文档库 最新最全的文档下载
当前位置:文档库 › 高中物理稳恒电流的基本方法技巧及练习题及练习题

高中物理稳恒电流的基本方法技巧及练习题及练习题

高中物理稳恒电流的基本方法技巧及练习题及练习题
高中物理稳恒电流的基本方法技巧及练习题及练习题

高中物理稳恒电流的基本方法技巧及练习题及练习题

一、稳恒电流专项训练

1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】

(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于

x

V

A x

R R R R >,所以电流表应内接.电路图如图所示.

(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:

130.4515000.3010R -=Ω=Ω?,2

30.91

1516.70.6010R -=Ω=Ω?,33

1.50

15001.0010R -=

Ω=Ω?,

431.791491.71.2010R -=

Ω=Ω?,5

3

2.71

15051.8010R -=Ω=Ω?, 故电阻的测量值为1

2345

15035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于

0150010150

R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).

(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);

(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.

本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总

之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.

2.如图所示的电路中,电源电动势E=10V,内阻r=0.5Ω,电动机的电阻R0=1.0Ω,电阻

R1=1.5Ω.电动机正常工作时,电压表的示数U1=3.0V,求:

(1)电源释放的电功率;

(2)电动机消耗的电功率.将电能转化为机械能的功率;

【答案】(1)20W (2)12W 8W.

【解析】

【分析】

(1)通过电阻两端的电压求出电路中的电流I,电源的总功率为P=EI,即可求得;(2)由U内=Ir可求得电源内阻分得电压,电动机两端的电压为U=E-U1-U内,电动机消耗的功率为P电=UI;电动机将电能转化为机械能的功率为P机=P电-I2R0.

【详解】

(1)电动机正常工作时,总电流为:I=1U

R

I=3.0

1.5

A=2 A,

电源释放的电功率为:P=EI =10×2 W=20 W;

(2)电动机两端的电压为: U= E﹣Ir﹣U1

则U=(10﹣2×0.5﹣3.0)V=6 V;

电动机消耗的电功率为: P电=UI=6×2 W=12 W;

电动机消耗的热功率为: P热=I2R0 =22×1.0 W=4 W;

电动机将电能转化为机械能的功率,据能量守恒为:P机=P电﹣P热

P机=(12﹣4)W=8 W;

【点睛】

对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.

3.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.

(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.

a.己知带电粒子电荷量均为g,粒子定向移动所形成的电流强度为,求在时间t内通过某一截面的粒子数N.

b.直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l所示,在距粒子源l1、l2两处分别取一小段长度相等的粒子流I .已知l l:l2=1:4,这两小段粒子流中所含的粒子数分别为n1和n2,求:n1:n2.

(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂直于水柱的横截面可视为圆.在水柱上取两个横截面A、B,经过A、B的水流速度大小分别为v I、v2;A、B直径分别为d1、d2,且d1:d2=2:1.求:水流的速度大小之比v1:v2.

(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l远远大于细管内的横截面积S2;重力加速度为g.假设水不可压缩,而且没有粘滞性.

a.推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:b.在上述基础上,求:当液面距离细管的高度为h时,细管中的水流速度v.

【答案】(1)a. Q It N q q

=

= ;b. 21:2:1n n =;(2)2

21221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计.

b. v 【解析】 【分析】 【详解】 (1)a.电流Q I t

=

, 电量Q Nq = 粒子数Q It N q q

==

b.根据v =

可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =

极短长度内可认为速度不变,根据x v t

?=?, 得12:2:1t t =

根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n = (2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等.

也即:2

··

4

v d π

处处相等 故这两个截面处的水流的流速之比:22

1221::1:4v v d d ==

(3)a .设:水面下降速度为1v ,细管内的水流速度为v .

按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv = 由12S S >>,可得:12v v <<.

所以液体面下降的速度1v 比细管中的水流速度可以忽略不计. b.根据能量守恒和机械能守恒定律分析可知:

液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能. 又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:2

1002

mgh mv +=+

解得:v =

4.如下左图所示,R1=14Ω,R2=9Ω,当S 扳到位置1时,电压表示数为2.8V ,当开关S

扳到位置2时,电压表示数为2.7V ,求电源的电动势和内阻?(电压表为理想电表)

【答案】E=3V, r=1Ω

【解析】试题分析:根据开关S 扳到位置1和2时,分别由闭合电路欧姆定律列出含有电动势和内阻的方程,联立组成方程组求解. 解:根据闭合电路欧姆定律,可列出方程组: 当开关S 扳到位置1时,E=U 1+I 1r=U 1+

当开关S 扳到位置2时,E=U 2+I 2r=U 2+

代入解得:E=3V ,r=1Ω

答:电源的电动势和内阻分别为3V 和1Ω.

