文档库 最新最全的文档下载
当前位置:文档库 › t-DNA插入突变体检测

t-DNA插入突变体检测

t-DNA插入突变体的鉴定

实验时间:2012年5月18日

摘要T i质粒是上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。所以Ti质粒上的这一段能转移的DNA被叫做T-DNA。将感兴趣的基因改造插入到T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化,得到含有突变的植株。本实验即检测所得植株是否为T-DNA的插入突变体。

1.引言

Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。Ti质粒上的这一段能转移的DNA被叫做T-DNA。若将Ti质粒进行改造,把感兴趣的基因放进T-DNA序列中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化。T-DNA插入到植物染色体上的什么位置,是随机的。如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA插入的纯合突变体,杂合突变体,和野生型。在突变体研究中,需要的材料是纯合突变体,所以必须从分离群体中将纯合突变体鉴定出来。

本次实验中,采用液CTAB(或者TSP法)提取拟南芥植株的DNA,然后PCR将所获DNA 扩增,在之后采用琼脂糖凝胶电泳技术,分离处长度不一的DNA带,以确东样品是否为T-DNA 插入突变纯和体。

PCR(Polymerase Chain Reaction),

即聚合酶链式反应是体外核算扩增技术,

具有特异、敏感、产率高、快速、简便、

重复性好、易自动化等突出优点;能在一

个试管内将所要研究的目的基因或某一

DNA片段于数小时内扩增至十万乃至百万

倍,使肉眼能直接观察和判断。(PCR基本

原理如右图)

DNA含有PO43-基团,在pH8.0 Buffer

(本实验中为TAE)中带负电, 在电场中

向正极移动。自由电泳时,由于不同大小的DNA片段的电荷密度大致相同,各核酸分子难以分开;选用适当浓度的琼脂糖凝胶作为支持物,使之具备一定的孔径,即可发挥分子筛效应,使大小不同的核酸片段迁移率出现较大差异,达到分离的目的;同样条件对Marker电泳;起到鉴定的作用。不同浓度的琼脂糖凝胶对应线状DNA分子分离范围不同。(如下图)

2.实验材料

2.1.试验材料

待检测拟南芥植株;

液氮,CTAB提取液,氯仿/异戊醇(24:1),无水乙醇,70%的乙醇,TE;

引物(Lp、Rp、Bp),反应缓冲液,dNTP,ddH2O,耐热聚合酶;

琼脂糖,TAE缓冲溶

离心机,恒温槽,PCR仪,电泳仪,电子天平,冰块;

离心管(0.2ml、0.5ml),移液枪等必要的实验器材。

2.2.实验步骤

2.2.1.CTAB法提取DNA

2.2.1.1.用液氮100mg幼嫩叶片研磨成细粉,置于1.5 ml 离心管中加入预热至65℃的600

μl 的2×CTAB提取液,轻摇混匀。

2.2.1.2.65℃水浴30min,其间轻摇混匀。

2.2.1.

3.向上清液加入等体积的氯仿/异戊醇(24:1),室温下轻轻混匀10 min,12000 rpm

离心15 min,再转移上清液入新管。

2.2.1.4.向上清液中加入2倍无水乙醇或等体积的异丙醇,小心混匀,-20 ℃下30 min ,

12000 rpm离心15 min,弃上清。

2.2.1.5.用70%乙醇洗涤沉淀一次,12000 rpm稍离心,弃上清。

2.2.1.6.将沉淀晾干,加20-50 μl TE (pH 8.0), 65℃水浴30 min溶解DNA。

2.2.2.PCR步骤

2.2.2.1.配置反应体系:主要包括DNA模板,引物,反应缓冲液,dNTP,ddH2O,耐热聚合

酶。

2.2.2.2.25ul体系:ddH2O 16ul,缓冲溶液2.5ul,镁离子2ul,dNTP 0.5ul,引物1ul,

DNA模板2ul,taq酶0.2ul。

2.2.2.

3.配好体系,轻摇混匀,4000rpm离心10秒钟。

2.2.2.4.设定反应程序:

1)预变性:94℃,5min;

2)循环部分:变性解旋94℃,40sec;退火53℃,50sec;延伸72℃,80sec,

循环35次;

3)延伸部分:72℃,10min;

4)保存:4℃下可以保存1-2天。

2.2.

3.琼脂糖凝胶电泳

2.2.

3.1.配置40ml1.6%的琼脂糖凝胶:称取0.640g的琼脂糖放入锥型瓶中,加入40ml TAE

加热使其溶解,注意不要使其暴沸;

2.2.

3.2.将加热溶解的琼脂糖凝胶稍冷却,大约到50℃,将所得溶液移入琼脂糖槽中,使

之冷却成型;

2.2.

3.3.将冷却凝固的琼脂糖凝胶放入电泳槽中,加入TAE电极缓冲缓,直到液体稍浸没凝

胶;

2.2.

3.

4.向所得的25ul PC体系中加入5ul 6×loading buffer,轻摇混匀;

2.2.

3.5.以此向点样空中滴加样品,marker DNA滴加约6.5ul,其他的样品,每个点样空滴

加20ul;

2.2.

3.6.点样完成后,加上110v电压,跑胶大约30-40分钟,直到DNA大概跑到凝胶的三

分之二处;

2.2.

3.7.取出凝胶,放入EB(溴乙锭,强突变剂,剧毒慎碰)染液中染色10-15分钟;

2.2.

3.8.之后放入凝胶成像仪中,观察DNA跑胶的情况。

3.结果

3.1.第一次

TPS法提取44号样品DNA,以DL2000为Marker。

图1

从上图这个结果看,完全看不到特异性的DNA带,全都是非特异性的小带,长度甚至小于Marker DL2000最短的带(100bp),无法判断所测样品的纯合与否。

3.2.第二次

CTAB发提取44号样品DNA,以Lambda DNA/EcoRI+为Marker。

图2

与第一次相比,有显著的提升。此次用的DNA Marker为Lambda DNA/EcoRI+,每条带所对应DNA片段的大小已在图中标注。在Lp、Rp的引物下扩增,电泳可得到长度约1100 DNA 大带,Bp、Rp引物扩增,电泳可得到800~900小带,故可以确定该样品(44号)为杂合突变体。

3.3.第三次

CTAB法提取44号样品DNA(同第二次),以BenchTop 100bp DNA Ladder为Marker。

图3

此次的结果与第二次所得结果基本相同,也可以得到同3.2的结论。

4.分析

4.1.结果分析

4.1.1.在图1所示实验结果,是不成功的:所有DNA模板的扩增结果都显示只有非特异性

小带,完全没有特异性带的痕迹;初步分析原因有两个,一个是由于PCR扩增体系没有混合均匀,所加试剂附在离心管的内壁上;另一原因考虑到DNA的物理脆性,我们在电泳前,加上样缓冲液(6×Loading Buffer)之后,为了混匀,我们用了电动震荡仪,由于震荡剧烈,可能将DNA特异性带震碎。

