文档库 最新最全的文档下载
当前位置:文档库 › 课后习题 原子物理

课后习题 原子物理

课后习题 原子物理
课后习题 原子物理

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几? 要点分析:第二问是90°~180°范围的积分.关键要知道n , 注意推导出n 值.

A N A

N A V V V N V N n ρ

ρ==?==

)(1mol A A 总分子数,其他值从书中参考列表中找. 解:(1)依

2cot

2θa b = 和E e Z Z a 02

214πε≡ 金的原子序数Z 2=79 )(10752.2245cot 00

.544

.1792cot 42211502m E e Z b o -?=?=?=θπε

答:散射角为90o所对所对应的瞄准距离为22.8fm.

(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)

从书后物质密度表和原子量表中查出Z Au =79,A Au =197, ρAu =1.888×104kg/m 3

依: θθπθ

d a ntN

N d sin 22

sin

16='

2

162422

θθθπππsin sin d a nt

N N d ?=')2(s i n 22s i n 2)2(22c o s 2s i n 2s i n θθθθθθθd d d ==

θθθθππεππd E Z nt ??=24

222

2sin 162cos 2sin 2)2(2)4e (θθθ

ππεππd E Z nt ??=23222

2

sin 162cos 2)2(2)4e (

???=π

πθ

θ

θ

πε2

4

222

2

sin 16)

2

sin (2sin

4)(2π)4e (

d E

2Z

nt

注意到:A N A

N A V V V N V N n ρ

ρ==?==

)(1mol A A 总分子数 即单位体积内的粒子数 为密度除以摩尔质量数乘以阿伏加德罗常数。

2

22)

2(4 )4e nt(E Z ?ππε

是常数其值为 5-2215-2376

-10486.9)5.00

792(4π)10(1.44197106.22101.88101.0?=????????

??===π

ππ

πθθ

θθθ23

2312

sin )

2sin (22sin 2cos

d d I 最后结果为:d N ’/N =9.6×10-5

说明大角度散射几率十分小。

1-4 ⑴ 假定金核半径为7.0 fm,试问入射质子需要多少能量才能在对头碰撞时刚好到达金核的表面?⑵若金核改为铝时质子在对头碰撞时刚好到达铝核的表面,那么入射质子的能量应为多少?设铝核的半径为4.0 fm 。

要点分析:注意对头碰撞时,应考虑靶核质量大小,靶核很重时, m << M 可直接用公式计算;靶核较轻时, m << M 不满足,应考虑靶核的反冲,用相对运动的质心系来解.79A Au =196

13

A Al =27

解:⑴若入射粒子的质量与原子核的质量满足m << M ,则入射粒子与原子核之间能达

到的最近距离为??

?

???+=

2csc 12θa r m ,?=180θ时 , ()a a r m =?+=90csc 12 即 m

m r Z Z e E r e Z Z 2

102022144πεπε=

∴= 即: 179

1.44fmMeV 16.25MeV 7.0fm

E ?=?

= ⑵ 若金核改为铝核,m << M 则不能满足,必须考虑靶核的反冲在散射因子

E

e Z Z a 02

214πε=

中,应把E 理解为质心系能E C L C E M m M V M m mM E +=+=2

21 M M m e Z Z E e Z Z a C c +?

==∴022*******πεπε m c r a ≈

2120 4.85MeV 4L c Z Z e m M

E a M

πε+∴=?=

说明靶核越轻、Z 越小,入射粒子达到靶核表面需要能量越小.核半径估计值越准确.

1-6 一束α粒子垂直射至一重金属箔上,试求α粒子被金属箔散射后,散射角大于60°的α粒子与散射角大于90°的粒子数之比。

要点分析:此题无难点,只是简单积分运算。 解:依据散射公式

22162

16'4242θ

θθπαθαsi n

si n si n

d ntN

d ntN dN =Ω=

?=?=

?2

12

12

12

)

2(41622216'3

2

42

θθθθθ

θθθ

παθθθπαsin sin

sin sin d ntN d tN n dN 因为 232sin 1212sin )2sin (180

602180

60

3=?

????

????

?-=?θθθ

d 同理算出 212s i n 1212s i n )2s i n (180

902180

90

3=?

????????

?-=?θθθ

d 可知 31/2

3/2''9060==>>dN dN

1-8 (1)质量为m 1的入射粒子被质量为m 2(m 2<< m 1)的静止靶核弹性散射,试证明:入射粒子

在实验室坐标系中的最大可能偏转角θ由下式决定. 2

1

sin m m θ=

(2)假如粒子在原来静止的氢核上散射,试问:它在实验室坐标系中最大的散射角为多大?

要点分析:同第一题结果类似。 证明:

2221212

1

2121v m V m V m +'= (1) ?θcos cos 211v m V m V m +'= (2) ?θsin sin 021v m V m -'= (3)

作运算:(2)×sinθ±(3)×cosθ,得

)

sin(sin 12?θθ+=V

m v m (4)

)

sin(sin 11?θ?+='V

m V m (5) 再将(4)、(5)二式与(1)式联立,消去V’与v ,得

)

(sin sin )(sin sin 22222

1222

12

1?θθ?θ?+++=V

m m V m V m 化简上式,得

θ??θ21

2

22sin sin )(sin m m +

=+ (6) 若记1

2m m =

μ,可将(6)式改写为 θ?μ?θμ222sin sin )(sin +=+ (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有

)](2sin 2sin [)]sin(2[sin ?θ?μ?θμθ?θ

++-=+-d d

0=?

θ

d d ,则 sin2(θ+φ)-sin2φ=0, 2cos(θ+2φ)sin θ=0 (1) 若 sin θ=0,

则 θ=0(极小) (8) (2) 若cos(θ+2φ)=0 则 θ=90o-2φ (9)

将(9)式代入(7)式,有)(sin sin )(90sin 222θ?μ?μ+=-?

由此可得 1

2

sin m m =

=μθ 若m 2=m 1 则有 ?

===

=90,1sin 1

2

θμθm m

此题得证。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发.

解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2.

因为

Z n

hc

R E Li n ++-

= ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV

2-7 试问哪种类氢离子的巴耳末系和赖曼系主线的波长差等于133.7nm? 要点分析: 只要搞清楚巴耳末系主线n 32和赖曼系主线n 21的光谱波长差即可. 解:赖曼系m =1,n =2; 巴耳末m =2,n =2

设此种类氢离子的原子序数为Z.依里德伯公式则有

36

5)3121(1

2

A 222

A B Z R Z R ++=-=λ 即 2

A B 536Z R +=λ 4

3)2111(1

2

A 222

A L Z R Z R ++=-=λ 2A L 34Z R +=λ

7.1331588

345362A 2A 2A L B ==-=-+++Z R Z R Z R λλ

解之 Z= 2(注意波数单位与波长单位的关系,波长取纳米,里德伯常数为0.0109737nm -1,1cm=108nm,即厘米和纳米差十的八次方) Z=2, 它是氦离子.

2-11 已知氢和重氢的里德伯常最之比为0.999 728,而它们的核质量之比为m H /m D =0.500 20,试计算质子质量与电子质量之比.