【点评】本题提供了一种测量电源的电动势和内阻的方法,可以用电阻箱代替两个定值电阻,即由电压表和电阻箱并连接在电源上,测量电源的电动势和内阻,此法简称伏阻法.

5.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻? 【答案】串联一个15Ω的电阻 【解析】 【分析】 【详解】

要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为

6Ω=20Ω0.3

U R I =

=总 灯泡的电阻为

1.5

Ω=5Ω0.3

L L U R I =

= 由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为

20Ω5Ω15ΩL R R R ==-=总-

6.如图所示,处于匀强磁场中的两根足够长、电阻不计的光滑平行金属导轨相距 L =1m ,导轨平面与水平面成θ= 30 0角,下端连接阻值为 R = 0.8Ω 的电阻,匀强磁场方 向与导轨平面垂直,磁感应强度大小为 B=1T ;质量为m = 0.1kg 、电阻 r = 0.2Ω金属棒放 在两导轨上,棒与导轨垂直并保持良好接触.g 取 10m/s2,求:

(1)金属棒沿导轨由静止开始下滑时的加速度大小; (2)金属棒 ab 所能获得的最大速度;

(3)若金属棒ab 沿斜面下滑0.2m 时恰好获得最大速度,求在此过程中回路一共生热多少焦?

【答案】(1)5m/s 2(2)0.5m/s (3)0.0875J 【解析】

试题分析:(1)金属棒开始下滑的初速度为零,根据牛顿第二定律得:mgsin ma θ= 代人数据解得:25/a m s =.

(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡有:

A mgsin F θ=,22A Blv

B L v F BIL B L R r R r

===

++,()22

m

B L v mgsin R r θ=+, 最大速度为:()

22

0.5/m mgsin R r v m s B L θ+=

=.

(3)根据全过程中能的转化和守恒规律,有:2

12

mgxsin mv Q θ=+, 所以全过程中系统产生的热为:2

10.08752

Q mgxsin mv J θ=-=. 考点:导体切割磁感线时的感应电动势

【名师点睛】电磁感应中导体切割引起的感应电动势在考试中涉及较多,关键要正确分析导体棒受力情况,运用平衡条件、牛顿第二定律和功能关系进行求解.

7.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d =4.0cm .电源电动势E =400V ,内电阻r =20Ω,电阻R 1=1980Ω.闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v 0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板.若小球所带电荷量q =1.0×10-7C ,质量m =2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g =10m/s 2.求:

(1)A 、B 两金属板间的电压的大小U ; (2)滑动变阻器消耗的电功率P ; (3)电源的效率η.

【答案】(1)U =200V (2)20W (3)0099.5 【解析】 【详解】

(1)小球从B 板上的小孔射入恰好到达A 板的过程中,在电场力和重力作用下做匀减速直线运动,设A 、B 两极板间电压为U ,根据动能定理有:

2

0102

qU mgd mv --=-,

解得:U = 200 V .

(2)设此时滑动变阻器接入电路中的电阻值为R ,根据闭合电路欧姆定律可知,电路中的电流1E

I R R r

=

++,而 U = IR ,

解得:R = 2×103 Ω

滑动变阻器消耗的电功率2

20U P W R

==.

(3)电源的效率2121()099.50()P I R R P I R R r η+===++出

. 【点睛】

本题电场与电路的综合应用,小球在电场中做匀减速运动,由动能定理求电压.根据电路的结构,由欧姆定律求变阻器接入电路的电阻.

8.导线中自由电子的定向移动形成电流,电流可以从宏观和微观两个角度来认识。 (1)一段通电直导线的横截面积为S ,它的摩尔质量为M ,密度为ρ,阿伏伽德罗常数位N A 。导线中每个带电粒子定向运动的速率为υ,粒子的电荷量为e ,假设每个电子只提供一个自由电子。

①推导该导线中电流的表达式;

②如图所示,电荷定向运动时所受洛伦兹力的矢量和,在宏观上表现为导线所受的安培力。按照这个思路,请你尝试由安培力的表达式推导出洛伦兹力的表达式。

(2)经典物理学认为金属导体中恒定电场形成稳恒电流。金属导体中的自由电子在电场力的作用下,定向运动形成电流。自由电子在定向运动的过程中,不断地与金属离子发生碰撞。碰撞后自由电子定向运动的速度变为零,将能量转移给金属离子,使得金属离子的热运动更加剧烈,这就是焦耳热产生原因。

