文档库 最新最全的文档下载
当前位置:文档库 › 光栅衍射论文

光栅衍射论文

光栅衍射论文
光栅衍射论文

光栅衍射的应用与操作

专业:交通运输学院电子商务专业姓名:黄丽烨学号:09254005

摘要:在本次实验中,由于有些同学因为分光计的调节影响的实验的操作,基于这个问题,本文介绍了一个实用简单的方法帮助更好地完成分光计的调节。同时,光栅衍射不仅可以测量波长还可以测量液体表面张力,薄膜折射率等,本文主要介绍了用光栅衍射测量液体表面张力。

关键词:光栅衍射、衍射光栅、分光计。

背景:衍射光栅是利用多缝衍射原理使光发生色散的光学元件,由大量相互平行、等宽、等间距的狭缝或刻痕所组成。由于光栅具有较大的色散率和较高的分辨本领,它已被广泛地装配在各种光谱仪器中。1821年夫琅禾费创制了用细金属丝做成的衍射光栅,并且用它测量了太阳光谱暗线的波长。后来他又在贴着金箔的玻璃上用金刚石刻划平行线做成色散更大的光栅。第一个直接在玻璃板上刻制光栅的是诺伯尔(1806-1881)。现在使用的光栅有透射式和反射式两种,多是以刻线光栅为模板,复制在以光学玻璃为基板的薄膜上做成的,也有用全息照相法制做的。

正文:

论述:

一、光栅衍射实验方法的改进

实验理论:在光栅衍射实验中,目前实验方法都遵照以下三个步骤:先调整分光计的望远镜,再调节平行光管,最后调测光栅。其中,在分光计的望远镜调节过程中,通过平行平面镜找“绿十字”像,并用“各半调节法”将“绿十字”像调至“P 点,更重要的是对

载物台转过180度(或120度),同样满足“绿十字”像在“P''点不变的要求。这对多

数学生来说难度很大,这一步达不到要求,下步骤就无法进行,由于实验时间有限,势

必造成拖堂现象严重。针对这一情况,我们通过摸索,在实验方法上做了如下改进,省

去了用平行平面镜调“绿十字”像的步骤,直接用光栅调“绿十字”像。

实验步骤:

(1)粗调,由目测调节分光计有关螺钉达到平行光管、载物台和望远镜水平。

(2)打开望远镜照明目镜小灯,调节目镜使分划板刻线清晰。

(3)打开水银灯,使狭缝成像呈在物镜的焦平面上,并且被过 0 点分划板刻线

平分。如图1所示。

(4)将光栅按图2所示,放在载物台上,并且使光栅平面与平行光管及望远镜相垂直。

(5)用手捏住光栅底座两端,慢慢的俯仰角找“绿十字”像,用“各半调节法”即调望远

镜仰角钉和载物台下D1或D2螺钉,各消小差距一半,使“绿十字”像位于?P点。

(6)转动望远镜观察谱线,通过调节载物台下D3螺钉使左右谱线等高并且被过?O点分划板刻线左右平分。如图3所示。

(7)重复进行5、6步骤,直到达到使5、6两步骤都被满足,方可进行测量。

二、光栅衍射法测试液体表面张力

实验原理:利用相关装置在待测液面产生一维表面张力驻波,将其看作为理想的反射式正弦光栅”],在激光的作用下产生线阵分布的衍射光斑,通过LCCD 精确测,取±1级衍射光斑中心间距,进而实时、准确地测算出液体表面张力之值。

实验步骤:液体表面张力基本测试系统主要由激振系统、减振系统(采用激光全息台减振、分光系统、LCCD、计算机等组成,系统结构图如图2所示.

Laser:He-Ne激光器,M :扩束镜,L1:凸透镜(用于产生平行光),Mt:小孔光阑( :O.5 mm),PSl、Ps2:衰减片,M2:小孔光阑( :0.1 mm),M :衍射零级光斑档光板,1.2:成像透镜

图2 表面张力测试系统结构图

在激振系统中,用低频信号发生器带动电磁振动器,驱动下面型直线状振源作周期性正弦振动。产生稳定的一维表面波光栅.而在减振系统中,为保证液面及所产生的表面张力正弦形驻波稳定,将型直线状振源及振动器外挂固定,其余装置置于激光全息台上.当激光束斜入射到液体表面波光栅时,将形成一系列上下对称分布、明暗相间的衍射光斑,借助于LCCD 本身所具有的高分辨率、高灵敏度、定位准确等特性,用CCD作为探测元件采集不同激振频率下±1级衍射光斑位置的数据,串行地输入给计算机,由计算机对这些数据进行分析与处理,实现了实时、准确测量液体的表面张力.

