的 概念; 2、桨叶数、桨的直径、螺距比和盘面比等概念。 三、教学方法 多媒体授课、结合螺旋桨模型组织教学 四、思考题 1、什么是有效马力、机器马力、收到马力和传送效率、推进效率和推进 系数? 2、表征螺旋桨几何特征的主要参数有哪些? 三、下讲主要内容 理想推进器理论。

第一章绪论 一、本课题的研究对象和内容 1、船舶快速性 船舶在给定主机马力(功率)情况下,在一定装载时于水中航行的快慢问题。 2、推进器 将能源(发动机)发出的功率转换为推船前进的功率的专门装置或机构。常见的推进器为螺旋桨。 3、主要内容 1)推进器在水中运动时产生推力的基本原理及其性能好坏; 2)螺旋桨的图谱设计方法。

二、马力及效率 1、有效马力P E 1)公制有效马力(本教材常用)2)英制有效马力式中,Te 为有效推力(kgf ),R 为阻力(kgf ),v 为船速(m/s )E ()7575P v Rv UShp =e =或hp T E ()7676P v Rv UKhp =e =T 思考:在船舶专业中常用的速度单位还有哪些?

2、主机马力和传送效率 推进船舶所需要的功率由主机供给,主机发出的马力 称为主机马力,以P S 表示。 主机马力经减速装置、推力轴承及主轴等传送至推进器,在主轴尾端与推进器联接处所量得的马力称为推进器 的收到马力,以P D 表示。 传送效率η s =P D / P S ,它反映了推力轴承、轴承地、 尾轴填料函及减速装置等的摩擦损耗。

对转螺旋桨敞水试验技术

8.4.1 对转螺旋桨敞水试验技术 敞水试验是研究螺旋桨在均匀流场中的工作特性。敞水试验的目的是: (1)进行系列模型桨试验,建立螺旋桨设计图谱; (2)研究螺旋桨的不同几何特性参数对其水动力性能的影响,为改进设计和优化设计提供试验数据; (3)提供模型自航试验和实雷推进性能预报必要的敞水性证曲线。 一、试验方法和试验设备 螺旋桨敞水试验必须满足的相似准则是进速系数J。雷诺数、弗氏数、相对潜深都属于 限制参数。为了消除自由液面的影响(兴波和吸气),螺旋桨的轴线潜深应大于或等于一个桨径。为了避免严重的粘性尺度效应,桨模雷诺数要求大于某一临界值,这一点在下文将作专门讨论。 试验方法有二种: (1)固定进速(拖车速度不变)、改变螺旋桨转速,此方法称等速度法; (2)固定螺旋桨转速,改变进度(变化拖车速度),此方法称等转速法。 目前使用的敞水试验装置有二种结构形式:一种是扁舟式敞水箱。螺旋桨动力仪、换向和减速齿轮箱、电机等安装在箱体内,驱动螺旋桨的空、实轴伸出箱体外,为减小箱体对螺旋桨流动的影响,螺旋桨与箱体之间的轴向距离要求大于2—3倍桨直径。另一种是炮弹式敞水试验装置。其外型为流线型圆柱体,类似于炮弹形状。动力仪及驱动螺旋桨的传动轴系安装在圆柱体内。圆柱体上方有一空心的弓形剖面的支杆一直伸到水面上,安放在水面上的电机通过直角传动机构驱动螺旋桨轴转动。这种结构形式的优点是对螺旋桨流动的干扰影响小,另外可以允许增大潜深,提高车速。 敞水试验的主要测量仪器是螺旋桨动力仪。中国船舶科学研究中心水池用于正、反转螺旋桨敞水试验的动力仪有变磁阻式空、实轴螺旋桨动力仪、电阻应变式多功能螺旋桨动力仪。螺旋桨转速由光电式或磁电式速度仪测量。图8-8是鱼雷对转桨试验装置的示意图。 图8-8 鱼雷对转桨试验装置示意图 1- 内轴;2-外轴;3-空心万向轴节; 4-空心动力仪;5-换向齿轮箱;6,7-万向联轴节 8-减速齿轮箱;9-光电测速仪;10-电机。 二、敞水试验数据表达 敞水试验测量的数据有:前桨推力、前桨扭矩、后桨推力、后桨扭矩;螺旋桨 转速n、拖车速度。 为了便于比较分析,通常均以前桨直径无因次化。 前桨推力系数