4.1.2.图2所示结果整体效果不错,但是DNA Marker选择不是很好,能够指示目标带的

Marker都挤在一起,而且1500bp以上的Marker很多,对于本实验没有指示作用。

4.1.3.图3所示结果,从DNA Marker的选取上,比图2要合适:各长度的Marker分布比

较均匀,目标长度差不多在所有指示长度的中间;从DNA跑胶距离看,也比较好:100bp左右的非特异性带接近凝胶边缘但没有跑出,而且目标带所在位置在1/2到2/3处,适合观察。

4.2.实验分析

4.2.1.加液氮碾磨叶片时,最好保持离心管中始终有液体氮存在,如果碾磨一段时间后中

途要加液氮继续碾磨,一定注意,液氮沸腾时极易将已经碾磨好的叶片吹走;另一点,碾磨时要迅速,避免空气中的水汽在离心管上凝结。

4.2.2.DNA有一定的物理脆性,所以在提取过程中混匀时一定要缓慢的摇晃,切忌剧烈震

荡。

4.2.3.DNA模板中蛋白、多糖、酚类等杂质会抑制PCR反应;模板降解会导致PCR扩增无

产物;模板加量过多也会导致非特异性扩增增加。引物的长度要适当、避免二级结构和二聚体;避免反复冻融;浓度适当,过高导致非特异性增加,过低则无扩增产物。

Mg2+浓度过高,非特异性增强,过低无扩增产物。

4.2.4.PCR中所需的各种试剂都应避免污染,而且尽量减少冻融的次数。

4.2.

5.电泳电压的确定一般是按照5V/cm来确定,此次实验中所有电泳槽长约20cm,计算

的电压为100V,但是根据第一次实验结果看,30min、100V电压的电泳,DNA跑胶距离不够,所以为了提高实验速度,在DNA承受范围内,将电压提高到110V。

4.2.6.再次强调EB(溴乙锭)是一种荧光染料,能嵌入到双链核酸碱基对平面之间,250~

310 nm波长的紫外光激发下发出橙红色光,常用于检测核酸分子。因此它也是一种强诱变剂,有致癌作用。染色时一定做好防护。

几种拟南芥突变体鉴定方法

HY5‐215 The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus‐induced development of root and?hypocotyl, Genes Dev. 1997 Nov 15; 11(22): 2983–2995. In the genome of hy5‐215, the splicing acceptor site of the first intron (=G) was replaced by A, suggesting that this mutation causes aberrant RNA processing In hy5‐215, the nucleotide g‐1117 (white letter), which is the last nucleotide in the first intron, is replaced by an a HY5‐215的突变位点与野生型相比,并没有酶切位点的变化。引物在有一个错配位点的情况下,可以产生一个新的酶切位点PsiI,从而将野生型、杂合、纯合进行区分。 Design proper primers and choose proper a enzyme by dCAPS Finder 2.0 (https://www.wendangku.net/doc/033390022.html,/dcaps/dcaps.html)

HY5proF GAGAGAATATGCGAGTGAATGAC Len 22 TM 54 HY5proR TCTAAAGTCTCTTTTATGTTTTA T A Len 25 TM 50.8 PsiI: 但是,实验室并没有PsiI ,所以只能再去寻找新的内切酶。在设计的引物有2 个错配位点时,可以产生新的酶切位点,AluI 将野生型切断。 HY5-215 F CGTATCTCCTCATCGCTTTCAATAG Len 25 TM 60.0 HY5-215 R GTCCCGCTCTTTTCCTCTTTATC Len 23 TM 60.8 AluI:

t-DNA插入突变体检测

t-DNA插入突变体的鉴定 实验时间:2012年5月18日 摘要T i质粒是上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。所以Ti质粒上的这一段能转移的DNA被叫做T-DNA。将感兴趣的基因改造插入到T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化,得到含有突变的植株。本实验即检测所得植株是否为T-DNA的插入突变体。 1.引言 Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。Ti质粒上的这一段能转移的DNA被叫做T-DNA。若将Ti质粒进行改造,把感兴趣的基因放进T-DNA序列中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化。T-DNA插入到植物染色体上的什么位置,是随机的。如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA插入的纯合突变体,杂合突变体,和野生型。在突变体研究中,需要的材料是纯合突变体,所以必须从分离群体中将纯合突变体鉴定出来。 本次实验中,采用液CTAB(或者TSP法)提取拟南芥植株的DNA,然后PCR将所获DNA 扩增,在之后采用琼脂糖凝胶电泳技术,分离处长度不一的DNA带,以确东样品是否为T-DNA 插入突变纯和体。 PCR(Polymerase Chain Reaction), 即聚合酶链式反应是体外核算扩增技术, 具有特异、敏感、产率高、快速、简便、 重复性好、易自动化等突出优点;能在一 个试管内将所要研究的目的基因或某一 DNA片段于数小时内扩增至十万乃至百万 倍,使肉眼能直接观察和判断。(PCR基本 原理如右图) DNA含有PO43-基团,在pH8.0 Buffer (本实验中为TAE)中带负电, 在电场中

拟南芥突变体购买流程-完全图解

最近要购买一批拟南芥突变体,想请教有经验的虫友购买拟南芥突变体的具体流程,例如我需要一个APETALA1的突变体,应到哪个网站进行搜索,怎样进行选择订购,越具体越好,有截图就更好了,谢谢大家了! Step 1. 打开NCBI主页:https://www.wendangku.net/doc/033390022.html,/ 打开的页面如下: 如下 得到如下页面:

进一步获得该基因在NCBI里面的基因信息,到此我为什么要做这一步呢,主要是想获得该gene在拟南芥中的系统名,见下图: 记住这个名称:AT1G69120这个就是APETALA1(AP1)基因 接下来开始查找APETALA1(AT1G69120)的突变体,拟南芥突变体库世界上有很多,公开的没有公开私用的都有,突变的方法也不尽相同,有DS的,T-DNA插入的,Tos17,EMS方法突变的等等。。。。。。 但是,我们通常用美国SALK研究所的突变体库,这个突变体库比较权威,从这里可以找到几乎现有的所有拟南芥突变体,包括T-DNA插入,RIKEN FST等等各种不同的突变类型,而且有详细的突变位点介绍和购买方法 它的搜索界面一目了然,使用也很方便。 下面介绍SALK突变体库的使用方法: Step 2:打开SALK主页:https://www.wendangku.net/doc/033390022.html,/ 点击T-DNA Express 进入(红圈处点击),如下显示:

显示如下,所有信息全在如下窗口中 从上述窗口中可以获得很多不同group制得的突变体,有SALK T-DNA,CSHL FST(冷泉港实验室的)等等,我个人建议使用SALK 的突变体,订购比较方便,听同学说好像一百美元一个,上图中,蓝色下划线的那两个,以SALK_冠名的那个,两个显示的是不同的插入位置,和T-DNA插入方向(看在图中的位置和箭头方向) 点击其中一个进入信息页,比如点击SALK_056708,得到如下页面:

科创-突变体鉴定

项目编号 东北农业大学大学生科技创新基金 申请书 项目名称:拟南芥AtbZIP1转录因子基因At5g49540 的突变体鉴定 项目主持人:李松 所在学院:生命科学学院 研究起止时间:2008年11月1日至2009年11月1日 东北农业大学教务处制

项目名称 拟南芥AtbZIP1转录因子基因At5g49540 的突变体鉴定 研究起止时间2008.11~2009.11 申请金额1000元 项目主持人 姓名李松学号A09060068所在学院生命科学学院所学专业生物技术学生类别二年级年级班级生物技术 指导教师 (1) 姓名才华职称讲师 所在学院生命科学学院研究领域植物基因工程 指导教师 (2) 姓名纪巍职称助教 所在学院生命科学学院研究领域植物基因工程 项目组成员姓名刘维学号A0960072 专业班级生技062 姓名肖松学号A09060086 专业班级生技062 姓名王鹏姬学号A09060080 专业班级生技062 姓名卢清瑶学号A09060073 专业班级生技062

一、项研究的目的意义、国内外研究概况、主要创新之处 1.研究的目的意义 基因功能的主要研究方法包括:(1)克隆相关基因,进行异体超表达研究(Meyer 等2000,2004;Schulze等2003); (2)利用T-DNA插入突变技术,获得目的基因敲出突变体(Bouche 和Bouchez 2001;Parinov和Sundaresan 2000),再通过筛选出的纯合突变体,研究目的基因的功能(Meyer等2004)。与前者相比,后者具有许多优势(Meyer 等2004),已成为反向遗传学研究的主要手段(Bouche和Bouchez 2001;Parinov和Sundaresan 2000)。 bZIP类转录因子普遍存在于动植物及微生物中,是植物中一类很大的转录因子家族,在拟南芥中就有75个家族成员,在植物生长发育以及抗逆境胁迫的过程中起到重要的作用。本研究利用已购买的拟南芥AtbZIP1基因的突变体作为实验材料,利用“三引物法”在DNA水平上对突变体进行插入纯合鉴定;在此基础上,对插入纯合的突变体,提取其RNA并进行RT-PCR,在RNA水平上鉴定T-DNA插入是否抑制了AtbZIP1基因的表达,最终获得不表达AtbZIP1基因的拟南芥突变体。本研究可为利用突变体进行功能互补研究AtbZIP1基因的功能提供突变体材料,进而为研究AtbZIP1转录因子在植物生长发育以及抗逆境胁迫的过程中所起的作用奠定基础。 2.国内外研究概况 1)突变体鉴定的方法的研究现状 反向遗传学研究的首要条件是获得大量基因敲除突变体,建立一套快速、可靠的T-DNA插入突变体鉴定方法对其进行鉴定很重要。目前,鉴定方法主要有2种(https://www.wendangku.net/doc/033390022.html,/tdnaprimers.html): “三引物法”和“双引物法”。 “三引物法”的原理如图1 所示,即采用三引物(LP、RP、LB)进行PCR 扩增。野生型植株(wild type, WT)目的基因的两条染色体上均未发生T-DNA 插入,所以其PCR 产物仅有1 种,分子量即从LP到RP的大小; 纯合突变体植株(homozygous lines, HM)目的基因的两条染色体上均发生T-DNA 插入,而T-DNA 本身的长度约为17 kb,过长的模板会阻抑目的基因特异扩增产物的形成,所以也只能得到1种以LB与LP (或RP)为引物进行扩增的产物,分子量即从LP 或RP 到T-DNA 插入位点的片段的长度再加上从LB 到T-DNA载体左边界的片段的长度;杂合突变体植株(heterozygous lines, HZ)只在目的基因的一条染色体上发生了T-DNA 插入,所以PCR 扩增后可同时得到

Tn5转座子插入p95基因不影响AcMNPV的复制

文章编号:042727104(2008)0320301205 收稿日期:2007207213 作者简介:尹 隽(1969—),女,讲师;通讯联系人钟 江,男,教授,E 2mail:jzhong@https://www.wendangku.net/doc/033390022.html,. Tn5转座子插入p95基因不影响 AcMNPV 的复制 尹 隽,胡志鹏,宋大新,钟 江 (复旦大学生命科学学院微生物学与微生物工程系,上海200433) 摘 要:从Tn5转座子介导的AcMNPV 随机插入突变体库中,分离到一株复制正常的突变体AcApra41.突变定位发现Tn5转座子插入了病毒p95基因中.为了排除AcApra41中还有其他突变,利用同源重组法构建了p95基因定点插入突变的重组病毒AcGFP 2P95in.PCR 确认p95基因中插入了Tn5转座子;Westernblot 也证实A 2cApra41和AcGFP 2P95in 感染的细胞中,P95蛋白的分子量都因为插入突变而变小,由野生型的95ku 变为55ku.病毒复制动态曲线和荧光显微镜观察证实带有该插入突变的病毒能够在Sf9细胞中正常复制,并表达极晚期基因.这一结果表明完整的P95蛋白对病毒复制是非必须的. 关键词:杆状病毒;突变体;复制;基因表达 中图分类号:Q812 文献标识码:A 杆状病毒(Baculoviridae )是一类主要感染节肢动物的病毒,基因组为双链环状DNA,大小约为80~180kb [1].一方面它们作为基因表达载体已被广泛地用于生产各种蛋白质,另一方面它们也可以作为生物杀虫剂使用.在所有的杆状病毒中,苜蓿银纹夜蛾核型多角体病毒(Auto gra pha cali fornica multiplenucle 2opolyhedrovirus,AcMNPV )是被研究得最为深入的一种病毒,该种病毒的基因组大小为133894b p,包括156个潜在的阅读框[2].尽管有一些基因已经被研究得很清楚,比如病毒的结构蛋白,必需的顺式作用因子等[327],但还是有许多基因的功能尚不清楚.为了能高效地研究这些未知基因,我们用Tn5转座子介导的随机插入突变法构建了AcMNPV 突变库(李惠等[8],尹隽等,待发表). 本文研究了从突变体库中筛选到的一株p95基因带有插入突变的突变体.研究结果提示完整的P95蛋白对病毒在细胞中的复制是非必须的. 1 材料和方法 1.1 细胞、病毒和菌株 草地贪夜蛾细胞系Sf9细胞用TNM 2FH 培养基(Sigma 2Aldrich,MO,USA )补充10%的小牛血清、100U/mL 青霉素和100U/mL 链霉素培养.带有AcMNPV 基因组的质粒(bacmid )来源于Bac 2to 2Bac 系统(Invitro gen,CA,USA ),保存于大肠杆菌中,它转染Sf9细胞后可以复制产生感染性的AcMNPV [9].以在病毒多角体启动子下游插入绿色荧光蛋白基因(gfp )的bacmid (bacGFP )作为起始病毒基因组,利用体外转座系统构建了AcMNPV 随机插入突变体库(尹隽,发表中). E.coli BJ5183(RecA +)作为重组用菌 株,E.coli EC100(Epicentre,WI,USA )用于保存bacmid.用于培养含bacmid 菌株的抗生素浓度分别为:卡那霉素(Kan )50m g/mL,庆大霉素(Gen )7m g/mL,阿普拉霉素(Apra )20m g/mL. 1.2 Tn5转座子插入定位 参见李惠等[8],简单介绍如下.根据AcMNPV 基因组序列,全基因组每隔1.5kb 沿同一方向设计了88个引物(分别命名为v1~v88,具体序列略).在转座子上设计两个引物Tn 2u p (5′2GTCTCCGACCT 2 第47卷 第3期 2008年6月复旦学报(自然科学版)JournalofFudanUniversit y (NaturalScience )Vol.47No.3Jun.2008