结论:平面衍射光栅各级明条纹的亮度随衍射角和入射角的变化而变化,这与理想状况下光强公式存在较为明显的歧离。光的衍射决定光学仪器的分辨本领。气体或液体中的大量悬浮粒子对光的散射,衍射也起重要的作用。在现代光学乃至现代物理学和科学技术中,光的衍射得到了越来越广泛的应用。衍射应用大致可以概括为以下四个方面:

① 衍射用于光谱分析。如衍射光栅光谱仪。

② 衍射用于结构分析。衍射图样对精细结构有一种相当敏感的“放大”作用,故而利用图样分析结构,如X射线结构学。

③ 衍射成像。在相干光成像系统中,引进两次衍射成像概念,由此发展成为空间滤波技术和光学信息处理。光瞳衍射导出成像仪器的分辨本领。

④ 衍射再现波阵面。这是全息术原理中的重要一步。

撰写时间:2010年11月2日

参考文献:

【1】《大学物理学(下)》吴柳,北京交通大学出版社

【2】《大学物理实验》成正维,牛原:北京交通大学物理实验中心【3】光栅衍射实验新方法吴春梅,申宗仁

【4】用光栅衍射法测试液体表面张力许忠宇,邢凯

衍射光栅实验

衍射光栅实验 【实验目的】 1.了解分光计的原理与结构。 2.学习掌握分光计的调节方法。 3. 观察光通过光栅后的衍射现象。 4. 测透射光栅的光栅常数。 5. 用透射光栅测光波波长 【仪器用具】 分光计、光源、平面反射镜、汞灯光源、透射光栅 【实验原理】 1.分光计 分光计是一种用来精确测量角度的仪器,如测量反射角、折射率和衍射角等。通过测量有关角度,可以确定测定材料的折射率、光波波长和色散率等,其用途十分广泛。近代摄谱仪、单色仪等精密光学仪器也是在分光计的基础上发展起来的。 分光计结构复杂、构件精密、调节要求高,对初学者有一定难度。但只要了解了其结构和光路,严格按要求步骤耐心调节,就能掌握。 (一)仪器描述 图1 JJY型分光仪 1狭缝体锁紧螺钉;2 狭缝体锁紧螺钉;3 狭缝宽度调节手轮;4 狭缝体高低调节手轮; 5 平行光管部件;6平行光管水平调节螺钉;7载物台;8载物台调平螺钉;9 望远镜部件;10望远镜水平调节螺钉;11目镜组锁紧螺钉;12目镜组;13目镜调节手轮;14望远镜光轴高低调节螺钉;15支臂;16望远镜微调螺钉;17转座;18度盘止动螺钉;19载物台锁紧螺钉;20制动架;21望远镜止动螺钉;22度盘;23底座;24立柱;25游标盘微调手轮;26游标盘止动螺钉。 分光计的种类繁多,但构造基本相同。分光计主要由望远镜、平行光管、载物台、光学游标刻度盘四部分组成,其外形如图1所示。 分光计的下部是金属底座,底座中央装有竖直的固定轴,望远镜、载物台、主刻度盘和游标刻度盘都可绕这一固定竖轴旋转,此轴为分光计主轴(中心轴)。 (1)望远镜它由物镜、阿贝目镜、分划板三部分组成。分划板上刻有双十字准线(“╪”),在分划板的右下方紧贴一块45°全反射小三棱镜,其表面涂不透明薄膜,薄膜上刻有一个空心十字透光窗口,反射棱镜另一光学面上涂有绿色,当小电珠光从管侧射入后成为

光栅衍射实验实验报告

工物系 核11 李敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即d (sin φ+sin ι)=mλ。以Δ=φ+ι为偏向角,则由三角形公式得 2d (sin Δ 2cos φ?i 2 )=mλ (3) 易得,当φ?i =0时,?最小,记为δ,则(2.2.1)变

为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角δ,就可以根据(4)算出波长λ。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 2.使用注意事项 (1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧 毁。 (2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。 (3)水银灯的紫外线很强,不可直视。 四、 实验任务 (1)调节分光计和光栅使满足要求。 (2)测定i=0时的光栅常数和光波波长。 (3)测定i=15°时的水银灯光谱中波长较短的黄线的波长

光栅衍射实验

一、 实验名称:光栅衍射实验核51粟鹏文 二、实验目的: (1)进一步熟悉分光计的调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3)加深理解光栅衍射公式及其成立条件。 三、 实验原理: 衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。而平面反射光栅则是在磨光的硬质合金上刻许多平行线。实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1.测定光栅常数和光波波长 光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。 如图1所示,设光栅常数d=AB 的光栅G ,有一束平行光与光栅的法线成i 角的方向,入射到光栅上产生衍射。从B 点作BC 垂直于入射光CA ,再作BD 垂直于衍射光AD ,AD 与光栅法线所成的夹角为。如果在这方向上由于光振动的加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长的整数倍,即: ()sin sin d i m ?λ±=(1) 式中,为入射光的波长。当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号,在 光栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: sin m d m ?λ=(2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,m 第m 级谱线的衍射角。 2.用最小偏向角法测定光 波波长 如图2所示,波长为λ的光束入射在光栅G 上,入射角为i ,若与入射线同在光栅 法线n 一侧的m 级衍射光的衍射角为沪,则由式(1)可知 ()sin sin d i m ?λ±=(3) 若以△表示入射光与第m 级衍射光的夹角,称为偏向角, i ??=+(4) 图1光栅的衍射 图2衍射光谱的偏向角示意图 图3光栅衍射光谱