要点分析: 用里德伯常量计算质子质量与电子质量之比. 解: 由

M m R

R e A +=11 得 H e H M m R R +=11 D

e

D M m R R +=11

H e D

e D H H

e

D e

D H m m m m m m m m m m R R ++=

++

=11999728050020011..=++?=++=+=1

1

H

e H e H e H e

D H H e H D D H D

H m m m m m m m m m m m m m m m m m m

可得 00054450.=H e m m

10

8365151836?==..e

H

m m

3.1 电子的能量分别为10eV ,100 eV ,1000 eV 时,试计算相应的德布罗意波长。 解:依计算电子能量和电子波长对应的公式

电子的能量: k e e

k E m p m p E 222

=?=

由德布罗意波长公式: K

e E m h

p h 2=

?=λλ

nm E

226

1.=λ nm nm 388010

1.==

λ 1.226

nm nm 0.12261001.226

2==

λ nm

nm 0.038810001.2263==λ

3-3 若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?

解: (1)依题意,相对论给出的运动物体的动能表达式是:

2mc E = 20c m E E k += 2

022c m mc = 02m m =

02

20

21m c

v m m =-= 411

22=-c v 22141c v -= 2243c v = 所以 0.866c c 4

3

v ≈= (2) 根据电子波长的计算公式:

0.001715n m eV

105111.226nm

)(1.226nm 3=?==

eV E k λ 3-9 已知粒子波函数?

?????---

=c z b y a x N 2||2||2||exp ψ,试求:(1)归一化常数N ;(2)粒子的x 坐标在0到a 之间的几率;(3)粒子的y 坐标和z 坐标分别在-b →+b 和-c →+c.之间的

几率.

解: (1)因粒子在整个空间出现的几率必定是一,所以归一化条件是: ?

+∞

-ψdv = 1

即:

dz e

dy e

dx e

N dv c

z b

y a

x ?????

?∞+∞

--∞+∞

--∞+∞

--∞

+∞

-=22

22

22

22

ψ

=1822220

2

==???

∞-

∞-

-

a b c N d e

c d e

b d e

a N c

z c

z b

y b

y a

x a

x

所以 N abc

81=

(2) 粒子的x 坐标在a →0区域内几率为:

dz e

dy e

dx e

N c

z b

y

a a

x ???∞+∞

--∞

+∞

---22

22

22

2()[]

)1

1(211412e

e abc N -=

--=- (3) 粒子的),(),,(c c z b b y -∈-∈区域内的几率为:

dz e

dy e

dx e

N

c c

c

z b b

b

y a x ???

+--+--∞

+∞

--22

22

22

2

22

)

11(8-=e

abc N 2)11(-=e 4-2 试计算原子处于2

3/2D 状态的磁矩μ及投影μz 的可能值. 解:已知:j =3/2, 2s +1=2 s =1/2, l =2

则 5

4

4

156

4321232123=-+=-+=)()(j

l s g j

依据磁矩计算公式 B B j j g j j μμμ15

5

21)(-

=+-=

依据磁矩投影公式 B j j z g m μ-=μ 5

6,52±±=j j g m ∴

B B z μμμ5

6,52±±=

4-4 在史特恩-盖拉赫实验中,处于基态的窄的银原子束通过极不均匀的横向磁场,并射到屏上,磁极的纵向范围d =10cm ,磁极中心到屏的距离D =25 cm .如果银原子的速率为400m /s ,线束在屏上的分裂间距为2.0mm ,试问磁场强度的梯度值应为多大?银原子的基态为2

S 1/2,质量为107.87u .

解:原子束在屏上偏离中心的距离可用下式表示: K

Z B E dD

z B Mg z 2??-=μ

对原子态 2S 1/2? L =0 S =1/2 J =1/2故 M =2

1

±

朗德g 因子为:g =2 对于上屏边缘的线束取M=-J, 对于下屏边缘的线束取M=J

所以K Z B

E dD

z B Jg z 22??=?μDd

JG ZE z B B K Z μ?=??? (1)

m Z 3102-?=? 2

1=J g =2 1

4T eV 105788.0--??=B μ

D m 21025-?= 2

1010-?=d

代入上式得: T/m 1024.12?=??z

B Z

4-10 Z =30锌原子光谱中的一条谱线(3S 1→3p 0)在B 为1.00T 的磁场中发生塞曼分裂,试问:从垂直于磁场方向观察,原谱线分裂为几条?相邻两谱线的波数差等于多少?是否属于正常塞曼效应?并请画出相应的能级跃迁图.

解: 已知:对于激发态 L =0,J =1, S =1. m 1=0,±1,在外磁场作用下,可以分裂为三条。

2

)20

2(23)(212

3=-+=-+=J L S g

对于基态 L =1,J =0, S =1 m 2=0,在外磁场作用下,并不分裂。

23)202(23)(21232222=

-+=-+=J

L S g

B g m g m E E E E B μ)()(-+-='-'=B E E B μ?

???

?

??-+-202 e B m e 2

=μ B m e

e πνν4????

? ??-+='202

z

B m eB e GH (T)142024202?????? ??-=????? ??-=-'πνν

)(467.02024202~-??

???

? ??-=????? ??-=-'=cm T B c m eB

c e πννν=(0.934,0,-0.934)cm -1

所以原谱线在外加磁场中分裂为三条,垂直磁场可以看到三条谱线。Δm =0,+1,-1,分别对应

于π,σ+,σ-三条谱线。

虽然谱线一分为三,但彼此间间隔值为2μB B ,并不是μB B ,并非激发态和基态的S=0,因

S≠0所以它不是正常的塞曼效应。对应的能级跃迁图

4-12 注:此题(2)有两种理解(不同习题集不同做法,建议用第二种方法).

钾原子的价电子从第一激发态向基态跃迁时,产生两条精细结构谱线,其波长分别为766.4nm和769.9nm,现将该原子置于磁场B中(设为弱场),使与此两精细结构谱线有关的能级进一步分裂.

(1)试计算能级分裂大小,并绘出分裂后的能级图.

(2)如欲使分裂后的最高能级与最低能级间的差距ΔE2等于原能级差ΔE1的1.5倍,所加磁场B应为多大?

要点分析:钾原子的价电子从第一激发态向基态的跃迁类似于钠的精细结构。其能级图同上题。

解:(1) 先计算朗德因子和m j g j

A.对于2S 1/2态,用???

? ??-+=222???2123j l s g j ,将s =1/2, l =0;j =1/2代入,即可算出g j =2;由于j =1/2,

因而1

2

j m =±

,于是m j g j =±1。 B.对于P 态,相应的l =1,因而j =l ±s, s=1/2,j=1/2,3/2,有两个原子态2P 1/2,2P 3/2。分别对应于

2P 1/2对应有 m 1=±1/2, g 1/2=2/3, m 1g 1=±1/3 2

P 3/2对应有 m 2=±1/2,g 3/2=4/3, m 2g 2=±2/3 , ±6/3 能级分裂大小:

P 3/2能级分裂大小: m 2g 2从+6/3→+2/3为4/3μB B P 1/2能级分裂大小: m 2g 2从+1/3→-1/3为2/3μB B S 1/2能级分裂大小: m 1g 1从+1→-1为2μB B (2) 解: 有两种认为:

第一种认为:ΔE =(E 2-E 1) 与教材计算结果一致.