拟南芥突变体的筛选与鉴定综述

本科生文献综述题目拟南芥突变体的筛选综述 系别林学与园艺学院 班级园艺102班 姓名唐辉 学号103231228 答辩时间年月

新疆农业大学林园学院 拟南芥突变体的筛选综述 唐辉指导老师:王燕凌 摘要:本文归纳了拟南芥抗旱、抗氧化、耐低钾、耐硒、耐盐、晚花突变体筛选的研究内容。在拟南芥抗旱突变体筛选中将用到甘露醇模拟干旱胁迫来进行试 验。在抗氧化、耐低钾、耐硒中将用到Na 2SeO 3 、钾、硒、NaCl等化合物或者化学 元素对拟南芥突变体的生长发育影响来进行拟南芥突变体的筛选。概括了拟南芥突变体在甘露醇模拟干旱中的生长影响以及拟南芥突变体在抗氧化、耐低钾、耐硒、耐盐等逆境环境中生长研究方面的观点。总结了拟南芥突变体在先如今人们研究中常用的几种筛选方法,指出了拟南芥突变体筛选的研究需求,并提出筛选拟南芥抗逆突变体的重要意义。 关键词:拟南芥;突变体;筛选;研究 Screening Summary of Arabidopsis Mutants Tang Hui Instructor:Wang Yanling Abstract: This paper summarizes the Arabidopsis drought, oxidation resistance, low potassium, selenium-resistant, salt, late-flowering mutants creening research.And detailed exposition of the various materials and processes Arabidopsis mutants creening methods needed in the screening process.In the anti-oxidation, anti-potassium, selenium resistance will be used Na2SeO3, potassium, selenium, NaCl chemical elements or compounds such mutations affect thegrowth and development of the body to be screened Arabidopsis thaliana mutants.Thus summarizes the growth of Arabidopsis mutants mannitol and simulated drought in Arabidopsis mutants in anti-oxidation, anti-potassium,selenium resistance point of view, salt and other adverse environments grow research.Arabidopsis mutants summarized earlier research that people now commonly used inseveral screening methods, pointed out the Arabidopsis mutant screening research needs and the importance of screening

转座子的研究进展

转座子及其相关技术的研究 摘要:转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列,转录组的活动对生物体基因组的转录以及演变存在着严重影响,本文就转座子的基因机理及特征、转座子沉默、转座子的标签技术以及其在植物中的运用进行阐述。 转座子是存在于DNA上可自主复制和移位的基本单位。MclCintockl’嗜次在玉米中的发现改变了人们对基因组序列稳定性的认识,打破了遗传物质在染色体上呈线性固定排列的传统理论。目前认为,多数生物体有自发突变且有重要表型效应出现的原因源于转座子的可动性,并且可以导致宿主基因组发生从点突变到染色体重排的一系列变化,转座子在进化上为建立宿主基因特性起着重要作用。 1.转座子特征与分类 基因转座时发生的插入作用中受体分子都有一段3-12bp的靶序列DNA会自我复制,使插入的转座子位于两个重复的靶序列之间。转座子可以分为两大类:以DNA-DNA方式转座的转座子和反转录转座子。第一类转座子可以通过DNA复制或直接切除两种方式获得可移片段,重新插入基因组DNA中。第二类转座子又称为返座元,在结构和复制上与反转录病毒类似,它通过转录合成mRNA,再逆转录合成新的元件整合到基因组中完成转座。 2转座子相关技术 2.1转座子分离方法 有4种方法用来分离转座子:(l)转座子诱捕法,此法适用于分离具有相当高的整合和切割频率的转座子。(2)Southern杂交法,此种方法需要有适当的探针,用于检测已知的转座子。(3)重复DNA序列鉴定法,适用于高拷贝数的无论是否有活性的转座子。(4)PcR扩增法,对己知序列的转座子可以设计引物直接PCR扩增。

拟南芥种植及处理基本方法

1 培养基 MS培养基(Sigma公司) B5培养基(pH 5.5) 改良的1/4 Hoagland 培养液(mM, pH6.0): 2 植物材料的常规种植 拟南芥种子均匀地播撒于1/3 B5液体培养基浸润的蛭石上,塑料膜遮盖至种子萌 发,揭开膜,让其自然生长,适当间苗,烤苗至蛭石表面干燥后加水。置于23 o C, 16/8 h的光照培养间中生长。 3 拟南芥种子的表面灭菌处理 1)拟南芥种子在4 C下春化3-5天。

2)在超净台上用70%酒精处理种子2-5分钟。 3)弃去酒精,用无菌水洗1-2次。 4)将种子用15% Bleach (KAO公司)处理15分钟,间歇振荡。 5)用无菌水洗4-6次,每次充分振荡混匀。 6)将种子悬浮在灭菌的0.1% Agar中。 7)均匀地将种子播撒在B5培养基平皿中。 4 植物材料的水培体系 拟南芥种子经表面灭菌处理后均匀播撒于1/2 MS固体培养基上,10-15粒/皿,生长2周后,小心地将其转入水培体系中。 水培体系是由培养皿及起支撑作用的锡箔纸组成。培养皿中盛适当的液体培养基(通常用上述改良的1/4 Hoagland培养液);锡箔纸上留出相距适当的小洞后,盖于培养皿之上。将拟南芥幼苗的根小心地经由锡箔纸上的小洞浸入培养液中。塑料膜覆盖,2-3天后揭去。整个体系置于光照培养间中生长,每3-6天更换一次培养液。 5 拟南芥T-DNA插入突变体的筛选方法 到网站https://www.wendangku.net/doc/033390022.html,/tdnaprimers.html输入salk号设计引物LP、RP T-DNA LB:LBb1: GCGTGGACCGCTTGCTGCAACT LBa1: TGGTTCACGTAGTGGGCCATCG 用于PCR扩增。采用双引物法,分别用LP+RP,BP+RP扩增基因组DNA。 方法: 1)将拟南芥突变体种子播种于MS培养基平皿中,生长2周后,将其转入蛭