光栅衍射实验

光栅衍射 [目的] 1.了解光栅特性,观察光栅光谱,进一步加深对光的干涉与衍射的理解。 2.学习和掌握测定光栅特性常数的实验原理和方法。 3.学习和掌握用光栅测定谱线波长的实验原理和方法。 [原理] 平行、等宽而等间隔的多狭缝即为光栅。通常将光栅分为两种,一种是透射光栅,另一种是反射光栅;按制造的方法来分光栅也有两种,一种是用光刻机在玻璃上刻制出来的刻划光栅,另一种是用全息照相的方法拍摄而成的全息光栅。现代使用的多是原刻光栅的复制品和全息光栅。光栅和棱镜一样,都是重要的分光元件,它也可以把入射光中不同波长的光分开。利用光栅分光原理而制成的单色仪和光谱已被广泛应用科学研究中。 若以单色平行光垂直照射在光栅平面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的、间距不等的明条纹,称为谱线。按照光栅衍射理论,衍射光栅中明条纹的位置由下式决定: ()λ?k b a k ±=?+sin 或 λ?k d k ±=?sin (k = 0,1,2,…) (23-1) 式中,b a d +=称为光栅常数,λ为入射光波长,k 为明条纹(光谱线)级数,k ?是k 级明条纹的衍射角,如图23-1所示。 如果入射光不是单色光,则由式(23-1)可以看出,对于同一级谱线,各色光的波长不同,其衍射角k ?也各不相同,于是复色光将被分解,而在中央0=k ,0=k ?处, 各色光仍然重叠在一起,组成中央明条纹。在中央明条纹两侧对称地分布着k = 0,1,2,… 级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分

光栅衍射实验报告

光栅衍射实验报告 字体大小:大|中|小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 ------实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2. 加深对分光计原理的理解。 3. 用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其

示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

,常用的是复制光栅和 的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵 全息光栅。图1中的为刻痕的宽度,为狭缝间宽度,为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹 数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路 图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射, 所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜, 在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 岀现明纹时需满足条件 (2) (2 )式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2 )式光栅方程,若波长已知,并能测岀波长谱线对应的衍射角,则可以求岀光栅常数 d。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的 两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同 的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm; 绿色2=546.1 nm; 黄色两条3=577.0nm 和4=579.1 nm 。 衍射光栅的基本特性可用分辨本领和色散率来表征。

第11-2衍射作业答案

一.简答题 1光栅衍射和单缝衍射有何区别? 答:单缝衍射和光栅衍射的区别在于 1.光栅是由许多平行排列的等间距等宽度的狭缝组成,光栅衍射是单缝衍射调制下的多缝干涉; 2.从衍射所形成的衍射条纹看,单缝衍射的明纹宽,亮度不够,明纹与明纹间距不明显,不易辨别。而光栅衍射形成的明纹细且明亮,明纹与明纹的间距大,易辨别与测量。 2.什么是光的衍射现象? 答:光在传播过程中,遇到障碍物的大小比光的波长大得不多时,会偏离直线路程而会传到障碍物的阴影区并形成明暗变化的光强分布,这就是光的衍射现象。 2.简述惠更斯——菲涅尔原理 答:从同一波阵面上各点发出的子波,经传播而在空间某点相遇时,也可相互叠加而产生干涉现象,称为惠更斯——菲涅尔原理。 4.什么是光栅衍射中的缺级现象? 答:光栅衍射条纹是由N个狭缝的衍射光相互干涉形成的,对某一衍射角若同时满足主极大条纹公式和单缝衍射暗纹公式,那么在根据主极大条纹公式应该出现主明纹的地方,实际不出现主明纹,这种现象称为缺级。 二.填空题 1. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长428.6nm 。 2. 波长为600nm的单色光垂直入射到光栅常数为2.5×10-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现主明纹的最大级别为3。全部级数为0、±1、±3 。 3.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为5个半波带,沿第三级暗纹的衍射方向狭缝可分为4个半波带。 4、平行单色光垂直入射到平面衍射光栅上,若减小入射光的波长,则明条纹间距将变小若增大光栅常数,则衍射图样中明条纹的间距将减小。 5.在单缝衍射实验中,缝宽a= 0.2mm,透镜焦距f= 0.4m,入射光波长λ= 500nm,则在距离中央亮纹中心位置2mm处是纹 6. 用平行的白光垂直入射在平面透射光栅上时,波长为440 nm的第3级光谱线将与波长为660nm 的第2级光谱线重叠. 三.选择题 1在夫琅和费单缝衍射中,对于给定的入射光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹。(B) (A) 对应的衍射角变小;(B) 对应的衍射角变大; (C) 对应的衍射角也不变;(D) 光强也不变。 2.一束平行单色光垂直入射在光栅上,当光栅常数( a+b ) 为下列情况( a 代表每条缝的宽度) k = 3 、6 、9 等级次的主极大均不出现?(B) (A) a+b= 2a (B) a+b= 3a (C) a+b= 4a (D) a+b= 6a

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期: 20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上

的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台 当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比:

光栅衍射实验的MATLAB仿真

届.别.2012届 学号200814060106 毕业设计 光栅衍射实验的MATLAB仿真 姓名吴帅 系别、专业物理与电子信息工程系 应用物理专业 导师姓名、职称姚敏教授 完成时间2012年5月16日