分裂后的最高能级2P 3/2, m J =3/2与最低能级差2P 1/2,m J =-1/2

B

E B E B g m g m E E B B B μμμ37

)]31(36[)(11112212+?=--+?=-+?=?

若使ΔE 2=1.5ΔE 1=1.5(E 2- E 1) 即ΔE 1+7/3μB B =1.5ΔE 1 即 7/3μB B =0.5ΔE 1=0.5(E 2-E 1)

=0.5[(E 2-E 0)-(E 1-E 0)]=0.5 ???? ??-21

λλc h

c

h

即 ????

??-?=21

0.537λλμc h c h B B ∴

)

T (17.27105788.019.76914.766128.61970.5730.5734

21=????? ??-???=??

?

? ??-??=-λλμc h c h B B

B=27.17 T

第二种认为:ΔE =(E 2-E 0)与教材结果相差甚远

分裂后的最高能级2P 3/2, m J =3/2与最低能级差2s 1/2,m J =-1/2

B

E B E B g m g m E E B B B μμμ3)]1(36

[)(11112212+?=--+?=-+?=?

若使ΔE 2=1.5ΔE 1 即ΔE 1+3μB B =1.5ΔE 1

即 3μB B =0.5ΔE 1=0.5(E 2-E 0)=0.5 ????

??1λc h ,

?

???

???=10.53λμc h B B

)

T (3.4648105788.014.766128.61970.5310.5314

1=????? ?????=???? ????=

-λμc h B B

B=4648.3 T

5-3 对于S =1/2,和L =2,试计算L ·S 的可能值。 要点分析:矢量点积解法同5-2. 解:依题意知,L =2,S =1/2 可求出J =L ±1/2=2±1/2=3/2,5/2有两个值。 因此当J =3/2时有:

据: 2

22

2

3)]12(2)121

(21)123(23[21)]1()1()1([21

2

3 -=+-+-+=+-+-+=?L L S S J J S L

而当J =5/2时有:

据: 2

2

2

)]12(2)121(21)125(25[21)]1()1()1([21

2

5 =+-+-+=+-+-+=?L L S S J J S L

故可能值有两个:22

3 -,2

5-8 铍原子基态的电子组态是2s 2s ,若其中有一个电子被激发到3p 态,按L —S 耦合可形成哪些原子态?写出有关的原子态的符号.从这些原子态向低能态跃迁时,可以产生几条光谱线?画出相应的能级跃迁图.若那个电子被激发到2p 态,则可能产生的光谱线又为几条? 解: 1. 2s2s 电子组态形成的原子态

∵ s 1=s 2=1/2 l 1= l 2=0 l = l 1±l 2=0 S 1= s 1+s 2=1 S 2= s 1-s 2=0 J =L +S

J 1=L +S 1 =0+1=1 J 2=L +S 2 =0+0=0

∵ 2s 2s 形成的原子态有3S 1 , 1S 0四种原子态。由于为同科电子,所以只存在1S 0一种原子态。

2 . 2s 3p 电子组态形成的原子态

∵ s 1=s 2=1/2 l 1=0 l 2=1 l l 1±l 2=1 S 1= s 1+s 2=1 S 2= s 1-s 2=0 J =L +S

J 1=L +S 1 =2,1,0 J 2=L +S 2 =1+0=1 2s3p 形成的原子态有3P 2,1,0 , 1P 0四种原子态。

∵ 同理2s2p 形成的原子态有3P 2,1,0 , 1P 0四种原子态。 3. 2s 2s ,2s 3p 形成的原子态的能级跃迁图

根据L -S 耦合的跃迁选择定则,可产生的光谱线如图所示。

5-11 一束基态的氦原子通过非均匀磁场后,在屏上可以接受到几束?在相同条件下,对硼

原子,可接受到几条?为什么?

解:氦原子处于基态时电子组态为 1s1s

其中11=n 12=n 01=l 02=l 2

121=

=s s 所以:021=-=s s s L=0 故原子态为 01

S 所以J=0

原子束通过非均匀磁场后在屏上可接收到的束数为(2J+1)条 所以一束基态的氦原子通过非均匀磁场后,在屏上可以接受到一束. 而硼原子的电子组态为1

2

2

221p s s 则2p 态未满:L=1

所以=l m - 1 21=

s m 2

1=s 形成的原子态为:2

1

=+=s l m m J

在相同条件下硼原子可接收到两条。

6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试问它的工作电压是多少?

解:依据公式

)(24.1kV V nm =

λ )

kV 100(0.01241.24

1.24)(===λnm kV V

答:它的工作电压是100kV .

6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K αX 射线的波长为0.068 5 nm ,试求出该元素的原子序数.

解:由公式)

1(10246.0-?=λ=αZ c

V K Hz ;将值代入上式,

10

246.00685.01010310

246.00685.0)1(????=

??=

-c

Z =1780

Z =43

即该元素为43号元素锝(Te).

6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请:

(1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长.

分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.

解: (1)由已知的条件可画出X 射线能级简图.

K K α L α K β K γ (2) 激发L 线系所需的能量: K 层电子的电离能为: 4k e V 9.781n m

014.0nm.keV

24.1K

K ==

=

λ?hc

在L 壳层产生一个空穴相对于K 壳层所需的能量 keV 93.84nm

0146.0nm .keV

24.1K K ==

=

-=α

λ??hc

E L LK

在L 壳层产生一个空穴所需的能量

E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能.

设L α线的波长为λML ,则依题意有: LK

MK

ML

ML hc

hc

hc

E λλλ-

=

=? 或

LK

MK

ML

λλλ1

1

1

-

=

即有 0.116nm nm 0146

.00167.00167

.00146.0MK LK LK MK =-?=-?=

λλλλλML

即L α线的波长为0.116nm.

6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120?的方向上产生一级衍射极大,试问该晶面的间距为多大?

解:由于入射束在偏离120?的方向上产生一级衍射极大sin θ =sin120?=2

3

依据公式 θ=λs i n 2d n n =1 23254.0?

=nm

解得 d =0.312 nm

6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量.

解:一个光子和一静止的电子作用后其能量为

)cos 1(1θγνν-+=

'h h (1)其中

c

m h ν

γ=

光子去的能量为电子获得的能量 k E h h ='-νν

依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式有最小值的条件是θ=π 由此可推得

2122E h h h h h =+=+-

='-γ

ν

γγνννν1

由此可算出: νγγh E E 22=+

νν

νh c h E c h E 200m 2m 2=+

2)(2c m E

E

h h o =-νν

代入数据 511.010?=??-光光E E 10222

解之: E 光=55.9 keV

(完整版)原子物理学第五章填空判断题(有答案)