拟南芥tDNA插入突变体鉴定开题报告

拟南芥T-DNA插入突变体的鉴定 姓名:余振洋;班级:09级生技1班;学号:200900140156 时间:2011/11/5 一.选题背景及意义 水资源短缺是目前公认的全球性环境焦点问题之一,我国人均占有水资源量(2300m )仅为世界人均量的1/4,是世界上13个最贫水国家之一,且大部分地区属亚洲季风区,干旱灾害具有普遍性、区域性、季节性和持续性的特点,旱灾十分严重。据1950~1999年统计,全国平均每年受旱面积达2173.33万hm2,成灾面积893.33万hm2,直接减收粮食100亿kg以上,约占各种自然灾害造成粮食损失的60%。干旱不仅造成农业的重大损失,还加剧了生态环境的恶化及土地沙漠化和水土流失,因此,干旱缺水已成为制约我国国民经济可持续发展及西部大开发的重要因素,且在一些地区已威胁到人类生存和发展。 随着分子生物学的迅速发展和应用,农业已成为生物技术应用的第二重大领域,基因工程技术将引发一场新的农业技术革命,使作物在干旱和贫瘠的土地上生长出高新品种,使人类在提高作物抗逆能力的基础上改善其品质和提高产量。因此,作物抗旱分子机制的研究具有重大的理论和实践意义,只有对植物抗旱分子机制彻底地了解后,才有可能为提高作物对干旱的抵抗能力提供理论依据。近年来该领域的研究已引起国内外学者广泛的兴趣和重视,在拟南芥、水稻、小麦等许多植物克隆了干旱胁迫应答基因,并对其表达调控和编码蛋白的功能进行了研究。本文简介了近年来该方面研究进展,为加快抗逆基固工程的研究,培育高品质的抗逆作物提供理论依据。 二.研究方案 1.相关文献: 海藻糖是细胞渗透调节时产生的重要相溶性物质之一,海藻糖一6一磷酸合成酶基因家族(Tre—halose-6一phosphatesynthase,TPS)是从拟南芥、复苏植物Selaginell lipidophylla等真核生物中分离得到的海藻糖合成酶基因。 ——<A Review on Plant Drought and Salt Tolerance Gene>,ZENG Hua—zong,LUO Li-jun,Shanghai Agrobiological Gene Center,Shanghai 201 1 06 2.实验材料: 1)海藻糖合成酶基因编号:A T1G16980 2)野生型拟南芥; 3)具抗旱性质基因的T-DNA插入突变种子:SALK_010881.55.00.x LP(左引物):TTTGGCTTCTTGACAAGCAAC Len 21 TM 60.41 GC 42.86 SELF_ANY_COMPL 0.52 3'_COMPL 0.00 RP(右引物):CTTGCAGCTGATTTACTTGGG Len 21 TM 59.89 GC 47.62 SELF_ANY_COMPL 0.52 3'_COMPL 0.00 4)器材:离心机,离心管,PCR仪,点泳池,电泳现象仪

转座子引起的插入突变

实验六转座子引起的插入突变 一、实验目的 通过实验进一步认识转座子的遗传学效应之一:转座可引起插入突变。 二、实验原理 转座子(transposon,Tn)是存在于染色体DNA上可自主复制和移位的基本单位。最简单的转座子不含有任何宿主基因而常被称为插入序列(insertion sequence,IS),它们是细菌染色体或质粒DNA的正常组成部分。一个细菌细胞常带有少于10个IS序列。转座子常常被定位到特定的基因中,造成该基因突变。 复合式转座子(composite transposon)是一类带有某些抗药性基因(或其他宿主基因)的转座子,其两翼往往是两个相同或高度同源的IS序列,表明IS序列插入到某个功能基因两端时就可能产生复合转座子。一旦形成复合转座子,IS 序列就不能再单独移动,因为它们的功能被修饰了,只能作为复合体移动。转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的(3-12bp)、被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 转座作用的遗传学效应有如下几个方面,转座引起插入突变;转座产生新的基因;转座产生染色体畸变;转座引起的生物进化。 常见的大肠杆菌复合转座子的抗药性、大小、末端重复序列和转座特性 转座子抗药性大小(bp)末端重复序列转座特异性转移频率 Tn1 Ap 4800 140bp(反向)低有时高有时低Tn2 Ap 4800 140bp(反向)低有时高有时低Tn3 Ap 4600 140bp(反向)低一般 低低 Tn4 Su、Sm 20500 140bp (并带有Tn3) Tn5 Kan 5200 1460bp 低 Tn6 Kan 4100 低 Tn7 Tp、Kan 高低 Tn9 Cm 2500 800bp(顺向) (实际上即IS1) Tn10 Tc 9300 1400bp(反向) 一般 (实际上即IS2) Ap:氨苄青霉素抗性 Su:磺胺抗性 Kan:卡那霉素抗性 Sm:链霉素抗性 Cm:氯霉素抗性 Tc:四环素抗性 Tp:甲氨苄氨嘧啶抗性

模式植物拟南芥T-DNA插入突变体的鉴定

模式植物拟南芥T-DNA插入突变体的鉴定 摘要:通过本次实验,了解了拟南芥T-DNA插入突变体鉴定的原理,掌握了DNA提取技术、PCR技术以及电泳鉴定技术,对拟南芥的基因型做出判断。实验首先提取拟南芥的DNA,将获得的DNA进行PCR扩增,将扩增好的DNA加入上样缓冲液后与DNAmarker一起进行电泳,用凝胶成像系统对凝胶进行处理,可以看到大小不同的DNA条带分离。通过这种方法鉴定出拟南芥是否为突变体。 关键词:T-DNA插入突变体、DNA提取、PCR、电泳鉴定、凝胶成像系统 1.前言 拟南芥作为生物学研究的模式植物,由于其易于种植、生活周期短、遗传背景清晰、易于转基因操作等特点,已被广泛应用于植物学的各种基础和应用研究领域中。同时,拟南芥T—DNA饱和突变体库的建立和T-DNA侧翼序列的确定,为功能基因组学提供了丰富、有效的遗传材料。 2.实验 2.1实验目的 (1)提取植物基因组DNA的方法; (2)PCR操作方法; (3)琼脂糖凝胶分离核酸方法。 2.2实验原理 Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。所以Ti质粒上的这一段能够转移的DNA被叫做T-DNA。 将Ti质粒进行改造,将感兴趣的基因放进T-DNA区段中没通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化。