某金属直导线电阻为R ,通过的电流为I 。请从宏观和微观相结合的角度,证明:在时间t 内导线中产生的焦耳热为Q =I 2Rt (可设电子与离子两次碰撞的时间间隔t 0,碰撞时间忽略不计,其余需要的物理量可自设)。

【答案】(1)①A N vSe

M

ρ②见解析(2)见解析 【解析】 【详解】

(1)①金属导线单位体积内电子个数

A N n M

ρ

=

在时间t 内流过导线横截面的带电粒子数

N =nvtS

通过导线横截面的总电荷量

Q =Ne

导线中电流

I =

Q t

联立以上三式可以推导出

I =

A N vSe

M

ρ ②导线受安培力大小

F 安=BIL 。

长L 的导线内总的带电粒子数

N =nSL A N n M

ρ

=

I =A N vSe M ρ

电荷定向运动时所受洛伦兹力的矢量和,表现为导线所受的安培力,即

Nf =F 安

联立以上三式可以推导出洛伦兹力的表达式

f =evB

(2)方法1:

设金属导体长为L ,横截面积为S ,两端电压为U ,导线中的电场强度

E =

U L

设金属导体中单位体积中的自由电子数为n ,则金属导体中自由电子总数

N nSL =

设自由电子的带电量为e ,连续两次碰撞时间间隔为t 0,定向移动的平均速度为υ,则一次碰撞的能量转移

00k eE t E υ=-

一个自由电子在时间t 内与金属离子碰撞次数为0

t

t

金属导体中在时间t 内全部自由电子与金属离子碰撞,产生的焦耳热

k t

Q N E t =?

? 又

I neS υ=U =IR

联立解以上各式推导得

2Q I Rt

=

方法2:

设金属导体长为L ,横截面积为S ,两端电压为U ,导线中的电场强度

E =

U L

设金属导体中单位体积中的自由电子数为n ,则金属导体中自由电子数

N nSL =

在纯电阻电路中,电流做的功等于焦耳热,即Q =W 电流做的功等于电功率乘时间

W =Pt

电功率等于电场力对长为L 的导线中所有带电粒子做功功率的总和

P NF υ=

自由电子受的电场力

F =Ee

I neS υ=U=IR

联立解以上各式推导得

2Q I Rt

=

9. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】

(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻

器选择分压式接法;由于

x

V

A x

R R R R >,所以电流表应内接.电路图如图所示.

(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:

130.4515000.3010R -=Ω=Ω?,2

30.91

1516.70.6010R -=Ω=Ω?,33

1.50

15001.0010R -=Ω=Ω?,

431.791491.71.2010R -=

Ω=Ω?,5

3

2.71

15051.8010R -=Ω=Ω?, 故电阻的测量值为12345

15035

R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.)

由于

0150010150

R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).

(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);

(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.

本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.

10.如图甲所示,一正方形线框边长为L =0.3m ,匝数为n =10匝,放置在匀强磁场中,ab 边与磁场边界MN 重叠,线框内阻为r=2Ω,与R =10Ω的外电阻形成一闭合回路。若以垂直纸面向里为磁场的正方向,匀强磁场的磁感应强度B 随时间t 按如图乙所示规律周期性变化(图中只画出两个周期)求从t=0时刻开始经过3分钟电阻产生的热量。

【答案】324J 【解析】 【详解】

在0~0.1s 内:210.4

100.37.20.05E n

V V t ?Φ==??=?;110.6E I A R r

==+ 在0.1~0.3s 内: 220.4

100.3 3.60.1E n

V V t ?Φ==??=?;220.3E I A R r

==+ 在0~0.3内发热量为22

11220.54Q I Rt I Rt J =+=

3min 总热量为180

0.543240.3

Q J J =

?=总

11.如图25甲为科技小组的同学们设计的一种静电除尘装置示意图,其主要结构有一长为L 、宽为b 、高为d 的矩形通道,其前、后板使用绝缘材料,上、下板使用金属材料.图25乙是该主要结构的截面图,上、下两板与输出电压可调的高压直流电源(内电阻可忽略不计)相连.质量为m 、电荷量大小为q 的分布均匀的带负电的尘埃无初速度地进入A 、B 两极板间的加速电场.已知A 、B 两极板间加速电压为U0,尘埃加速后全都获得相同的水平速度,此时单位体积内的尘埃数为n .尘埃被加速后进入矩形通道,当尘埃碰到下极板后其所带电荷被中和,同时尘埃被收集.通过调整高压直流电源的输出电压U 可以改变收集效率η(被收集尘埃的数量与进入矩形通道尘埃的数量的比值).尘埃所受的重力、空气阻力及尘埃之间的相互作用均可忽略不计.在该装置处于稳定工作状态时:

(1)求在较短的一段时间Δt 内,A 、B 两极板间加速电场对尘埃所做的功; (2)若所有进入通道的尘埃都被收集,求通过高压直流电源的电流; (3)请推导出收集效率η随电压直流电源输出电压U 变化的函数关系式.