第五章增加部分 题目部分,(卷面共有50题,96.0分,各大题标有题量和总分) 一、判断题(16小题,共16.0分) 1.(1分)同一电子组态形成的诸原子态间不发生跃迁。 2.(1分)跃迁可以发生在偶宇称到偶宇称之间。 3.(1分)跃迁只发生在不同宇称之间。 4.(1分)两个s电子一定可以形成1S0和3S1两个原子态。 5.(1分)同科电子形成的原子态比非同科电子形成的原子态少。 6.(1分)镁原子有两套能级,两套能级之间可以跃迁。 7.(1分)镁原子的光谱有两套,一套是单线,另一套是三线。 8.(1分)钙原子的能级是二、四重结构。 9.(1分)对于氦原子来说,第一激发态能自发的跃迁到基态。 10.(1分)标志电子态的量子数中,S为轨道取向量子数。 11.(1分)标志电子态的量子数中,n为轨道量子数。 12.(1分)若镁原子处于基态,它的电子组态应为2s2p。 13.(1分)钙原子的能级重数为双重。 14.(1分)电子组态1s2p所构成的原子态应为1P1和3P2,1,0。 15.(1分)1s2p ,1s1p 这两个电子组态都是存在的。 16.(1分)铍(Be)原子若处于第一激发态,则其电子组态为2s2p。 二、填空题(34小题,共80.0分) 1.(4分)如果有两个电子,一个电子处于p态,一个电子处于d态,则两个电子在LS耦合下L的取值为()P L的可能取值为()。 2.(4分)两个电子LS耦合下P S的表达式为(),其中S的取值为()。3.(3分)氦的基态原子态为(),两个亚稳态为()和()。 4.(2分)Mg原子的原子序数Z=12,它的基态的电子组态是(),第一激发态的电子组态为()。 5.(2分)LS耦合的原子态标记为(),jj耦合的原子态标记为()。6.(2分)ps电子LS耦合下形成的原子态有()。 7.(2分)两个电子LS耦合,l1=0,l2=1下形成的原子态有()。 8.(2分)两个同科s电子在LS耦合下形成的原子态为()。 9.(2分)两个非同科s电子在LS耦合下形成的原子态有()。 10.(2分)两个同科s电子在jj耦合下形成的原子态为()。 11.(4分)sp电子在jj耦合下形成()个原子态,为()。12.(2分)洪特定则指出,如果n相同,S()的原子态能级低;如果n和S均相同,L ()的原子态能级低(填“大”或“小”)。 13.(2分)洪特定则指出,如果n和L均相同,J小的原子态能级低的能级次序为(),否则为()。 14.(2分)对于3P2与3P1和3P1与3P0的能级间隔比值为()。 15.(2分)对于3D1、3D2、3D3的能级间隔比值为()。 16.(2分)郎德间隔定则指出:相邻两能级间隔与相应的()成正比。 17.(3分)LS耦合和jj耦合这两种耦合方式所形成的()相同、()相同,但()不同。 18.(4分)一个p电子和一个s电子,LS耦合和jj耦合方式下形成的原子态数分别为()

原子物理学 杨福家 第四版(完整版)课后答案

原子物理学杨福家第四版(完整版)课后答案 原子物理习题库及解答 第一章 111,222,,mvmvmv,,,,,,,ee222,1-1 由能量、动量守恒 ,,,mvmvmv,,,,,,ee, (这样得出的是电子所能得到的最大动量,严格求解应用矢量式子) Δp θ mv2,,,得碰撞后电子的速度 p v,em,m,e ,故 v,2ve, 2m,p1,mv2mv4,e,eee由 tg,~,~~,~,2.5,10(rad)mvmv,,,,pm400, a79,2,1.44,1-2 (1) b,ctg,,22.8(fm)222,5 236.02,102,132,5dN(2) ,,bnt,3.14,[22.8,10],19.3,,9.63,10N197 24Ze4,79,1.441-3 Au核: r,,,50.6(fm)m22,4.5mv,, 24Ze4,3,1.44Li核: r,,,1.92(fm)m22,4.5mv,, 2ZZe1,79,1.4412E,,,16.3(Mev)1-4 (1) pr7m 2ZZe1,13,1.4412E,,,4.68(Mev)(2) pr4m 22NZZeZZeds,,242401212dN1-5 ()ntd/sin()t/sin,,,,,2N4E24EAr2pp 1323,79,1.44,106.02,101.5123,,(),,1.5,10,, 24419710(0.5) ,822,610 ,6.02,1.5,79,1.44,1.5,,8.90,10197 3aa,,1-6 时, b,ctg,,,,6012222 aa,,时, b,ctg,,1,,902222 32()2,dNb112 ?,,,32dN1,b222()2 ,32,324,101-7 由,得 b,bnt,4,10,,nt

原子物理选择题(含答案)

原子物理选择题 1. 如图所示是原子核的核子平均质量与原子序数Z 的关 系图像,下列说法正确的是(B ) ⑴如D 和E 结合成F ,结合过程一定会吸收核能 ⑵如D 和E 结合成F ,结合过程一定会释放核能 ⑶如A 分裂成B 和C ,分裂过程一定会吸收核能 ⑷如A 分裂成B 和C ,分裂过程一定会释放核能 A .⑴⑷ B .⑵⑷ C .⑵⑶ D .⑴⑶ 2. 处于激发状态的原子,如果在入射光的电磁场的影响下,引起高能态向低能态跃迁,同 时在两个状态之间的能量差以辐射光子的形式发射出去,这种辐射叫做受激辐射,原子发生受激辐射时,发出的光子的频率、发射方向等,都跟入射光子完全一样,这样使光得到加强,这就是激光产生的机理,那么发生受激辐射时,产生激光的原子的总能量E n 、电子的电势能E p 、电子动能E k 的变化关系是(B ) A .E p 增大、E k 减小、E n 减小 B .E p 减小、E k 增大、E n 减小 C .E p 增大、E k 增大、E n 增大 D . E p 减小、E k 增大、E n 不变 3. 太阳的能量来自下面的反应:四个质子(氢核)聚变成一个α粒子,同时发射两个正 电子和两个没有静止质量的中微子。已知α粒子的质量为m a ,质子的质量为m p ,电子的质量为m e ,用N 表示阿伏伽德罗常数,用c 表示光速。则太阳上2kg 的氢核聚变成α粒子所放出能量为 (C ) A .125(4m p —m a —2m e )Nc 2 B .250(4m p —m a —2m e )Nc 2 C .500(4m p —m a —2m e )Nc 2 D .1000(4m p —m a —2m e )Nc 2 4. 一个氘核(H 21)与一个氚核(H 31)发生聚变,产生一个中子和一个新核,并出现质 量亏损.聚变过程中(B ) A.吸收能量,生成的新核是e H 42 B.放出能量,生成的新核是e H 42 C.吸收能量,生成的新核是He 32 D.放出能量,生成的新核是He 32 5. 一个原来静止的原子核放出某种粒子后,在磁场中形成如图所示 的轨迹,原子核放出的粒子可能是(A ) A.α粒子 B.β粒子 C.γ粒子 D.中子 6. 原来静止的原子核X A Z ,质量为1m ,处在区域足够大的匀强磁场中,经α衰变变成质 量为2m 的原子核Y ,α粒子的质量为3m ,已测得α粒子的速度垂直磁场B ,且动能为0E .假设原子核X 衰变时释放的核能全部转化为动能,则下列四个结论中,正确的是(D ) ①核Y 与α粒子在磁场中运动的周期之比为2 2-Z