T-DNA插图到植物染色体上的什么位置,是随机的。如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的一种重要方法。 用PCR方法鉴定T-DNA插入船和突变体。农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体汇总,有T-DNA插入的纯合突变体,杂合突变体和野生型。在突变体研究中,需要的材料是纯合突变体,所以必须从分离群体中将纯合突变体鉴定出来。 “三引物法”的原理如图1所示,即用三种引物(LP、BP、RP)进行PCR扩增,野生型植株目的基因的两条染色体上均为发生T-DNA插入,所以其PCR产物仅有一种,分子量约为900bp(即从LP到RP);纯合突变体植株目的基因的两条染色体上均发生T-DNA插入,而T-DNA 本身的长度约为17kb,过长的模版会阻抑目的基因特异扩增产物的形成,所以也只能得到1种以LB与LP(或RP)为引物进行扩增的产物,分子量约为410+N bp(即从LP或RP到T-DNA 插入位点的片段),长度为300+N bp,再加上从LB到T-DNA载体左边界的片段,长度为110bp);杂合突变体植株只在目的基因的一条染色体上发生了T-DNA插入,所以PCR扩增后可同时得到410+N bp和900bp两种产物。上述3种情况的电泳结果差异明显,能有效区分不同基因 型的植株。此法的有点事可同时鉴定出纯合突变体并确证T-DNA的插入情况。 “双引物法”的基本原理与“三引物法”相似,即采用特异引物扩增目的基因片段和T-DNA插入片段,通过比对扩增结果进行突变体的鉴定。具体方法图2所示:首先以基因组 DNA为模版,用一对特意产物(LP和RP)扩增目的基因片段,初步鉴定出纯合突变体(图

拟南芥的一般生物学特性

一、拟南芥的一般生物学特性 1. 形态学描述 拟南芥(Arabidopsis thaliana)为十字花科拟南芥属。一年生细弱草本植物(图21-1 A)。 株高15至30厘米,随生长环境或培养条件变化。基生叶多数,长圆形或椭圆形,呈莲座状排列。茎生叶具短柄或无柄。总状花序顶生,花瓣白色;雄蕊6枚,花药黄色;雌蕊圆柱状。长角果线形,长约10至16毫米,成熟时开裂。种子呈卵形,长约1毫米,成熟时红褐色。有关拟南芥的各种形态特征、形态发生及个体发育的过程等在许多文献中已有很详尽的描述,为研究人员利用拟南芥为实验材料提供了很好的基础和方便。 2. 个体小、易于栽培管理 与其它大多数高等植物相比,拟南芥的个体较小。成熟个体株高在15至30厘米之间。 由于个体小,很容易在面积有限的温室或人工气候室内大批量地种植。特别是对于一些有特殊要求的研究工作,甚至可以在培养器皿中完成生活史(如有时需要在无菌条件下进行培养等)。而且,拟南芥对生长条件的要求并不十分严格,这一特点使得在实验工作中很容易实现拟南芥的栽培管理。 3. 生长周期较短 在一般的温室或人工气候室条件下,从拟南芥种子的春化至第一批角果成熟大约需8周左右时间。当然,也可以通过改变生长条件以达到使拟南芥提前或推后开花结实的目的。如延长每天的光照时间,可使拟南芥明显地提前开花结实,利用每天接近24小时的光照条件培养,甚至在6周左右即可收获第一批成熟角果。拟南芥的这一特性使实验工作周期大大缩短,特别是对于许多遗传分析工作,比利用一般的高等植物材料(如麦类、豆类作物)可以成倍地节约时间。 二、拟南芥的普通遗传学特性 1. 既可自交、又可人工杂交 在自然条件下,拟南芥是典型的自交繁殖植物,这使得拟南芥在种植繁种过程中得以保持其遗传上的稳定性。同时在实验过程中,根据研究目的又可方便地实施人工杂交,使得遗传分析工作很容易完成。 2. 种子结实量大 虽然拟南芥植物个体较小,但其种子结实量非常之大。一个角果可结实数十至上百粒种子;在生长良好的情况下,单株结实量可达上万粒之多!这使得很容易进行后代的遗传分析工作,也很容易扩增所需突变体的种子库。 3. 容易被诱变产生所需突变体 拟南芥在正常条件下通过自交产生后代,在遗传上表现出较高的稳定性。但拟南芥在特殊条件处理后较易发生突变,如利用物理的(如辐射处理)、化学的(如EMS处理)、及遗传转化(如T-DNA插入)等方法进行人工诱变处理,可获得具有各种不同表型性状的突变体。利用这些人工诱变方法产生的突变是随机的,可进一步通过对突变体库的有目的筛选而获得所需的突变体。 4. 染色体结构 通过对细胞周期的中期(metaphase)染色体观察,可以清晰地辨认单倍体拟南芥有5条染色单体(2倍体为10条染色体)。对拟南芥遗传图谱的连锁关系分析,也证实了单倍体拟南芥包含5个遗传连锁群。除去着丝粒、端粒等区域及一些重复序列,目前已经完成测序的第一条至第五条染色体的DNA序列长度依次为29.1 Mb、19.6 Mb、23.2 Mb、 17.5 Mb、26.0 Mb(总长为115.4 Mb),而包括所有序列在内的拟南芥单倍体基因组总 长约为125 Mb(注:此数据为2000年12月14日《自然》杂志公布的数据,随着拟南

拟南芥突变体购买流程-完全图解

Step 1. 打开NCBI主页: 打开的页面如下: 如下 得到如下页面: 进一步获得该基因在NCBI里面的基因信息,到此我为什么要做这一步呢,主要是想获得该gene在拟南芥中的系统名,见下图:

记住这个名称:AT1G69120这个就是APETALA1(AP1)基因 接下来开始查找 APETALA1(AT1G69120)的突变体,拟南芥突变体库世界上有很多,公开的没有公开私用的都有,突变的方法也不尽相同,有DS的,T-DNA插入的,Tos17,EMS方法突变的等等。。。。。。 但是,我们通常用美国SALK研究所的突变体库,这个突变体库比较权威,从这里可以找到几乎现有的所有拟南芥突变体,包括T-DNA插入,RIKEN FST等等各种不同的突变类型,而且有详细的突变位点介绍和购买方法 它的搜索界面一目了然,使用也很方便。 下面介绍SALK突变体库的使用方法: Step 2:打开SALK主页:点击 T-DNA Express 进入(红圈处点击),如下显示:

显示如下,所有信息全在如下窗口中 从上述窗口中可以获得很多不同group制得的突变体,有SALK T-DNA,CSHL FST(冷泉港实验室的)等等,我个人建议使用SALK 的突变体,订购比较方便,听同学说好像一百美元一个,上图中,蓝色下划线的那两个,以SALK_冠名的那个,两个显示的是不同的插入位置,和T-DNA插入方向(看在图中的位置和箭头方向) 点击其中一个进入信息页,比如点击SALK_056708,得到如下页面:

我们主要是从 ABRC 订购,点击进入页面,填写要求的相关信息,万事大吉。祝实验顺利!