【答案】(1)nbd ΔtqU

(2

)(3)若y

集效率η=y d =

2204L U d U (U < 20

2

4d U L ) ;若y ≥d 则所有的尘埃都到达下极板,收集效率η=100% (U ≥20

2

4d U L

) 【解析】

试题分析:(1)设电荷经过极板B 的速度大小为0v ,对于一个尘埃通过加速电场过程中,加速电场做功为00W qU =

在t ?时间内从加速电场出来的尘埃总体积是0V bdv t =? 其中的尘埃的总个数()0N nV n bdv t ==?总

故A 、B 两极板间的加速电场对尘埃所做的功()000W N qU n bdv t qU ==?总 对于一个尘埃通过加速电场过程,根据动能定理可得20012

qU mv =

故解得W nbd tqU =?(2)若所有进入矩形通道的尘埃都被收集,则t ?时间内碰到下极板的尘埃的总电荷量

()0Q N q nq bdv t ?==?总

通过高压直流电源的电流0Q

I nQbdv t ?=

==? (3)对某一尘埃,其在高压直流电源形成的电场中运动时,在垂直电场方向做速度为0v 的匀速直线运动,在沿电场力方向做初速度为0的匀加速直线运动 根据运动学公式有:垂直电场方向位移0x v t =,沿电场方向位移2

12

y at = 根据牛顿第二定律有F qE qU a m m md

=

== 距下板y 处的尘埃恰好到达下板的右端边缘,则x=L

解得20

4L U

y dU =

若y d <,即

204L U d dU <,则收集效率22022

04()4d U y L U

U d d U L η==< 若y d ≥,则所有的尘埃都到达下极板,效率为100%20

2

4()d U U L

≥ 考点:考查了带电粒子在电场中的运动

【名师点睛】带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的

分析方法基本相同.先分析受力情况再分析运动状态和运动过程(平衡、加速、减速,直 线或曲线),然后选用恰当的规律解题.解决这类问题的基本方法有两种,第一种利用力和运动的观点,选用牛顿第二定律和运动学公式求解;第二种利用能量转化 的观点,选用动能定理和功能关系求解

12.有人为汽车设计的一个“再生能源装置”原理简图如图1所示,当汽车减速时,线圈受到磁场的阻尼作用帮助汽车减速,同时产生电能储存备用.图1中,线圈的匝数为n ,

ab 长度为L 1,bc 长度为L 2 .图2是此装置的侧视图,切割处磁场的磁感应强度大小恒为B ,有理想边界的两个扇形磁场区夹角都是900 .某次测试时,外力使线圈以角速度ω逆

时针匀速转动,电刷M 端和N 端接电流传感器,电流传感器记录的图象如图3所示(I

为已知量),取

边刚开始进入左侧的扇形磁场时刻

.不计线圈转动轴处的摩擦

(1)求线圈在图2所示位置时,产生电动势E 的大小,并指明电刷和哪个接电源正

极;

(2)求闭合电路的总电阻

和外力做功的平均功率

【答案】(1)nBL 1L 2ω,电刷M 接电源正极;(2)12nBL L R I ω=, 121

2

P nBL L I ω= 【解析】

(1)有两个边一直在均匀辐向磁场中做切割磁感线运动,故根据切割公式,有 E=2nBL 1v

其中v =

1

2

ωL 2 解得E=nBL 1L 2ω

根据右手定则,M 端是电源正极 (2)根据欧姆定律,电流:E I R

= 解得12nBL L R I

ω

线圈转动一个周期时间内,产生电流的时间是半周期,故外力平均功率P =12

I 2R 解得1212

P nBL L I =ω

13.如图所示,宽度m L 1=的足够长的U 形金属框架水平放置,框架中连接电阻

Ω=8.0R ,框架处在竖直向上的匀强磁场中,磁感应强度T B 1=,框架导轨上放一根质量为kg m 2.0=、电阻Ω=2.0r ,的金属棒ab ,棒ab 与导轨间的动摩擦因数5.0=μ,

现用功率恒定W P 6=的牵引力F 使棒从静止开始沿导轨运动(ab 棒始终与导轨接触良好且垂直),当整个回路产生热量J Q 8.5=时刚好获得稳定速度,此过程中,通过棒的电量C q 8.2=(框架电阻不计,g 取2/10s m )求:

(1)当导体棒的速度达到s m V /11=时,导体棒上ab 两点电势的高低?导体棒ab 两端的电压?导体棒的加速度? (2)导体棒稳定的速度2V ?