螺旋桨公式

螺旋桨公式 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

国内外螺旋桨主要制造商现状

国内外螺旋桨主要制造商现状目前找到的关于主要国内制造商的消息,大致如下: 一镇江中船瓦锡兰螺旋桨有限公司 是目前世界范围内发展最快的定距桨制造商。对于提高年产量和产品最大规格的生产工具及技术方面的有效投资令公司步入了如今蓬勃发展的局面。 原镇江船舶螺旋桨厂始建于二十世纪七十年代,是当时中国第一家专业螺旋桨制造商。经过三十年的发展,原镇江船舶螺旋桨厂以超过30%的市场占有率稳居国内(市场)同行业第二位。其精湛的生产技术和对本土市场深入了解对合资公司的建立和发展做出了巨大的贡献。 瓦锡兰荷兰推进器联合有限公司以其领先的技术和著名的LIPS?商标闻名于世界船舶行业。她为合资公司带来了其卓越的定距桨设计和生产技术以及LIPS?商标。在提高公司整体水平的同时也为其进一步的技术革新和市场开拓奠定了坚实的基础。 久经考验的LIPS设计软件,用于熔化、保温的高效的工频电炉,以及先进的实验室仅仅是合资公司目前投入使用的先进技术项目中的一部分。对员工的培训,技术上的交流令合资公司在当今的市场上最先进的定距桨项目中更具有竞争力。 二武汉川崎船用机械有限公司(简称WKM) 武汉川崎船用机械有限公司(简称WKM),是由武汉船用机械厂(简称WMMP)和日本国川崎重工业株式会社(简称KHI)共同投资创建的一家合资企业,主要产品是,利用川崎专有知识产权和生产经营模式,制造川崎侧向推进器和川崎全回转螺旋桨。可以预想,船用推进装置,对于江河、海洋等水上运输十分发达的中国国内市场,以及需求量不断增加的世界航运市场,前景非常光明。| 公司成立于1995年11月,正式投产于1998年1月,2005年年产侧推装置200台套。2001年7月得到DNV船级社ISO9002质量体系认证书。 三大连船用推进器有限公司 大连船用推进器有限公司(DMPC)是中国船舶重工股份有限公司的子公司,是中国最大的船用螺旋桨专业化制造公司。公司具有五十多年的船用螺旋桨生产经验,工艺先进,技术力量雄厚,检测手段完备。具备各种船用螺旋桨设计、制造和桨轴研配生产能力。主要产品有:大中小型定距式船用螺旋桨、调距桨部件以及各种铜合金铸件,产品出口几十个国家和地区,现已获得CCS、LR、DNV、ABS、NK、KR、BV、GL、RINA等九个国家船级社的认可,1997年通过GB/T19002—1994质量体系认证,2003年通过GB/T19001—2000质量体系认证。 进入二十一世纪,公司进行了全面技术改造。新建铸造车间、数控加工车间和成品加工车间,引进了七轴五联动九米数控铣床和重型五轴数控落地镗铣床;购置了30吨、7吨双炉体中频感应电炉、10米数控双柱立车等生产设备;联合研制了100吨、30吨大型静平衡仪、Ф11m、Ф8m、Ф6m大型数显螺距规等检测设备;自行研制了冒口切割、内孔加工等大型专用设备。目前,公司一次性总熔化能力达170吨。现已开始批量生产直径11米左右,成品

螺旋桨计算公式

直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

【CN109849365A】螺旋桨叶片的制造方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910160945.2 (22)申请日 2019.03.04 (71)申请人 保定国奥新能源工程材料科技有限 责任公司 地址 071051 河北省保定市风能街168号 (72)发明人 张自国 张一鸣  (74)专利代理机构 北京慧智兴达知识产权代理 有限公司 11615 代理人 刘宝山 庞铁 (51)Int.Cl. B29C 70/34(2006.01) B29C 70/70(2006.01) B29L 31/08(2006.01) (54)发明名称 螺旋桨叶片的制造方法 (57)摘要 本发明提供了一种螺旋桨叶片的制造方法, 包括:采用数控加工方法制备螺旋桨叶片的夹 芯;采用浸有树脂的纤维布包裹夹芯;抽真空加 压使所述树脂固化;加热固化得到螺旋桨叶片。 本发明的制造方法工艺简单、成本低,得到的产 品质量高。权利要求书1页 说明书7页 附图2页CN 109849365 A 2019.06.07 C N 109849365 A