原子物理学练习题及答案

填空题 1、在正电子与负电子形成的电子偶素中,正电子与负电子绕它们共同的质心的运动,在n = 2的状态, 电子绕质心的轨道半径等于 nm 。 2、氢原子的质量约为____________________ MeV/c 2。 3、一原子质量单位定义为 原子质量的 。 4、电子与室温下氢原子相碰撞,欲使氢原子激发,电子的动能至少为 eV 。 5、电子电荷的精确测定首先是由________________完成的。特别重要的是他还发现了 _______ 是量子化的。 6、氢原子 n=2,n φ =1与H + e 离子n=?3,?n φ?=?2?的轨道的半长轴之比a H /a He ?=____, 半短轴之比b H /b He =__ ___。 7、玻尔第一轨道半径是0.5291010-?m,则氢原子n=3时电子轨道的半长轴a=_____,半短轴 b?有____个值,?分别是_____?, ??, . 8、 由估算得原子核大小的数量级是_____m,将此结果与原子大小数量级? m 相比, 可以说明__________________ . 9、提出电子自旋概念的主要实验事实是-----------------------------------------------------------------------------和 _________________________________-。 10、钾原子的电离电势是4.34V ,其主线系最短波长为 nm 。 11、锂原子(Z =3)基线系(柏格曼系)的第一条谱线的光子能量约为 eV (仅需 两位有效数字)。 12、考虑精细结构,形成锂原子第二辅线系谱线的跃迁过程用原子态符号表示应 为——————————————————————————————————————————————。 13、如果考虑自旋, 但不考虑轨道-自旋耦合, 碱金属原子状态应该用量子数————————————表示,轨道角动量确定后, 能级的简并度为 。 14、32P 3/2→22S 1/2 与32P 1/2→22S 1/2跃迁, 产生了锂原子的____线系的第___条谱线的双线。 15、三次电离铍(Z =4)的第一玻尔轨道半径为 ,在该轨道上电子的线速度 为 。 16、对于氢原子的32D 3/2能级,考虑相对论效应及自旋-轨道相互作用后造成的能量移动与 电子动能及电子与核静电相互作用能之和的比约为 。 17、钾原子基态是4s,它的四个谱线系的线系限的光谱项符号,按波数由大到小的次序分别 是______,______,_____,______. (不考虑精细结构,用符号表示). 18、钾原子基态是4S ,它的主线系和柏格曼线系线系限的符号分别是 _________和 __ 。 19、按测不准关系,位置和动量的不确定量 ?x,x p ? 之间的关系为_____ 。 20、按测不准关系,位置和动量的不确定量 ?E,t ? 之间的关系为_____ 。

原子物理学09-10-2 B卷试题

2009—2010学年第2学期《原子物理学》期末试卷 专业班级 姓名 学号 开课系室应用物理系 考试日期2010年6月26日10:00-12:00

说明:请认真读题,保持卷面整洁,可以在反面写草稿,物理常数表在第4页。 一. 填空题(共30空,每空1分,共30分) 1. 十九世纪末的三大发现、、,揭开了近代物理学的序幕。 2. 原子质量单位u定义为。 3. 教材中谈到卢瑟福的行星模型(原子的有核模型)有三个困难,最重要的是它无法解释原子的问题。丹麦科学家玻尔正是为了解决这个问题,在其原子理论引入第一假设,即分离轨道和假设,同时,玻尔提出第二假设, 即假设,给出频率条件,成功解释了困扰人们近30年的氢光谱规律之谜,第三步,玻尔提出并运用,得到角动量量子化、里德堡常数等一系列重要结果。 4. 夫兰克- 赫兹(Franck-Hertz) 实验是用电子来碰撞原子,测定了使原子激发的“激发电势”,证实了原子内部能量是的,从而验证了玻尔理论。氢原子的电离能为eV,电子与室温下氢原子相碰撞,欲使氢原子激发,电子的动能至少为eV。 5. 在原子物理和量子力学中,有几类特别重要的实验,其中证明了光具有粒子性的有黑体辐射、、等实验。 6. 具有相同德布罗意波长的质子和电子,其动量之比为,动能(不考虑相对论效应)之比为。 7. 根据量子力学理论,氢原子中的电子,当其主量子数n=3时,其轨道磁距的可能取值为。

8. 考虑精细结构,锂原子(Li)第二辅线系(锐线系)的谱线为双线结构,跃迁过程用原子态符号表示为 , 。(原子态符号要写完整) 9. 原子处于3D 1状态时,原子的总自旋角动量为 , 总轨道角动量为 , 总角动量为 ; 其总磁距在Z 方向上的投影Z μ的可能取值为 。 10. 泡利不相容原理可表述为: 。它只对 子适用,而对 子不适用。根据不相容原理,原子中量子数l m l n ,,相同的最大电子数目是 ;l n ,相同的最大电子(同科电子)数目是 ; n 相同的最大电子数是 。 11. X 射线管发射的谱线由连续谱和特征谱两部分构成,其中,连续谱产生的机制是 , 特征谱产生的机制是 。 二、选择题(共10小题,每题2分,共20分) 1. 卢瑟福由α粒子散射实验得出原子核式结构模型时,理论基础是: ( ) A. 经典理论; B. 普朗克能量子假设; C. 爱因斯坦的光量子假设; D. 狭义相对论。 2. 假设钠原子(Z=11)的10个电子已经被电离,则至少要多大的能量才能剥去它的 最后一个电子? ( ) A.13.6eV ; B. 136eV ; C. 13.6keV ; D.1.64keV 。 3. 原始的斯特恩-盖拉赫实验是想证明轨道角动量空间取向量子化, 后来结果证明 的是: ( ) A. 轨道角动量空间取向量子化; B. 自旋角动量空间取向量子化; C. 轨道和自旋角动量空间取向量子化; D. 角动量空间取向量子化不成立。

原子物理练习题

高二物理《原子物理》练习题 一、单项选择题 1.β衰变中放出的电子来自() A.组成原子核的电子B.核内质子转化为中子 C.核内中子转化为质子D.原子核外轨道中的电子 2.下列说法正确的是() A.原子核发生衰变时要遵守电荷守恒和质量守恒的规律 B.α射线、β射线、γ射线都是高速运动的带电粒子流 C.氢原子从激发态向基态跃迁只能辐射特定频率的光子 D.发生光电效应时光电子的动能只与入射光的强度有关 3.如图所示,天然放射性元素,放出α、β、γ三种射线同时射入互相垂直的匀强电场和匀强磁场中,射入时速度方向和电场、磁场方向都垂直,进入场区后发现β射线和γ射线都沿 直线前进,则α射线() A.向右偏B.向左偏 C.直线前进D.无法判断 4.下面说法正确的是() ①β射线的粒子和电子是两种不同的粒子②红外线的波长比X射线的波长长③α射线的粒子不同于氦原子核④γ射线的穿透本领比α射线的强 A.①②B.①③ C.②④D.①④ 5.人类探测月球发现,在月球的土壤中含有较丰富的质量数为3的氦,它可以作为未来核聚变的重要原料之一,氦的这种同位素应表示为() A.43He B.32He C.42He D.33He 6.科研人员正在研制一种新型镍铜长效电池,它是采用半衰期长达100年的放射性同位素镍63(6328Ni)和铜两种金属作为长寿命电池的材料,利用镍63发生β衰变时释放电子给铜片,把镍63和铜片作电池两极,外接负载为负载提供电能。下面有关该电池的说法正确的是() A.镍63的衰变方程是6328Ni→0-1e+6327Cu B.镍63的衰变方程是6328Ni→0-1e+6429Cu C.外接负载时镍63的电势比铜片高 D.该电池内电流方向是从镍63到铜片 7. 将半衰期为5天的质量为64 g的铋分成四份分别投入:(1)开口容器中;(2)100 atm的密封容器中;(3)100 ℃的沸水中;(4)与别的元素形成化合物。经10天后,四种情况下剩下的铋的质量分别为m1、m2、m3、m4。则()