(3)导体棒从静止到刚好获得稳定速度所用的时间? 【答案】(1)b 点的电势高,0.8V ,220/m s (2)s m V /22=;(3)s t 5.1= 【解析】

试题分析:(1)当11/V V m s ==时,根据法拉第电磁感应定律:BLV E = 则

r

R E

I +=

根据欧姆定律:V IR U 8.0==,则:BIL F =安 FV p =。 根据牛顿第二定律可以得到:2/20s m m

F mg F a =--=

μ,则b 点的电势高

(2)当达到最大速度2V 时, 根据平衡条件:0=--安F mg F μ 整理可以得到:s m V /22= (3)根据功能关系:Q W -=安,r

R BLX

r R q +=

+?Φ= 根据动能定理:222

1mV mgx W Pt =-+μ安 可以得到:s t 5.1=

考点:导体切割磁感线时的感应电动势;牛顿第二定律;电磁感应中的能量转 【名师点睛】由题意,牵引力F 的功率恒定,使棒从静止开始先做加速度减小的变加速运动,最后做匀速运动,达到稳定.根据动能定理列式得到位移与最大速度的关系.再由法

拉第电磁感应定律,由电量得出棒运动的位移与电量的关系,再联立可求解稳定的速度和时间。

14.“220V 、88W ”的电风扇,线圈电阻为20Ω,当接上220V 电压后,求: (1)电风扇发热功率; (2)电风扇转化为机械能的功率

(3)如接上220V 电源后,扇叶被卡住,不能转动,求电动机消耗的功率和发热的功率。 【答案】(1)3.2W ;(2)84.8W ;(3)2420W ,2420W ; 【解析】

试题分析:(1)由P UI =可得电流为:88220

0.4I A P U ===; 线圈电阻发热功率:2 3.2Q P I r W ==; (2)机械功率:84.8Q P P P W =-=机;

(3)当叶片不转动时,作纯电阻,根据欧姆定律,有:11I U

r

A =

=; 21111202420P UI I r W ===??=.

考点:电功、电功率,焦耳定律

【名师点睛】对于电功率的计算,一定要分析清楚是不是纯电阻电路,对于非纯电阻电路,总功率和发热功率的计算公式是不一样的。

15.(10分)如图所示,倾角θ=30°、宽L=1m 的足够长的U 形光滑金属导轨固定在磁感应强度大小B=IT 、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。一根质量m=0.2kg ,电阻R=l Ω的金属棒ab 垂直于导轨放置。现用一平行于导轨向上的牵引力F 作用在棒上,使棒由静止开始沿导轨向上运动,运动中ab 棒始终与导轨接触良好,导轨 电阻不计,重力加速度g 取l0m/s 2

。求:

(1)若牵引力的功率P 恒为56W ,则ab 棒运动的最终速度为多大?

(2)当ab 棒沿导轨向上运动到某一速度时撤去牵引力,从撤去牵引力到ab 棒的速度为零,通过ab 棒的电量q=0.5C ,则撤去牵引力后ab 棒向上滑动的距离多大? 【答案】(1)7 m/s ;(2)0.5m 【解析】

试题分析:(1)当以恒定功率牵引ab 棒达到最大速度时:P=Fv ,E=BLv ,I=E/R ,F 安=BIL

()0sin =+-安F mg F θ

解得:v=7 m/s

(2)设撤去F 后ab 棒沿导轨向上运动到速度为零时滑动的距离为x ,通过ab 的电荷量,

t BLx t E ?=??Φ=,R

BLx

t I q =??= 联立解得:m BL

qR

x 5.0== 考点:本题考查电磁感应

高考物理稳恒电流技巧(很有用)及练习题

高考物理稳恒电流技巧(很有用)及练习题 一、稳恒电流专项训练 1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l = 【解析】 【分析】 细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】 解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得: 1 2 2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E I R =③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2 22 23mgR v B l = 【点睛】 能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻. 2.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,

高中物理竞赛训练题:奥赛训练《稳恒电流C》(含答案)