权 利 要 求 书1/1页CN 109849365 A 1.一种螺旋桨叶片的制造方法,其特征在于,包括: 采用数控加工方法制备螺旋桨叶片的夹芯; 采用浸有树脂的纤维布包裹所述夹芯; 抽真空加压使所述树脂固化; 加热固化得到所述螺旋桨叶片。 2.根据权利要求1所述的螺旋桨叶片的制造方法,其特征在于,所述夹芯采用的材料是聚甲基丙烯酰亚胺。 3.根据权利要求1所述的螺旋桨叶片的制造方法,其特征在于,执行所述数控加工方法的数控加工中心的程序设置为:采用R4双刃平面端铣刀,刃长95mm,主轴转速6000-10000r/ min,切削速度4000-6000mm/min,加工余量5mm-20mm,进行粗加工,调整程序使主轴转速6000-10000r/min,切削速度4000-6000mm/min,进行精加工。 4.根据权利要求1所述的螺旋桨叶片的制造方法,其特征在于,所述树脂是环氧树脂和固化剂按照重量比是100:(32~38)(优选100:35)进行混合得到的混合物。 5.根据权利要求1所述的螺旋桨叶片的制造方法,其特征在于,所述纤维布是碳纤维布;优选地,所述碳纤维布是斜纹碳纤维布和/或单向碳纤维布。 6.根据权利要求1所述的螺旋桨叶片的制造方法,其特征在于,所述采用浸有树脂的纤维布包裹所述夹芯的步骤包括: 在模具中设置一层或多层浸有树脂的纤维布; 在所述一层或多层浸有树脂的纤维布上设置所述夹芯; 在所述夹芯上再次设置一层或多层浸有树脂的纤维布; 合模。 7.根据权利要求6所述的螺旋桨叶片的制造方法,其特征在于,所述抽真空加压使所述树脂固化的步骤包括:在模具的外表面设置真空膜,通过抽真空加压并加热使所述树脂固化。 8.根据权利要求7所述的螺旋桨叶片的制造方法,其特征在于,所述加热是45℃~50℃保持1~3小时。 9.根据权利要求1所述的螺旋桨的制造方法,其特征在于,所述加热固化得到所述螺旋桨叶片的步骤包括在50℃~60℃固化2~6小时。 2

螺旋桨的工作原理

飞机螺旋桨工作原理一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J?Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。螺距:它是桨叶角的另一种表示方法。图1—1—22是各种意义的螺矩与桨叶角的关系。几何螺距(H):桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。桨叶各剖面的几何螺矩可能是不相等的。习惯上以70%直径处的几何螺矩做名称值。国外可按照直径和螺距订购螺旋桨。如64/34,表示该桨直径为60英寸,几何螺矩为34英寸。实际螺距(Hg):桨叶旋转一周飞机所前进的距离。可用Hg=v/n计算螺旋桨的实际螺矩值。可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。理论螺矩(HT):设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。三、螺旋桨拉力在飞行中的变化1.桨叶迎角随转速的变化在飞行速度不变的情况下,转速增加,则切向速度(U)增大,进距比减小桨叶迎角增大,螺旋桨拉力系数增大(图1—1—20所示)。又由于拉力与转速平方成正比,所以增大油门时,可增大拉力。2.桨叶迎角随飞行速度的变化: 在转速不变的情况下,飞行速度增大,进距比加大,桨叶迎角减小,螺旋桨拉力系数减小。如图1—1—20所示,拉力随之降低。当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。飞机在地面试车时,飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动性能变坏,因而螺旋桨产生的拉力不一定最大。3.螺旋桨拉力曲线: 根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。4.螺旋桨拉力随转速、飞行速度变化的综合情况: 在飞行中,加大油门后固定。螺旋桨的拉力随转速和飞行速度的变化过程如下: 由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉

航模螺旋桨基础知识

一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 此外还要考虑螺旋桨桨尖气流速度不应过大(<音速),否则可能出现激波,导致效率降低。 二、桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正 比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。

第三章 螺旋桨基础理论及水动力特性

第三章螺旋桨基础理论及水动力特性 关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。在长期的实践过程中,螺旋桨的形状不断改善。自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。 其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。 虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。至于对环流理论的进一步探讨,将在第十二章中再行介绍。 §3-1 理想推进器理论 一、理想推进器的概念和力学模型 推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。显然推进器的作用力与其所形成的水流情况密切有关。因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。为了使问题简单起见,假定: (1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。 (2)水流速度和压力在盘面上均匀分布。 (3)水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器理论。它可用于螺旋桨、明轮、喷水推进器等,差别仅在于推进器区域内的水流断面的取法不同。例如,对于螺旋桨而言,其水流断面为盘面,对于明轮而言,其水流断面为桨板的浸水板面。 设推进器在无限的静止流体中以速度V A前进,为了获得稳定的流动图案,我们应用运动转换原理,即认为推进器是固定的,而水流自无穷远前方以速度V (鼓动盘)。图 A流向推进器 260