原子物理学第八章习题答案

原子物理学第八章习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章 X 射线 8.1 某X 光机的高压为10万伏,问发射光子的最大能量多大?算出发射X 光的最短波长。 解:电子的全部能量转换为光子的能量时,X 光子的波长最短。而光子的最大能量是:5max 10==Ve ε电子伏特 而 min max λεc h = 所以οελA c h 124.01060.1101031063.61958 34max min =?????==-- 8.2 利用普通光学反射光栅可以测定X 光波长。当掠射角为θ而出现n 级极大值出射光线偏离入射光线为αθ+2,α是偏离θ级极大出射线的角度。试证:出现n 级极大的条件是 λααθn d =+2 sin 22sin 2 d 为光栅常数(即两刻纹中心之间的距离)。当θ和α都很小时公式简化为λαθαn d =+)2(2 。 解:相干光出现极大的条件是两光束光的光程差等于λn 。而光程差为:2 sin 22sin 2)cos(cos ααθαθθ+=+-=?d d d L 根据出现极大值的条件λn L =?,应有 λααθn d =+2 sin 22sin 2 当θ和α都很小时,有22sin ;22222sin αααθαθαθ≈+=+≈+ 由此,上式化为:;)2(λααθn d =+ 即 λαθαn d =+)2(2

8.3 一束X 光射向每毫米刻有100条纹的反射光栅,其掠射角为20'。已知第一级极大出现在离0级极大出现射线的夹角也是20'。算出入射X 光的波长。 解:根据上题导出公式: λααθn d =+2 sin 22sin 2 由于'20,'20==αθ,二者皆很小,故可用简化公式: λαθαn d =+)2(2 由此,得:οαθαλA n d 05.5)2 (;=+= 8.4 已知Cu 的αK 线波长是1.542ο A ,以此X 射线与NaCl 晶体自然而成'5015ο角入射而得到第一级极大。试求NaCl 晶体常数d 。 解:已知入射光的波长ολA 542.1=,当掠射角'5015οθ=时,出现一级极大(n=1)。 οθλ θ λA d d n 825.2sin 2sin 2=== 8.5 铝(Al )被高速电子束轰击而产生的连续X 光谱的短波限为5ο A 。问这时是否也能观察到其标志谱K 系线? 解:短波X 光子能量等于入射电子的全部动能。因此 31048.2?≈=λεc h 电电子伏特 要使铝产生标志谱K 系,则必须使铝的1S 电子吸收足够的能量被电离而产生空位,因此轰击电子的能量必须大于或等于K 吸收限能量。吸收限能量可近似的表示为:

原子物理学第一章习题参考答案

第一章习题参考答案 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角-4 约为10rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) (3) (2) 作运算:(2)×sinθ±(3)×cosθ,得 (4) (5) 再将(4)、(5)二式与(1)式联立,消去V’与V, 化简上式,得 (6) 若记,可将(6)式改写为 (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 由此可得 θ≈10弧度(极大)此题得证. (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 解:(1)依和金的原子序数Z 2=79 -4 答:散射角为90o所对所对应的瞄准距离为. (2)要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n,问题不知道nA,但可从密度与原子量关系找出注意推导出n值.,其他值从书中参考列表中找. 从书后物质密度表和原子量表中查出Z Au=79,A Au=197,ρ Au=×10kg/m

原子物理习题

基本练习: 1.选择题: (1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:C A .0; B.1; C.2; D.3 (2)正常塞曼效应总是对应三条谱线,是因为:C A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同; C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁 (3)B 原子态2 P 1/2对应的有效磁矩(g =2/3)是 A A. B μ33; B. B μ3 2 ; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ?除正比于B 之外,同原子状态有关的因子有:D A.朗德因子和玻尔磁子 B.磁量子数、朗德因子 C.朗德因子、磁量子数M L 和M J D.磁量子数M L 和M S (5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A A ;)(0);(1πσ±=?J M B. )(1);(1σπ+-=?J M ;0=?J M 时不出现; C. )(0σ=?J M ,)(1π±=?J M ; D. )(0);(1πσ=?±=?S L M M (6)原子在6 G 3/2状态,其有效磁矩为:B A . B μ315; B. 0; C. B μ25; D. B μ2 15- (7)若原子处于1 D 2和2 S 1/2态,试求它们的朗德因子g 值:D A .1和2/3; B.2和2/3; C.1和4/3; D.1和2 (8)由朗德因子公式当L=S,J ≠0时,可得g 值:C A .2; B.1; C.3/2; D.3/4 (9)由朗德因子公式当L=0但S ≠0时,可得g 值:D A .1; B.1/2; C.3; D.2 (10)如果原子处于2 P 1/2态,它的朗德因子g 值:A A.2/3; B.1/3; C.2; D.1/2 (11)某原子处于4 D 1/2态,若将其放于弱磁场中,则能级分裂为:C A .2个; B.9个; C.不分裂; D.4个 (12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:B A.4D 3/2分裂为2个; B.1P 1分裂为3个; C.2F 5/2分裂为7个; D.1 D 2分裂为4个 (13)如果原子处于2 P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:D A.3个 B.2个 C.4个 D.5个 (14)态1 D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?B A.3个 B.5个 C.2个 D.4个 (15)钠黄光D 2线对应着32P 3/2→32 S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:B A.3条 B.6条 C.4条 D.8条 (16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2 P 3/2)在磁场中发生塞曼效应,光

原子物理习题解答1

原子物理学习题解答 1.1 电子和光子各具有波长0.20nm,它们的动量和总能量各是多少? 解:由德布罗意公式p h /=λ,得: m/s kg 10 315.3m 10 20.0s J 10 63.624 9 34??=???= = =---λ h p p 光电 )J (10 9.94510 310 315.316 -8 24 ?=???=== =-c p hc h E 光光λ ν 2 16231 16 2 2 24 4 2 02 2 )10310 1.9(103)10 315.3(???+???=+=--c m c p E 电电 )J (1019.8107076.61089.914 2731---?=?+?= 1.2 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为1.5eV 的光电子,必 须使用多大波长的光照射? 解:(1) 由爱因斯坦光电效应公式w h mv -=ν2 02 1知,铯的光电效应阈频率为: Hz)(10 585.410 63.6106.19.114 34 19 0?=???= = --h w ν 阈值波长: m)(1054.610 585.410 37 14 80 0-?=??= = νλc (2) J 10 1.63.4eV 4.3eV 5.1eV 9.12 119 -2 0??==+=+ =mv w h ν 故: m)(10 656.310 6.14.310 310 63.67 19 8 34 ---?=?????= = = ν ν λh hc c 1.4 若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少? 解:(1)由题意知,2 02 02 c m c m mc E k =-=,所以 2 02 2 2 02 2/1c m c v c m mc =-= 2 3c v = ? (2)由德布罗意公式得: )m (10 4.110 310 1.931063.63212 8 31 34 00---?=?????= = = = = c m h v m h mv h p h λ 1.5 (1)试证明: 一个粒子的康普顿波长与其德布罗意波长之比等于2 /120]1)/[(-E E ,式中0E 和E 分别是粒 子的静止能量和运动粒子的总能量. (2)当电子的动能为何值时,它的德布罗意波长等于它的康普顿波长? (1)证明:粒子的康普顿波长:c m h c 0/=λ 德布罗意波长: 1 )/(1 )/(2 02 02 04 20 2 -= -=-= == E E E E c m hc c m E hc mv h p h c λλ 所以, 2 /120]1)/[(/-=E E c λλ (2)解:当c λλ=时,有11)/(2 0=-E E ,即:2/0= E E 02E E = ? 故电子的动能为:2 000)12()12(c m E E E E k -=-=-= )J (1019.8)12(10 910 1.9)12(14 16 31--??-=????-= MeV 21.0eV 1051.0)12(6 =??-= 1.6 一原子的激发态发射波长为600nm 的光谱线,测得波长的精度为7 10 /-=?λλ,试问该原子态的寿命为 多长?