拟南芥突变体相关分析

拟南芥突变体的相关研究 遗传学 摘要:本文列举了利用正向遗传法对拟南芥突变体的筛选、遗传群体的初步遗传群体及初步遗传图谱的构建和基因的图位克隆、遗传分析及相关基因的功能分析的流程,为拟南芥的研究提供更明确更清晰的思路。 关键词:拟南芥突变体;筛选;图位克隆;功能分析 1 拟南芥突变体的筛选 拟南芥是十字花科拟南芥属植物,近年来拟南芥以其个体小、生长周期短以及基因组小等特点而成为分子遗传学研究的模式植物。拟南芥的另一优点是很容易被诱变,目前已从拟南芥中分离得到了几千种突变体,这些突变体的获得为揭示植物生长发育规律起了非常重要的作用。拟南芥突变体的筛选已成为许多重要理论问题得以解决的前提,而筛选方法是突变体筛选成败的关键。这里拟南芥耐低钾突变体的筛选为例,介绍一种简单、灵敏、通用的拟南芥突变体的筛选方法。 1.1植物材料诱变 以拟南芥为材料,诱变方法如下:称取250mg(约5000粒)野生型种子置于50ml烧杯内并加入25ml重蒸水,搅拌30分钟;在4℃,下放置12小时后,把种子转移到盛30ml100mmol/L 磷酸缓冲液(PH6.5)的100ml三角瓶中,加入0.2%(V / V)的甲基磺酸乙酯(EMS),封 口后放在水浴(25℃)振荡器上振荡12h。然后用50ml蒸馏水漂洗种子4次,每次15min。将漂洗好的种子置于4℃下春化3天后种植。 1.2诱变植株培养 将经EMS诱变处理后的拟南芥种子(M1)播种于1/4Hoagland 营养液浸透的混有蛭石的营养土中,然后覆膜保湿。18-22℃、光照强度120umol/m2s-1、光周期16h/8h条件下培养,待种子成熟后分行采收种子。 1.3 突变体的筛选 拟南芥种子用0.5 %(v/ v)次氯酸钠加0.1%(v/ v)Tri-tonX-100表面消毒10分钟,再用无菌水冲洗3遍。接种前种子与0.4%(w/ v)低熔点琼脂糖混和,然后用吸管将种子吸出,成行地涂于MS培养基上;将培养皿置于4℃冰箱春化48小时,之后转入光照培养,培养皿垂直放置。培养箱温度22℃,连续光照,光强30umol/ m2s-1。 在确定的选择压力下,利用根弯曲方法对M2代进行筛选,将筛选得到的可能突变体再

模式植物拟南芥T-DNA插入突变体的鉴定

姓名系年级学号日期 科目遗传学实验题目模式植物拟南芥T-DNA插入突变体的鉴定 模式植物拟南芥T-DNA插入突变体的鉴定 摘要: 农杆菌Ti质粒转化植物细胞后,在获得的后代分离群体中,有T-DNA插入的纯合突变体,杂合突变体,和野生型。在突变体研究中,需要的材料是纯合突变体。本次实验意在对模式植物拟南芥T-DNA插入突变体进行鉴定。实验中用到的主要实验方法有:CTAB法提取拟南芥基因组DNA、PCR扩增目的基因片段、琼脂糖凝胶电泳分离核酸。 PCR技术的基本原理类似于DNA的天然复制过程。PCR由变性--退火--延伸三个基本反应步骤构成。每完成一个循环需2~4分钟,2~3小时就能将待扩增目的基因扩增放大几百万倍。 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。它兼有“分子筛”和“电泳”的双重作用。带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。DNA经EB染色,EB可与核酸结合,在紫外光激发下产生荧光。现广泛应用于核酸的研究中。 引言 Ti质粒是土壤农杆菌的天然质粒,该质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移进植物细胞,并插入植物染色体DNA中。所以Ti质粒上的这一段能转移的DNA被叫做T-DNA。将Ti质粒进行改造,将感兴趣的基因放进T-DNA区段中,通过农杆菌侵染植物细胞,实现外源基因对植物的遗传转化。 T-DNA插入基因内部导致基因突变:T-DNA插入到植物染色体上的位置是随机的。如果T-DNA插入进某个功能基因的内部,特别是插入到外显子区,将造成基因功能的丧失。所以利用农杆菌Ti质粒转化植物细胞,是获得植物突变体的

拟南芥突变体的观察和鉴别

拟南芥突变体的观察和鉴别
00911081 程万里 周一组 摘要:拟南芥是目前世界通用的一种高等植物研究的模式生物,属于十字花科,鼠耳芥 属,具有其生长快速、后代数量大、遗传和分子实验易操作等等的特点。这些优点使其成为 遗传、发育研究中很好的素材。本实验选用两种突变型(pid-2 和 scr-3)与野生型(Ler) 进行观察和鉴别, 比较其表型上的不同之处并做各种指标的测量以进行确认, 最终结果表明 pid-2 品系发育畸形(表现在花形态异常角果弯曲),scr-3 个体生长缓慢(表现在植株和根 的长度较短以及败育现象严重) 关键词:拟南芥 突变体 pid-2 scr-3 Ler
1.引言
拟南芥是一种世界通用的,在高等植物研究方面十分重要的模式生物,属于十字花科, 鼠耳芥属,个体形态小,具有生长周期快,生命力顽强,后代数量多且遗传操作相对简单等 诸多优势。拟南芥基因组小且测序已全部完成。这些特点也决定了其在遗传学,发育生物学 上的不可替代性。 目前发现的拟南芥共有750多个生态型,不同生态型的拟南芥在形态发育,生理反应方 面有着相当大的差异, 本次选用的Ler野生型属于常见拟南芥品系之一。 而是用pid-2和scr-3 突变体与野生型(Ler)进行对比,可以通过各项指标的对比,确定突变基因对拟南芥发育 的影响。
2.材料与方法1
2.1 材料 2.1.1 生物材料: 拟南芥野生型(Ler)种子 突变体(pid-2、scr-3)种子
1
发育生物学实验讲义