目录 摘要................................................... I ABSTRACT................................................ II 1 引言 (1) 1.1 国内外研究动态 (1) 2理论依据 (2) 2.1 平面光栅衍射实验装置 (2) 2.2 原理分析 (3) 2.3 MATLAB主程序的编写 (6) 2.4 仿真图形的用户界面设计 (7) 3 光栅衍射现象的分析 (8) 3.1 缝数N对衍射条纹的影响 (8) 3.2 波长λ对衍射条纹的影响 (10) 3.3 光栅常数d对衍射光强的影响 (12) 3.4 条纹缺级现象 (13) 4 总结 (14) 参考文献 (16) 致谢 (17) 附录 (18)

摘要 平面光栅衍射实验是大学物理中非常重要的实验,实验装置虽然简单,但实验现象却是受很多因素的影响,例如波长λ,缝数N,以及光栅常数d。本文利用惠更斯一菲涅耳原理,获得了衍射光栅光强的解析表达式,再运用Matlab软件,将模拟的界面设计成实验参数可调gui界面,能够连续地改变波长λ,缝数N,光栅常数d,从而从这 3个层面对衍射光栅的光强分布和谱线特征进行了数值模拟,并讨论了光栅衍射的缺级现象,不仅有利于克服试验中物理仪器和其他偶然情况等因素给实验带来的限制和误差.并而且通过实验现象的对比,能够加深对光栅衍射特征及规律的理解,这些都很有意义。 关键词:平面光栅衍射;惠更斯-菲涅尔原理;gui;光强分布;Matlab

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

《大学物理实验》教案实验22衍射光栅

实验 22 衍射光栅 一、实验目的: 1.观察光栅的衍射光谱,理解光栅衍射基本规律。 2.进一步熟悉分光计的调节和使用。 3. 测定光栅常数和汞原子光谱部分特征波长。 二、实验仪器: 分光计、光栅、汞灯。 三、实验原理及过程简述: 1.衍射光栅、光栅常数光栅是由大量相互平行、等宽、等距的狭缝(或刻痕)构成。其示意图如图 1 所示。 图1图2 光栅上若刻痕宽度为 a,刻痕间距为 b,则 d=a 十 b 称为光栅常数,它是光栅基本参数之一。 2.光栅方程、光栅光谱 根据夫琅和费光栅衍射理论,当一束平行单色光垂直入射到光栅平面上时,光波将发生衍射,凡衍射角满足光栅方程: , k 0 ,± 1 ,± 2... (1)时,光会加强。式中λ为单色光波长, k 是明条纹级数。衍射后的光波经透镜会聚后,在焦平面上将形成分隔得较远的一系列对称分布的明条纹,如图 2 所示。如果人射光波中包含有几种不同波长的复色光,则经光栅衍射后,不同波长光的同一级( k )明条纹将按一定次序排列,形成彩色谱线,称为该入射光源的衍射光谱。图 3 是普 0通低压汞灯的第一级衍射光谱。它每一级光谱中有四条特征谱线:紫色λ14358 A ;绿色λ 0 0 025461 A ;黄色两条λ3=5770 A 和λ45791 A 。

3.光栅常数与汞灯特征谱线波长的测量由方程(1)可知,若光垂直入射到光栅上,而第一级光谱中波长λ1 已知,则测出它相应的衍射角为 1 ,就可算出光栅常数 d;反之,若光栅常数已知,则可由式(1)测出光源发射的各特征谱线的波长 i 。角的测量可由分光计进行。 4.实验内容与步骤 a.分光计调整与汞灯衍射光谱观察 (1)调整好分光计。 (2)将光栅按图 4 所示位置放于载物台上。通过调平螺丝 a 1 或 a 3 使光栅平面与平行光管光轴垂直。然后放开望远镜制动螺丝,转动望远镜观察汞灯衍射光谱,中央( K 0 )零级为白色,望远镜转至左、右两边时,均可看到分立的四条彩色谱线。若发现左、右两边光谱线不在同一水平线上时,可通过调平螺丝a 2 ,使两边谱线处于同一水平线上。 (3)调节平行光管狭缝宽度。狭缝的宽度以能够分辨出两条紧靠的黄色谱线为准。 b.光栅常数与光谱波长的测量

2020年光栅衍射实验报告范文

实验时间2019 年 月 日签到序号 【进入实验室后填写】 福州大学 【实验七】 光栅的衍射 (206 实验室) 学学院 班班级 学学号 姓姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前 10 分钟进实验室 实验预习部分【实验目的】 】 【实验仪器】( 名称、规格或型号) 【实验原理】(文字叙述、主要公式、衍射的原理图)实验预习部分【实验步骤和注意事项】 】 实验预习部分

一、 巩固分光计的结构(P 197 ,图25-10 ) 载物台 6 7 25 望远镜11 12 15 16 17 平行光管2 27 调节分光计,要求达到(验调节步骤参阅实验25 ) ⑴⑴望远镜聚焦于无穷远,且其光轴与仪器转轴垂直。 ⑵⑵平行光管产生平行光,且其光轴与望远镜光轴同轴等高,狭缝为宽度在望远镜视场中约为1 mm (狭缝宽度不当应由教师调节) 二、光栅位置的调节 1 、光栅平面与平行光管轴线垂直 ①①转动望远镜使竖直叉丝对准 。 ,然后固定望远镜位置。 ②放置光栅时光栅面要垂直