稳恒电流 C 13、电解硝酸银溶液时,在阴极上1分钟内析出67.08毫克银,银的原子量为107.9 ,求电路中的电流。已知法拉第恒量F =9.68×104C/mol 。 14、一铜导线横截面积为4毫升2,20秒内有80库仑的电量通过该导线的某一截面。已知铜内自由电子密度为8.5×1022厘米?3,每个电子的电量为1.6×10?19库仑,求电子的定向移动的平均速率。 15、通常气体是不导电的,为了使之能够导电,首先必须使之;产生持续的自激放电的条件是和;通常气体自激放电现象可分为四大类:、、和,如雷电现象属,霓虹灯光属,高压水银灯发光属。 16、一个电动势为ε、内阻为r的电池给不同的灯泡供电。试证:灯泡电阻R =r时亮度最大,且最大功率P m=ε2/4r 。 17、用万用表的欧姆档测量晶体二极管的正向电阻时,会出现用不同档测出的阻值不相同的情况,试解释这种现象。 18、某金属材料,其内自由电子相继两次碰撞的时间间隔平均值为τ,其单位体积内自由电子个数为n ,设电子电量为e,质量为m ,试推出此导体的电阻率表达式。 19、用戴维南定理判断:当惠斯登电桥中电流计与电源互换位置后的电流计读数关系(自己作图)。视电流计内阻趋于无穷小,电源内阻不计。 20、图示为电位差计测电池内阻的电路图。实际的电位差计在标准电阻RAB上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,RM为被测电池的负载电阻,其值为100Ω。实验开始时,K2打开,K1拨在1处,调节R N使流过R AB的电流准确地达到某标定值,然后将K1拨至2处,滑动C,当检流计指针 指零时,读得UAC= 1.5025V;再闭合K 2 ,滑动C,检流计指针再指零时读得U AC′= 1.4455V,试据以上数据计算电池 内阻r 。

稳恒电流的磁场(习题答案)

稳恒电流的磁场 一、判断题 3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I 0放在空间任 意一点都不受力,则该空间不存在磁场。 × 4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示。 √ 5、安培环路定理反映了磁场的有旋性。 × 6、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B 。 × 7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。 × 8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。 √ 9、安培环路定理I l d B C 0μ=?? 中的磁感应强度只是由闭合环路内的电流激发的。 × 10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。 √ 二、选择题 1、把一电流元依次放置在无限长的栽流直导线附近的两点A 和B ,如果A 点和B 点到导线的距离相等,电流元所受到的磁力大小 (A )一定相等 (B )一定不相等 (C )不一定相等 (D )A 、B 、C 都不正确 C 2、半径为R 的圆电流在其环绕的圆内产生的磁场分布是: (A )均匀的 (B )中心处比边缘处强 (C )边缘处比中心处强 (D )距中心1/2处最强。 C 3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的 (A )磁力相等,最大磁力矩相等 (B )磁力不相等,最大磁力矩相等 (C )磁力相等,最大磁力矩不相等 (D )磁力不相等,最大磁力矩不相等 A 4、一长方形的通电闭合导线回路,电流强度为I ,其四条边分别为ab 、bc 、cd 、da 如图所示,设4321B B B B 及、、分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为k c j b i a B ? ???++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大 小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

高考必备物理稳恒电流技巧全解及练习题

高考必备物理稳恒电流技巧全解及练习题 一、稳恒电流专项训练 1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验. (1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下: A.磁敏电阻,无磁场时阻值R0=150 Ω B.滑动变阻器R,总电阻约为20 Ω C.电流表A,量程2.5 mA,内阻约30 Ω D.电压表V,量程3 V,内阻约3 kΩ E.直流电源E,电动势3 V,内阻不计 F.开关S,导线若干 (2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表: 123456 U(V)0.000.450.91 1.50 1.79 2.71 I(mA)0.000.300.60 1.00 1.20 1.80 根据上表可求出磁敏电阻的测量值R B=______Ω. 结合题图可知待测磁场的磁感应强度B=______T. (3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同? ________________________________________________________________________. (4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论? ___________________________________________________________________________.【答案】(1)见解析图

高中物理稳恒电流技巧和方法完整版及练习题含解析

高中物理稳恒电流技巧和方法完整版及练习题含解析 一、稳恒电流专项训练 1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。 (1)实验时有两个滑动变阻器可供选择: a、阻值0到200Ω,额定电流 b、阻值0到20Ω,额定电流 本实验应选的滑动变阻器是(填“a”或“b”) (2)正确接线后,测得数据如下表 12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.40 0.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(m A) a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”) b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值) 【答案】(1) a (2) a) P b)

【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。B 电阻的额定电流为 ,加在它上面的最大电压为10V ,所以仪 器不能正常使用,而选择a 。(2)电压表并联在M 与P 之间。因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P 点。 视频 2.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P . 【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】 (1)由部分电路的欧姆定律,可得电阻为:5U R I = =Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】 部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握. 3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m . (1)闭合开关S 稳定后,求电容器所带的电荷量为多少?