原子物理学第二章习题答案

第二章 原子的能级和辐射 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, π φ2h n mvr p == 可得:频率 21211222ma h ma nh a v πππν= == 赫兹151058.6?= 速度:61110188.2/2?===ma h a v νπ米/秒 加速度:222122/10046.9//秒米?===a v r v w 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。 解:电离能为1E E E i -=∞,把氢原子的能级公式2 /n Rhc E n -=代入,得: Rhc hc R E H i =∞-=)1 1 1(2=电子伏特。 电离电势:60.13== e E V i i 伏特 第一激发能:20.1060.1343 43)2 111(2 2=?==-=Rhc hc R E H i 电子伏特 第一激发电势:20.101 1== e E V 伏特 用能量为电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线 解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是: )1 11(22n hcR E H -= 其中6.13=H hcR 电子伏特 2.10)21 1(6.1321=-?=E 电子伏特 1.12)31 1(6.1322=-?=E 电子伏特 8.12)4 1 1(6.1323=-?=E 电子伏特 其中21E E 和小于电子伏特,3E 大于电子伏特。可见,具有电子伏特能量的电子不足以把基

态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。跃迁时可能发出的光谱线的波长为: ο ο ο λλλλλλA R R A R R A R R H H H H H H 102598 )3 111( 1121543)2 111( 1 656536/5)3 121( 1 32 23 22 22 1221 ==-===-===-= 试估算一次电离的氦离子+ e H 、二次电离的锂离子+ i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。 a) 氢原子和类氢离子的轨道半径: 3 1,2132,1,10529177.0443,2,1,44102 22 01212 2220= ======?==? ?===++++++ ++-Li H H Li H H H He Z Z r r Z Z r r Z Li Z H Z H Z me h a n Z n a mZe n h r e 径之比是因此,玻尔第一轨道半;,;对于;对于是核电荷数,对于一轨道半径;米,是氢原子的玻尔第其中ππεππε b) 氢和类氢离子的能量公式: ??=?=-=3,2,1,)4(222 12 220242n n Z E h n Z me E πεπ 其中基态能量。电子伏特,是氢原子的6.13)4(22 204 21-≈-=h me E πεπ 电离能之比: 9 00,4002 222== --==--+ ++ ++ H Li H Li H He H He Z Z E E Z Z E E c) 第一激发能之比:

光学原子物理习题解答

光学习题答案 第一章:光的干涉 1、 在杨氏双缝实验中,设两缝之间的距离为0.2mm ,在距双缝1m 远的屏上观察干涉 条纹,若入射光是波长为400nm 至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强? 解:已知:0.2d mm =, 1D m =, 20l mm = 依公式: 五种波长的光在所给观察点最大限度地加强。 2、 在图示的双缝干涉实验中,若用薄玻璃片(折射率1 1.4n =)覆盖缝S 1 ,用同样厚 度的玻璃片(但折射率2 1.7n =)覆盖缝S 2 ,将使屏上原来未放玻璃时的中央明条纹所在处O 变为第五级明纹,设单色波长480nm λ=,求玻璃片的厚度d (可认为光线垂直穿过玻璃片) 34104000104009444.485007571.46666.7d l k D d k l mm nm D k nm k nm k nm k nm k nm δλ λλλλλλ-==∴==?===========11111故: o d

屏 O 解:原来,210r r δ=-= 覆盖玻璃后, 2211218 21 ()()5()558.010r n d d r n d d n n d d m n n δλ λ λ-=+--+-=∴-== =?- 3、在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为12l l 和,并且123l l λ=-,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D ,如图,求: (1) 零级明纹到屏幕中央O 点的距离。 (2) 相邻明条纹的距离。 解:(1)如图,设0p 为零级明纹中心,则: 21022112112021()()03()/3/r r d p o D l r l r r r l l p o D r r d D d λ λ-≈+-+=∴-=-==-= (2)在屏上距0点为x 处, 光程差 /3dx D δλ≈- 明纹条件 (1,2,3)k k δλ=± = (3)/k x k D d λλ=±+ 在此处令K=0,即为(1)的结果, 相邻明条纹间距1/k k x x x D d λ+?=-= 4、白光垂直照射到空气中一厚度为43.810e nm =?的肥皂泡上,肥皂膜的折射率 1.33n =,在可见光范围内44(4.0107.610)?-?,那些波长的光在反射中增强? 解:若光在反射中增强,则其波长应满足条件 1 2(1,2,)2 ne k k λλ+= =

原子物理练习题答案知识讲解

原子物理练习题答案

一、选择题 1.如果用相同动能的质子和氘核同金箔正碰,那么用质子作为入射粒子测得的金原子核半径上限是用氘核子作为入射粒子测得的金原子核半径上限的几倍? A. 2 B.1/2 √ C.1 D .4 2.在正常塞曼效应中,沿磁场方向观察时将看到几条谱线: A .0; B.1; √C.2; D.3 3. 按泡利原理,当主量子数确定后,可有多少状态? A.n 2 B.2(2l+1)_ C.2l+1 √ D.2n 2 4.锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)? √A.一条 B.三条 C.四条 D.六条 5.使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成 A.不分裂 √ B.3条 C.5条 D.7条 6.原子在6G 3/2状态,其有效磁矩为: A . B μ3 15; √ B. 0; C. B μ25; D. B μ215- 7.氦原子的电子组态为1s 2,根据壳层结构可以判断氦原子基态为: A.1P1; B.3S1; √ C .1S0; D.3P0 . 8.原子发射伦琴射线标识谱的条件是: A.原子外层电子被激发;B.原子外层电子被电离;