。 ③③调节 螺丝直到望远镜中看到光栅面反射回来的绿色十字叉丝像与 重合。 2 、光栅上狭缝与仪器转轴平行。 松开望远镜止动螺钉,向左(或向右)转动望远镜,观察各谱线,调节被螺丝使各谱线都被分划板视场中央的水平叉丝平分。 3 、反复调节直到1 和2 两个要求同时满足! 数据记录与处理【一】测定光栅常数 测出第一级绿光谱线的衍射角 绿=541 nm k=1 置望远镜位置 T 1 置望远镜位置 T 2 1 1 2 2 2 1 2 1 1- -41 1′= rad) (弧度) 10sin 绿 kd

光栅衍射实验实验报告

工物系 核11 敏 2011011693 实验台号19 光栅衍射实验 一、 实验目的 (1) 进一步熟悉分光计的调整与使用; (2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、 实验原理 2.1测定光栅常数和光波波长 如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为?。从B 点引两条垂线到入射光和出射光。如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即 ()sin sin d i m ?λ ±= (1) m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λ?,,,i d 中的三个 量,可以推出另外一个。 若光线为正入射,0=i ,则上式变为 λ ?m d m =sin (2) 其中 m ?为第m 级谱线的衍射角。 据此,可用分光计测出衍射角m ?,已知波长求光栅常数或已知光栅常数求 波长。 2.2用最小偏向角法测定光波波长 如右图。入射光线与m 级衍射光线位于光栅法线同侧,

(1)式中应取加号,即。以为偏向角,则由三 角形公式得 (3) 易得,当时,?最小,记为 ,则(2.2.1)变为 ,3,2,1,0,2 sin 2±±±==m m d λδ (4) 由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4) 算出波长。 三、 实验仪器 3.1分光计 在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。 3.2光栅 调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。 3.3水银灯 1.水银灯波长如下表 颜色 紫 绿 黄 红 波长/nm 404.7 491.6 577.0 607.3 407.8 546.1 579.1 612.3 410.8 623.4 433.9 690.7

第11-2衍射作业答案

一.简答题 1光栅衍射和单缝衍射有何区别 答:单缝衍射和光栅衍射的区别在于 1.光栅是由许多平行排列的等间距等宽度的狭缝组成,光栅衍射是单缝衍射调制下的多缝干涉; 2.从衍射所形成的衍射条纹看,单缝衍射的明纹宽,亮度不够,明纹与明纹间距不明显,不易辨别。而光栅衍射形成的明纹细且明亮,明纹与明纹的间距大,易辨别与测量。 2.什么是光的衍射现象 答:光在传播过程中,遇到障碍物的大小比光的波长大得不多时,会偏离直线路程而会传到障碍物的阴影区并形成明暗变化的光强分布,这就是光的衍射现象。 2.简述惠更斯——菲涅尔原理 答:从同一波阵面上各点发出的子波,经传播而在空间某点相遇时,也可相互叠加而产生干涉现象,称为惠更斯——菲涅尔原理。 4.什么是光栅衍射中的缺级现象 答:光栅衍射条纹是由N个狭缝的衍射光相互干涉形成的,对某一衍射角若同时满足主极大条纹公式和单缝衍射暗纹公式,那么在根据主极大条纹公式应该出现主明纹的地方,实际不出现主明纹,这种现象称为缺级。 二.填空题 1. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长=600nm的单色光的第2级明纹位置重合,这光波的波长。 2. 波长为600nm的单色光垂直入射到光栅常数为×10-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现主明纹的最大级别为3。全部级数为0、±1、±3。 3.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为5个半波带,沿第三级暗纹的衍射方向狭缝可分为4个半波带。 4、平行单色光垂直入射到平面衍射光栅上,若减小入射光的波长,则明条纹间距将变小若增大光栅常数,则衍射图样中明条纹的间距将减小。 5.在单缝衍射实验中,缝宽a= 0.2mm,透镜焦距f= 0.4m,入射光波长 = 500nm,则在距离中央亮纹中心位置2mm处是纹 6. 用平行的白光垂直入射在平面透射光栅上时,波长为440 nm的第3级光谱线将与波长为660nm 的第2级光谱线重叠. 三.选择题 1在夫琅和费单缝衍射中,对于给定的入射光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹。(B) (A) 对应的衍射角变小; (B) 对应的衍射角变大; (C) 对应的衍射角也不变; (D) 光强也不变。 2.一束平行单色光垂直入射在光栅上,当光栅常数 ( a+b ) 为下列情况 ( a 代表每条缝的宽度) k = 3 、6 、9 等级次的主极大均不出现(B) (A) a+b= 2a (B) a+b= 3a (C) a+b= 4a (D) a+b= 6a

光栅衍射实验报告

光栅衍射实验报告 字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6 南昌大学实验报告 --- ---实验日期:20071019 学号:+++++++ 姓名:++++++ 班级:++++++ 实验名称:光栅衍射 实验目的:1.进一步掌握调节和使用分光计的方法。 2.加深对分光计原理的理解。 3.用透射光栅测定光栅常数。 实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器) 实验原理: 光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。原制光栅价格昂贵,常用的是复制光栅和全息光栅。图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为