浙江工业大学大学物理稳恒磁场习题答案.

2014/08/20张总灯具灯珠初步设想 按照要求: 亮度比例关系:蓝光:白光:红光=1:1:8 光源总功率不超过20W。 一、蓝光光源: 1、光源形式:SMD 2835、芯片安萤11*28mil封装、 2、电路连接:2并20串、 3、光电参数: 单颗光源:IF:60mA、VF:3.0-3.2V、WLD:440-450nm、PO:0.2W、IV:3.5-4lm、 电路总输入:IF:120mA、VF:60-64V、WLD:440-450nm、PO:7.5W、IV:140-160lm、 4、成本:68元/K, πμT; 当cm r 5.45.3≤≤时, 2 1、光源形式:SMD 2835、库存光源第1KK或第2KK光源中正白色温、 2、电路连接:1并20串、 3、光电参数: 单颗光源:IF:20mA、VF:3.0-3.2V、CCT:6000K、PO:0.06W、IV:7-8lm、电路总输入:IF:20mA、VF:60-65V、PO:1.2W、IV:140-160lm、 成本:72元/K,

三、红光光源: 1、光源形式:SMD 2835、芯片连胜红光30*30mil封装、 2、电路连接:1并30串、 3、光电参数: 单颗光源:IF:150mA、VF:2.0-2.2V、WLD:640-660nm、PO:0.3W、IV:40- 45lm、 电路总输入:IF:150mA、VF:60-66V、WLD:640-660nm、PO:9.5W、IV:1200-1350lm、 4、成本:约420元/K, --=-?-=∑πσ r r r r r d d r d I B /4101.8(31.01079(24109(105104(24(234 222 423721222220-?=?--????=--=----πππμT; 当cm r 5.4≥时, 0∑=i I , B=0 图略 7-12 解:(1

稳恒电流测试题

本章测评 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.铅蓄电池的电动势为2 V,这表示() A.电路中每通过1 C电荷量,电源把2 J的化学能转变为电能 B.蓄电池两极间的电压为2 V C.蓄电池在1 s内将2 J的化学能转变成电能 D.蓄电池将化学能转变为电能的本领比一节干电池(电动势为1.5 V)的大 解析:电动势描述的是非静电力做功把其他形式的能转化为电能本领大小的物理量,它在数据上等于从电源负极移动单位正电荷到电源正极非静电力所做的功的大小.电动势越大,说明把其他形式的能转化为电能的本领就越大. 答案: 2.下列说法正确的是() A.欧姆表的每一挡的测量范围是从0到∞ B.用不同挡次的欧姆表测量同一电阻的阻值,误差大小是一样的 C.用欧姆表测电阻,指针越接近刻度盘中央,误差越大 D.用欧姆表测电阻,选不同量程时,指针越靠近右边,误差越小 解析:用欧姆表测电阻,指针越接近刻度盘中央时,误差越小,所以B、C、D错. 答案: 3.如图4-4所示的电路中,电源的电动势E和内电阻r恒定不变,电灯L恰能正常发光,如果变阻器的滑片向b端滑动,则() 图4-4 A.电灯L更亮,安培表的示数减小 B.电灯L更亮,安培表的示数增大 C.电灯L变暗,安培表的示数减小 D.电灯L变暗,安培表的示数增大 解析:如果变阻器的滑片向b端滑动,则外电阻增大,电路总电阻增大,所以总电流减小,内电压减小,从而路端电压增大,灯泡更亮. 答案:A 4.手电筒里的两节干电池,已经用过较长时间,灯泡只发出很微弱的光,把它们取出来用电压表测电压,电压表示数很接近3 V,再把它们作为一台式电子钟的电源,电子钟能正常工作,下列说法中正确的是() A.这两节干电池的电动势减小了很多 B.这两节干电池的内阻增加了很多 C.这个台式电子钟的额定电压一定比手电筒小灯泡额定电压小 D.这个台式电子钟正常工作时的电流一定比小灯泡正常工作时的电流小 解答:电池用旧了,其电动势略有减小,但内阻增加很多.旧电池作为电子钟电源,能正常工作,说明电子钟的额定电流较小.