2.1.2 试剂溶液: 70%乙醇 10%NaClO(次氯酸钠) 无菌水 2.1.3 仪器用具: MS 固体培养平板 玻璃涂棒 剪刀 镊子 胶头吸管 三角瓶 显微镜 1.5ml 离心管 培养土 培养钵 2.2 方法 (1)将种子放于 4℃冰箱内 2-3 天,进行种子的纯化处理 (2)取适量种子于 1.5ml 离心管中,加入 1ml 70%乙醇,轻微震荡 1min (3)吸去乙醇,加入 1ml 体积分数为 10%的 NaClO(次氯酸钠),消毒 8-10min (4)吸去 NaClO,用无菌水冲洗种子 5 次后,加入 600ul 无菌水 (5)用移液器将水连同种子吸起,均匀涂布于 MS 平板 (6)吸去并风干培养基表面多余的水分 (7)加盖,封口,置于光照培养箱内 (8)7-14 天后,当幼苗具 4 片真叶时转入土壤 (9)植株生长 6 周后,进行野生型和突变体的性状鉴别和数据统计
3.结果
3.1 拟南芥发育各时期图

突变体鉴定

作物突变体的细胞学研究 一、突变体的初步观察和遗传分析 在某品系材料A中发现一株突变体,将其命名为M,优先将M自交,得到具有突变性状的纯系,如果为不育等特殊性状则可以采取不断回交的方式得到相应 纯系;再将M与A和另外一品系Y分别正交和反交,得到F 1世代;将得到的F 1 自交得到各个的F 2世代;将F 1 与M进行回交,分别得到对应的BC 1 世代;如果需 要,还可以继续回交得BC 2 等世代。 观察M的突变性状在自交过程中是否始终存在,则能初步判别此突变性状是否为可遗传性状; 分别统计M与A,M与Y的正反交的表型数据,分析所有正交与反交的差异,可以判别此性状是由核基因控制或者细胞质基因控制,甚至为核质互作控制; 结合M自交过程中的突变性状的遗传特性和所有F 1 突变性状,可判别突变性状为隐性或显性; 统计分析F 2和BC 1 世代的突变表型数据,可判别控制突变性状为质量性状或 者数量性状,以及质量性状中的的基因的对数。 在数据的分析过程中要充分应用生物统计的方法,如方差分析,Χ2检验等。 二、突变体的细胞学观察 核型分析原理与步骤 核型分析是指在一个物种内,对其染色体数目。结构及其它特征进行描述性分析,从而对单一染色体进行初步分析的过程。在突变基因确定为核基因后,则可以进行核型分析。 不同物种的染色体都有各自特定的形态结构(包括染色体的长度、着丝点位置、臂比、随体大小等)特征,而且这种形态特征是相对稳定的。因此,染色体核型分析是植物遗传性研究的重要内容。 染色体核型分析主要包括染色体长度、染色体臂比、着丝点位置、次缢痕等。染色体的长度差异有两种,一种是不同种、属间染色体组间相对应的染色体的绝对长度差异,一种是同一套染色体组内不同染色体的相对长度差异。

转座子综述

转座子小综述 09生物技术一班汪晨皓 200915070123摘要 转座子又称跳跃因子,其实质是基因组上不必借助于同源序列就可移动 的 DNA片段,它们可以直接从基因组内的一个位点移到另一个位点。自 1951年美国McClintock在玉米中首先发现了 DNA转座子以来, 转座子已成为各种生物基因分析的有效工具之一[ 1]不仅可利用转座子诱变找到原核生物的单性生殖基因, 而且在真核生物中, 转座子的发现和运用极大地促进了果蝇遗传学的发展。人们已经应用各种方法, 在生物界各个领域证实了转座子系统的广泛存在[ 2]。利用转座子特有的转座功能, 将带有标记的转座子插入目的基因或基因组,产生了转座子标签技术、转座子定点杂交技术、转座子基因打靶技术和非病毒载体基因增补技术。人们利用这些技术, 可以确定基因组的功能、基因组间的功能差异;可以改变目的基因的活性, 获得转基因生物; 可以阻断毒力基因, 获得基因疫苗; 可以促进基因整合, 进行基因治疗等。转座子的发现改变了人们对基因组序列稳定性的认识, 打破了遗传物质在染色体上呈线性固定排列的传统理论。转座子插入新的位点后, 该位点附近的基因即受到抑制而呈现隐性的睡美人表型。一旦转座子在转座酶的作用下从这一位点上转走, 该位点的基因隐性表型又恢复为显性表型, 即睡 美人苏醒。调控转座酶和转座子活性的系统称为青蛙王子( Frog Pri nce) [ 3]。目前,认为多数生物体有自发突变且有重要表型效应出现都源于转座子的可动性, 并且可以导致宿主基因组发生从点突变到染色体重排的一系列变化。转座子在进化上为建立宿主基因特性起着重要作用。用特异的开放阅读框捕获技术, 可以使自然散在的转座酶编码基因高度表达,人为催化激活转 座子使其苏醒 , 执行插入、黏贴、切除等任务。目前已经应用于微生物、昆虫、植物、动物及人类基因组功能的研究[ 2], 例如蛙类基因组含有水手转座子超家族, 呈自然失活状态, 转座酶与转座增强子序列末端结合, 在蛋白协助下, 激活转座子, 使睡美人转座子苏醒[ 4]。 关链词 睡美人;转座子;相关技术;应用 转座子系统又称“睡美人”转座子系统,因该系统在自然状态下发生转座的能力不足, 大多数突变基因处于抑制“睡眠”状态而得名。由此发展起来的相关技术有转座子标签技术,定点杂交技术,转座子基因打靶技术, 非病毒载体基因增补技术即转座子“睡美人苏醒”技术。本文就转座子及其相关内容做一概要的总结。 转座子又称可移动基因, 跳跃基因, 是一种可在基因组内插入和切离并能改变自身位置的DNA序列。早在20 世纪50 年代, 首先由McClintock 在玉米中发现,从而改变了人们对基因组序列稳定性的认识,打破了遗传物质在染色体上呈线性固定排列的传统理论。目前生物体中所发现的10%的突变是由于它抑制其他基因的表达而形成的[ 5].转座子在进化上为建立宿主基因特性 起着重要作用。 转座子学说使McClintock荣获1983年诺贝尔生理医学奖[3].然而需要强 调的是, 并不是所有具有转座子基因的个体都可以发生转座子转座,转座能 力个体间有很大差别, 在有转座酶存在的情况下,通常情况受到一个激活因子Ac的控制。当细胞中有Ac时转座子才发生转座, 细胞中无Ac时转座子处于

相关文档