光栅常数。它是光栅基本常数之一。光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。 图1光栅片示意图图2光线斜入 射时衍射光路 图3光栅衍射光谱示意图图4载物台当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为 (1) 出现明纹时需满足条件 (2) (2)式称为光栅方程,其中:为单色光波长;k为明纹级数。 由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。 在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。 如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。对于低压汞灯,它的每一级光谱中有4条谱线: 紫色 1=435.8nm;绿色 2=546.1nm;黄色两条 3=577.0nm和 4=579.1nm。 衍射光栅的基本特性可用分辨本领和色散率来表征。 角色散率D(简称色散率)是两条谱线偏向角之差Δ两者波长之差Δ之比: (3)

大学物理光栅衍射习题

光栅衍射 一、选择题 1、 一衍射光栅对某波长的垂直入射光在屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该 ( A ) (A) 换一个光栅常数较大的光栅; (B) 换一个光栅常数较小的光栅; (C) 将光栅向靠近屏幕的方向移动; (D) 将光栅向远离屏幕的方向移动。 2、某单色光垂直入射到每厘米有5000条狭缝的光栅上,在第四级明纹中观察到的最大波长小于 ( B ) (A )4000? (B) 4500 ? (C) 5000 ? (D) 5500 ? 3、某元素的特征光谱中含有波长分别为1λ=450nm 和2λ=750nm 的光谱线,在光栅光谱中,这两种波长的谱线有重叠现象,重叠处的谱线2λ主极大的级数将是 ( D ) (A) 2、3、4、5…; (B) 2、5、8、11…; C) 2、4、6、8…; (D) 3、6、9、12…。 4、 已知光栅常数为d =×10-4cm ,以波长为6000 ?的单色光垂直照射在光栅上,可以 看到的最大明纹级数和明纹条数分别是 ( D ) (A) 10,20; (B) 10,21; (C) 9,18; (D) 9,19。 二、填空题 1、 用纳光灯的纳黄光垂直照射光栅常数为d =3μm 的衍射光栅,第五级谱线中纳黄光的 的角位置5 = 79o 。 2、 若波长为6250 ?的单色光垂直入射到一个每毫米有800条刻线的光栅上时,则该光 栅的光栅常数为 μm ;第一级谱线的衍射角为 30o 。 3、 为了测定一个光栅的光栅常数,用波长为的光垂直照射光栅,测得第一级主极大的衍 射角为18°,则光栅常数d= μm _,第二级主极大的衍射角θ= 38°。 4、在夫琅和费衍射光栅实验装置中,S 为单缝,L 为透镜,屏幕放在L 的焦平面处,当把光栅垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样 不变 。 三、计算题 1. 用=600 nm 的单色光垂直照射在宽为3cm ,共有5000条缝的光栅上。问: (1) 光栅常数是多少 (2) 第二级主极大的衍射角θ为多少 (3) 光屏上可以看到的条纹的最大级数

光栅衍射实验

一、 实验名称:光栅衍射实验 核51 粟鹏文 2015011744 二、实验目得: (1)进一步熟悉分光计得调整与使用; (2)学习利用衍射光栅测定光波波长及光栅常数得原理与方法; (3)加深理解光栅衍射公式及其成立条件。 三、 实验原理: 衍射光栅简称光栅,就是利用多缝衍射原理使光发生色散得一种光学元件。它实际上就是一组数目极多、平行等距、紧密排列得等宽狭缝,通常分为透射光栅与平面反射光栅。透射光栅就是用金刚石刻刀在平面玻璃上刻许多平行线制成得,被刻划得线就是光栅中不透光得间隙。而平面反射光栅则就是在磨光得硬质合金上刻许多平行线。实验室中通常使用得光栅就是由上述原刻光栅复制而成得,一般每毫米约250~600条线。由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器得分光元件,用来测定谱线波长、研究光谱得结构与强度等。另外,光栅还应用于光学计量、光通信及信息处理。 1、测定光栅常数与光波波长 光栅上得刻痕起着不透光得作用,当一束单色光垂直照射在光栅上时,各狭缝得光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜得焦平面上形成一系列明暗条纹。 如图1所示,设光栅常数d=AB 得光栅G ,有一束平行光与光栅得法线成i角得方向,入射到光栅上产生衍射。从B点作B C垂直于入射光C A,再作B D垂直于衍射光AD ,AD 与光栅法线所成得夹角为?。如果在这方向上由于光振动得加强而在F 处产生了一个明条纹,其光程差CA +AD 必等于波长得整数倍,即: (1) 式中,λ为入射光得波长。当入射光与衍射光都在光栅法线同侧时,(1)式括号内取正号,在光 栅法线两侧时,(1)式括号内取负号。 如果入射光垂直入射到光栅上,即i=0,则(1)式变成: (2) 这里,m =0,±1,±2,±3,…,m 为衍射级次,?m第m 级谱线得衍射角。 2.用最小偏向角法测 定光波波长 如图2所示,波长为得光束入射在光栅G上,入射角为i,若与入射线同在光栅 法线n 一侧得m 级衍射光得衍射角为沪,则由式(1)可知 (3) 若以△表示入射光与第m 级衍射光得夹角,称为偏向角, (4) 显然,△随入射角i而变,不难证明时△为一极小值,记作,称为最小偏向角。并且仅在入射光与衍射光处于法线同侧时才存在最小偏向角。此时 (5) 带入式(3)得 m=0,±1,±2, (6) 图1 光栅得衍射 图2衍射光谱得偏向角示意图 图3 光栅衍射光谱