√C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强。 9.设原子的两个价电子是p 电子和d 电子,在L-S耦合下可能的原子态有: A.4个 ; B.9个 ; C.12个 ; √ D.15个。 10.发生β+衰变的条件是 A.M (A,Z)>M (A,Z -1)+m e ; B.M (A,Z)>M (A,Z +1)+2m e ; C. M (A,Z)>M (A,Z -1); √ D. M (A,Z)>M (A,Z -1)+2m e 11.原子核式结构模型的提出是根据α粒子散射实验中 A.绝大多数α粒子散射角接近180? B.α粒子只偏2?~3? √C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射 12.基于德布罗意假设得出的公式V 26.12=λ ?的适用条件是: A.自由电子,非相对论近似 √B.一切实物粒子,非相对论近似 C.被电场束缚的电子,相对论结果 D.带电的任何粒子,非相对论近似 13.氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于: A.自旋-轨道耦合 B.相对论修正和原子实极化、轨道贯穿 √C.自旋-轨道耦合和相对论修正 D. 原子实极化、轨道贯穿、自旋-轨道耦合和相对论修正

原子物理学期末考试试卷(E)参考答案

《原子物理学》期末考试试卷(E)参考答案 (共100分) 一.填空题(每小题3分,共21分) 1.7.16?10-3 ----(3分) 2.(1s2s)3S1(前面的组态可以不写)(1分); ?S=0(或?L=±1,或∑ i i l=奇?∑ i i l=偶)(1分); 亚稳(1分)。 ----(3分) 3.4;1;0,1,2 ;4;1,0;2,1。 ----(3分) 4.0.013nm (2分) , 8.8?106m?s-1(3分)。 ----(3分) 5.密立根(2分);电荷(1分)。 ----(3分) 6.氦核 2 4He;高速的电子;光子(波长很短的电磁波)。(各1分) ----(3分) 7.R aE =α32 ----(3分) 二.选择题(每小题3分, 共有27分) 1.D ----(3分) 2.C ----(3分) 3.D ----(3分) 4.C ----(3分) 5.A ----(3分) 6.D 提示: 钠原子589.0nm谱线在弱磁场下发生反常塞曼效应,其谱线不分裂为等间距的三条谱线,故这只可能是在强磁场中的帕邢—巴克效应。 ----(3分) 7.C ----(3分) 8.B ----(3分) 9.D ----(3分)

三.计算题(共5题, 共52分 ) 1.解: 氢原子处在基态时的朗德因子g =2,氢原子在不均匀磁场中受力为 z B z B z B Mg Z B f Z d d d d 221d d d d B B B μμμμ±=?±=-== (3分) 由 f =ma 得 a m B Z =±?μB d d 故原子束离开磁场时两束分量间的间隔为 s at m B Z d v =?=??? ? ? ?212 22 μB d d (2分) 式中的v 以氢原子在400K 时的最可几速率代之 m kT v 3= )m (56.010400 1038.131010927.03d d 3d d 232 232B 2 B =??????=?=??= --kT d z B kT md z B m s μμ (3分) 由于l =0, 所以氢原子的磁矩就是电子的自旋磁矩(核磁矩很小,在此可忽略), 故基态氢原子在不均匀磁场中发生偏转正好说明电子自旋磁矩的存在。 (2分) ----(10分) 2.解:由瞄准距离公式:b = 22a ctg θ及a = 2 1204z z e E πε得: b = 20012*79 **30246e ctg MeV πε= 3.284*10-5nm. (5分) 22 22 ()()(cot )22 (60)cot 30 3:1(90)cot 45 a N Nnt Nnt b Nnt N N θ σθπθπ?=?==?==? (5分) 3.对于Al 原子基态是2P 1/2:L= 1,S = 1/2,J = 1/2 (1分) 它的轨道角动量大小: L = = (3分) 它的自旋角动量大小: S = = 2 (3分) 它的总角动量大小: J = = 2 (3分) 4.(1)铍原子基态的电子组态是2s2s ,按L -S 耦合可形成的原子态: 对于 2s2s 态,根据泡利原理,1l = 0,2l = 0,S = 0 则J = 0形成的原子态:10S ; (3分) (2)当电子组态为2s2p 时:1l = 0,2l = 1,S = 0,1 S = 0, 则J = 1,原子组态为:11P ; S = 1, 则J = 0,1,2,原子组态为:30P ,31P ,32P ; (3分) (3)当电子组态为2s3s 时,1l = 0,2l = 0,S = 0,1 则J = 0,1,原子组态为:10S ,31S 。 (3分) 从这些原子态向低能态跃迁时,可以产生5条光谱线。 (3分)

原子物理学习题(参考答案)

原子物理学习题 一、选择题 (1)原子半径的数量级是: C A、10-10cm ; B、10-8m ; C、10-10m ; D、10-13m 。 (2)原子核式结构模型的提出是根据α粒子散射实验中 C A、绝大多数α粒子散射角接近180?; B、α粒子只偏2?~3?; C、以小角散射为主也存在大角散射; D、以大角散射为主也存在小角散射。 (3)若氢原子被激发到主量子数为n的能级,当产生能级跃迁时可能发生的所有谱线总条数应为: B A、n-1 ; B、n(n-1)/2 ; C、n(n+1)/2 ; D、n 。 (4)氢原子光谱赖曼系和巴耳末系的系线限波长分别为: D A、R/4 和R/9 ; B、R 和R/4 ; C、4/R 和9/R ; D、1/R 和4/R 。 (5)弗兰克—赫兹实验的结果表明: B A、电子自旋的存在; B、原子能量量子化; C、原子具有磁性; D、原子角动量量子化。 (6)用能量为12.7eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A A、3 ; B、10 ; C、1 ; D、4 。 (7)根据玻尔理论可知,氦离子He+的第一轨道半径是: C A、20a; B、40a; C.、0a/2 ;D、0a/4 。 (8)碱金属原子能级的双重结构是由于下列哪一项产生: D A、相对论效应 B、原子实的极化 C、价电子的轨道贯穿 D、价电子的自旋-轨道相互作用 (9)d电子的总角动量取值可能为: A A、 2 15 , 2 35 ;B、 2 3 , 2 15 ;C、 2 35 , 2 63 ;D、 2 , 6 (10)碱金属原子的价电子处于n=3, l=1的状态,其精细结构的状态符号应为: C A .32S1/2. 32S3/2; B.3P1/2. 3P3/2; C .32P1/2. 32P3/2; D .32D3/2. 32D5/2

原子物理学习题答案(褚圣麟)很详细

1.原子的基本状况 1.1解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min 202 1 21 ()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+???14 3.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最 解:当入射粒子与靶核对心碰撞时,散射角为180ο。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有:2min 04p Ze r K πε= 1929 13 619 79(1.6010)910 1.141010 1.6010 ---??=??=???米

由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-?米。 1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-?的银箔上,α粒 解:设靶厚度为't 。非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。 因为散射到θ与θθd +之间Ωd 立体 角内的粒子数dn 与总入射粒子数n 的比为: dn Ntd n σ= (1) 而σd 为:2 sin ) ()41 (4 2 2 22 0θ πεσΩ=d Mv ze d (2) 把(2)式代入(1)式,得: 2 sin )()41(4 22220θπεΩ =d Mv ze Nt n dn (3) 式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds d N 为原子密度。'Nt 为单位面上的原子数,10')/(/-==N A m Nt Ag Ag ηη,其中η是单位面积式上的质量;Ag m 是银原子的质量;Ag A 是银原子的原子量;0N 是阿佛加德罗常数。 将各量代入(3)式,得: 2 sin )()41(324 22 22 00θπεηΩ=d Mv ze A N n dn Ag 由此,得:Z=47

相关文档