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J 变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。 桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目

螺旋桨原理及其应用

论文题目: 直升飞机螺旋桨原理及其应用 北京四中高一吴士荀 北京四中高一唐明昊 北京四中高一杨宗翰 北京四中高一赵铂琛 指导教师: 北京四中魏华 2014年5月

摘要 螺旋桨的出现加快了世界前进的脚步,给我们带来了各种方便与快捷。我和组员就是三个不折不扣的航空迷。在生活中,各种媒体里,我们看到了螺旋桨的神奇效用,一个简单的扇叶竟能够使一架几吨重的庞然大物在空中轻盈飞翔。身为中学生的我们能否通过自己的聪明才智研究其中的奥妙呢?于是我们运用了资料查询法、小组讨论法等方法进行了研究。经过了一学年的研究,我们初步探究了直升飞机螺旋桨的原理及其应用。 目录:

一、问题的提出 二、研究目的 三、直升飞机及螺旋桨概述 四、感想体会 五、参考资料及鸣谢 一、问题的提出 背景: 在当今社会中,螺旋桨扮演着越来越重要的角色。从我们身边的遥控

飞机,到翱翔在空中的各种飞行器无一不归功于螺旋桨的发明。然而,看似简单的扇叶是如何实现了多年来人类飞行的梦想呢?本组本着 对科学的好奇以及对知识的渴望,进行了本课题的研究,意在探究螺 旋桨的原理及其应用以及它潜在的发展空间以及存在问题,为罗湘江 的进一步发展提出可行化建议。 二、研究目的 1.目的与意义:研究螺旋桨原理及其应用,明确其发展方向以及现存的问题。 2.必要性:螺旋桨的应用将在人们的生活中日益普遍,在不久的将来,螺旋桨也将存在于我们的身边,因此有必要了解它的原理及其应用,并研究它的现存问题。 3.可行性:从中学生所掌握的知识出发,并向大学知识拓展,运用各类知识学习螺旋桨的原理及其应用,探究其发展方向,分析现存问题。 三、直升飞机及螺旋桨概述 (一)直升飞机 1.简介 直升机:直升机的最大时速可达300km/h以上,俯冲极限速度近 400km/h,实用升限可达6000米(世界纪录为12450m),一般航程可

常用螺旋桨的参数

常用螺旋桨的参数(转) 同一转速在不同速度时效率不同,或者说不同的速度各有其效率最高的转速 螺旋桨的螺距决定了它的几何攻角,而桨叶的实际攻角还和前进速度有关,使桨叶在最有利的攻角下工作就能得到最高的效率。可见决定螺旋桨效率的并不是转速而是转速与前进速度之间的比例关系,即状态特性(相对进距)。 螺旋桨的相对螺距h=H/D(H为实际螺距, D为直径), 状态特性(相对进距)λ=V/nD(V为飞行速度,n为转速), 对一般螺旋桨当h-λ=0.2时可以得到最大效率。 各种螺旋桨的最高效率 OS引擎螺旋槳選用表也適用一般廠牌 引擎級數 新引擎適用 10LA 7x4 6.5~7x3~6、8x4 15LA 8x4 7x5~6、8x4~5 25LA 9x5 9x5~6 40LA 11x5 10x6~7、10.5x6、11x5~6 46LA 11x6 11x6~7 65LA 12x6

12x7~8、13x6~8 15LA-S 8x4 8x4~6 25LA-S 9x6 9x6、10x5 40LA-S 11x5 11x5~6 46LA-S 11x6一攲 11x6~7、12x5~6 15CV-A 7x5~6、8x4~6、9x4 8x4~6 25FX 9x5~6、9.5x5、10x5 9x6、9.5x5 32SX 10x6、10.5x5、11x6 9x7~8、10x6 40FX 10x6、10.5x6、11x6~7 ----- 46FX 10.5x6、11x6~8、12x6~7 11x8~10、12x7~9 50SX RING 11x6~10、12x6 12x7~9 61FX 12x6~8、13x6~7 12x9~11

相关文档