光栅衍射 思考题与解答

2 . 当狭缝太宽、太窄时将会出现什么现象? 为什么? 答 狭缝太宽 则分辨本领将下降 如两条黄色光谱线分不开。狭缝太窄 透光太少 光线太弱 视场太暗不利于测量。 3 . 为什么采用左右两个游标读数? 左右游标在安装位置上有何要求?答 采用左右游标读数是为了消除偏心差 安装时左右应差1 8 0 o1)测d和λ时,,,,实验要保证什么条件?如何实现如何实现如何实现如何实现???? 答要求条件1:分光计分光计分光计分光计望远镜适合观察平行光,平行光管发出平行光,并且二者光轴均垂直于分光计主轴。实现:先用自准法调节望远镜,再用调节好的望远镜观察平行光管发出的平行光,调节缝宽和平行光管的高度,使得狭缝的象最清晰而且正好被十字叉丝的中间一根横线等分,分光计就调节好了。要求条件2:光栅平面与平行光管的光轴垂直。实现:如本文4.1所述,首先粗调,然后,当发现两者相差超过2′时,应当判断零级谱线更接近哪一侧的谱线,若接近左侧谱线,则光栅应顺时针旋转(从分光计上方看),反之应该逆时针旋转,再次测量。 3、用什么办法来测定光栅常数?光栅常数与衍射角有什么关系?答:用测量显微镜来测量光栅常数。根据光栅衍射方程dsinφ=kλ知道,光栅常数d与衍射角的正弦sinφ成反比。 4、测光波长应保证什么条件?实验时这些条件是怎样保证的?答:测光波长应保证入射的单色平行光垂直于光栅平面,否则该式将不成立。实验时通过调节平行光管与光栅平面垂直来保证式成立。 5、分光计主要由哪几部分组成?各部分的作用是什么?为什么要设置一对左右游标?答:分光计主要包括:望远镜、平行光管、刻度盘、游标盘等。设置一对左右游标的目的是为了消除刻度盘与游标盘之间的偏心差。 6、调节分光计的基本要求是什么?为什么说望远镜的调节是分光计调节中的关键?答:简单地说,调节分光计的基本要求是使分光计各部分都处于良好的工作状态。因为分光计的水平调节、平行光管的调节等都要借助于望远镜,所以说望远镜的调节是分光计调节中的关键。 7、在调整望远镜时,这什么要将平面镜放在垂直于载物台两螺钉的连线位置?答:这是为了调节方便。此时只需调节载物台上三个螺丝中的一个螺丝即可以完成望远镜水平的调节。 8、什么叫视差?怎样判断有无视差存在?本实验中哪几步调节要消除视差?答:视差是指望远镜目镜中刻划线的象与谱线的的象不在同一竖直平面内。有无视差可以通过稍稍移动眼睛的位置,看谱线与刻划线的相对位置是否改变来判断。调节望远镜与光栅垂直时,观察光栅衍射条纹时。 9、单色光的光栅衍射图样和单缝的衍射图样有何异同?利用光栅测量光波波长比用单缝有何优点?答:用衍射光栅测光波波长时,由于衍射现象非常明显,衍射条纹间距较大,测量衍射角比较准确,因此光波波长的测量结果也较准确。单缝衍射测光波波长则没有上述优点,故测量结果往往误差较大。 3.当平行光管的狭缝很宽时 对测量有什么影响? 答 造成测量误差偏大 降低实验准确度。不过 可采取分别测狭缝两边后求两者平均以降低误差。 4.若在望远镜中观察到的谱线是倾斜的 则应如何调整? 答 证明狭缝没有调与准线重合有一定的倾斜 拿开光栅调节狭缝与准线重合。 5.为何作自准调节时,要以视场中的上十字叉丝为准 而调节平行光管

光栅衍射实验报告

光栅衍射实验报告 【实验目的】 1、观察光栅衍射现象,了解光栅的主要特征,加深对光栅衍射原理的理解; 2、进一步熟悉和巩固分光计的调节使用; 3、学会测量光栅常数,以及用光栅测光波的波长。 【实验仪器】 光栅、分光计、氦灯 【实验原理】 实验装置如图4-16-1所示。光栅放置在分光计的载物台上,氦灯光经过分光计的平行光管垂直入射到光栅上,经光栅色散后,由分光计的望远镜光谱,由分光计的读数窗读出各衍射光谱的衍射角。 凡含众多全同单元,且排列规则、取向有序的周期结构,统称为光栅。一维多缝光栅是一个最简单也是最早被制成的光栅,如图4-16-2所

示,其透光的缝宽为a,挡光的宽度为b,即这光栅的空间周期为d =(a+b),亦称其为光栅常数。 其中d是光栅常数,j为衍射角,l为入射光波长,k为该明纹的级次。该式叫做光栅衍射方程。 如果用会聚透镜将衍射后的平行光会聚起来,透镜后焦面上将出现一系列亮线----谱线.在j= 0的方向上可以观察到零级谱线,其他级数的谱线对称分布在零级两侧. 【实验内容与步骤】 测量氦灯光经过光栅衍射后各个谱线的衍射角度,求出光栅的光栅常数。 1、仪器调节 本实验在分光计上进行.要使实验满足式(2)成立的条件,入射光应是平行光垂直入射,衍射后要用聚焦于无穷远的望远镜观察和测量。为了保证测量准确,衍射谱线的等高面应该与分光计转轴垂直。 所以,对分光计的调节要求是:

平行光管产生平行光; 望远镜聚焦于无穷远(即能接收平行光); 使平行光管和望远镜的光轴都垂直仪器的转轴。并要求光栅平面与平行光管光轴垂直;光栅的刻痕与仪器转轴平行。 视频介绍分光计的调整方法 (1)调节光栅平面(即刻痕所在平面)与平行光管光轴垂直 调节方法是:先用水银灯把平行光管的狭缝照亮,使望远镜目镜中分划板中心垂直线对准狭缝像。然后固定望远镜。把光栅放置在载物台上(如图六所示),根据目测尽可能做到使光栅平面垂直平分连线,而栅平面反射回来的亮“+”字像与分划板中心垂直线重合。此时光栅平面与望远镜光轴垂直应在光栅平面内,并使光栅平面大致垂直于望远镜。再用自准直法调节光栅平面,直到从光。再调节平行光管狭缝像与“+”字像重合,使光栅平面与平行光管光轴垂直,然后刻固定游标盘。 (2)调节光栅使其刻痕与仪器转轴平行

衍射光栅测波长

衍射光栅测波长 光栅是一种重要的分光元件,是一些光谱仪器(如单色仪,光谱仪)的核心部分,它不仅用于光谱学,还广泛用于计量,光通信及信息处理等方面。 一、实验目的: 1、熟悉分光计的调整和使用。 2、观察光线通过光栅后的衍射现象。 3、掌握用光栅测量光波长及光栅常数的方法。 二、实验仪器 TTY —01型分光计,待测波长的光源,光栅。 三、实验原理: 光栅是根据多缝衍射原理制成的一种分光元件,它能产生谱线间距离较宽的匀排光谱。所得光谱线的亮度比棱镜分光时要小一些,但光栅的分辨本领比棱镜大。 光栅不仅适用于可见光,还能用于红外和紫外光波,常用于光谱仪上。 光栅在结构上有平面光栅,阶梯光栅和凹面光栅等几种、同时又分为透射式和反射式两类。本实验选用透射式平面刻痕光栅或全息光栅。 透射式平面刻痕光栅是在光学玻璃片上刻划大量互相平行,宽度和间距相等的刻痕制成的。当光照射在光栅面上时,刻痕处由于散射不易透光,光线只能在刻痕间的狭缝中通过。因此,光栅实际上是一排密集均匀而又平行的狭缝。 若以单色平行光垂直照射在光栅面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的间距不同的明条纹。 按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定: λφk b a k ±=+sin )( 或:λφk d k ±=sin ( 2.1.0=k ) (1.3—1) 式中:d=)(b a +称为光栅常数,λ为入射光波长,k 为明条纹(光谱线)级数,φk 为K 级明条纹的衍射角。(参看图1.3—1)。 如果入射光不是单色光,则由式(1.3—1)可以看出,光的波长不同其衍射角φk 也各不相同,于是复色光将被分解。而在中央k=0,φk=0处,各色光仍重叠在一起,组成中央明条纹,在中央明条纹两侧对称分布着k=1、2……级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光(如图1.3—1)

光栅常数的实验报告

图2.1.2光栅衍射谱 得分 教师签名 批改日期 一、实验设计方案 1 、实验目的 1.1、 了解光栅的分光特性; 1.2、 掌握什么是光栅常数以及求光栅常数的基本原理与公式; 1.3、 掌握一种测量光栅常数的方法。 2、实验原理 2.1、测量光栅常数 光栅是由许多等宽度a (透光部分)、等间距b (不透光部分)的平行缝组成 的一种分光 元件。当波长为入的单色光垂直照射在光栅面上时,则透过各狭缝的 光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一 系列间距不同的明条纹。根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下 式决定: (a+b ) sin ? k=k 入(k=0,± 1,± 2,…) 式中a+b=d W 为光栅常数,k 为光谱级数,? k 为第k 级谱线的衍射角。见图2.1.2, k=0对应于? =0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。 如果入射光不是单色光,则由式(2.1.1)可知,入不同,? k 也各不相同, 于是将复色光分解。而在中央k=0, ? k=0处,各色光仍然重叠在一起,组成中 央明条纹。在中央明条纹两侧对称地分布k=1,2,…级光谱线,各级谱线都按波 长由小到大,依次排列成一组彩色谱线,如图 2.1.2所示。 根据式(2.1.1),如能测出各种波长谱线的衍射角? k ,则从已知波长入的大 小,可以算出光栅常数d ; 反之,已知光栅常数d , 则可以算出波长入。本试 验则是已知波长入求光 栅常数。 2.2.1、 光源必须垂直 入射 光栅,否则会引起较 大的误差。 2.2.2、 所有装置尽量 处于 同一水平面上,这样 才能发生明显的衍射。 2.2、注意事项 (2.1.1) 入射光 -毂明撇 屮眞囲条 3级囲*

相关文档