大学物理第8章 稳恒磁场 课后习题及答案

第8章 稳恒磁场 习题及答案 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R 。若通以电流I ,求O 点的磁感应强度。 解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。 AB 在O 点产生的磁感应强度为 01=B C B 在O 点产生的磁感应强度大小为 θπμR I B 402=R I R I 123400μππμ=?=,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为 )cos (cos 4210 03θθπμ-=r I B )180cos 150(cos 60cos 40 0??-= R I πμ )2 31(20-=R I πμ,方向垂直纸面向里 故 )6 231(203210π πμ+- =++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。已知圆环的粗细均匀,求环中心O 的磁感应强度。 解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点 产生的磁场为零。且 θ πθ -==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为 )(θππμ-= 241 01R I B ,方向垂直纸面向外 2I 产生的磁感应强度大小为 θπμR I B 4202=,方向垂直纸面向里 所以, 1) 2(21 21=-=θ θπI I B B 环中心O 的磁感应强度为 0210=+=B B B 8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。 解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。 以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。在载流平板上取dx a I dI = ,dI 在P 点产生的磁感应

高考物理稳恒电流练习题及答案

高考物理稳恒电流练习题及答案 一、稳恒电流专项训练 1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验. (1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下: A.磁敏电阻,无磁场时阻值R0=150 Ω B.滑动变阻器R,总电阻约为20 Ω C.电流表A,量程2.5 mA,内阻约30 Ω D.电压表V,量程3 V,内阻约3 kΩ E.直流电源E,电动势3 V,内阻不计 F.开关S,导线若干 (2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表: 123456 U(V)0.000.450.91 1.50 1.79 2.71 I(mA)0.000.300.60 1.00 1.20 1.80 根据上表可求出磁敏电阻的测量值R B=______Ω. 结合题图可知待测磁场的磁感应强度B=______T. (3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同? ________________________________________________________________________. (4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论? ___________________________________________________________________________.【答案】(1)见解析图

【物理】物理稳恒电流练习题及答案

【物理】物理稳恒电流练习题及答案 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

大连理工大学大学物理作业10(稳恒磁场四)与答案详解

作业 10 稳恒磁场四 1. 载流长直螺线管内充满相对磁导率为 r 的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度 H 的关系是 [ ] 。 A. B 0 H B. B r H C. B 0H D. B 0 H 答案:【 D 】 解:对于非铁磁质,电磁感应强度与磁场强度成正比关系 B r H 抗磁质: r 1,所以, B H 2. 在稳恒磁场中,关于磁场强度 H 的下列几种说法中正确的是 [] 。 A. H 仅与传导电流有关。 B. 若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零。 C.若闭合曲线上各点 H 均为零,则该曲线所包围传导电流的代数和为零。 D.以闭合曲线 L 为边界的任意曲面的 H 通量相等。 答案:【 C 】 解:安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分只与传导电流 L 有关,并不是说:磁场强度 H 本身只与传导电流有关。 A 错。 闭合曲线内没有包围传导电流,只能得到:磁场强度 H 的闭合回路的线积分为零。并 不能说:磁场强度 H 本身在曲线上各点必为零。 B 错。 高斯定理 B dS 0 ,是说:穿过闭合曲面,场感应强度 B 的通量为零,或者说, . S 以闭合曲线 L 为边界的任意曲面的 B 通量相等。对于磁场强度 H ,没有这样的高斯定理。 不能说,穿过闭合曲面,场感应强度 H 的通量为零。 D 错。 安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分等于闭合回路 L 包围的电流的代数和。 C 正确。 抗磁质和铁磁质的 B H 曲线,则 Oa 表示 3. 图 11-1 种三条曲线分别为顺磁质、 ; Ob 表示 ; Oc 表示 。 答案:铁磁质;顺磁质; 抗磁质。 4. 某铁磁质的磁滞回线如图 11-2 所示,则 图中 Ob (或 Ob ' )表示 ; Oc (或 Oc ' )表示 。 答案:剩磁;矫顽力。

稳恒电流习题

一、电流欧姆定律练习题 一、选择题 5.对于有恒定电流通过的导体,下列说法正确的是[ ] A.导体内部的电场强度为零 B.导体是个等势体 C.导体两端有恒定的电压存在 D.通过导体某个截面的电量在任何相等的时间内都相等 6.有四个金属导体,它们的伏安特性曲线如图1所示,电阻最大的导体是[ D] A.a B.b C.c D.d 二、填空题 8.导体中的电流是5μA,那么在3.2S内有______ C的电荷定向移动通过导体的横截面,相当于______个电子通过该截面。 9.电路中有一段导体,给它加20mV的电压时,通过它的电流为5mA,可知这段导体的电阻为______Ω,如给它加30mV的电压时,它的电阻为______Ω;如不给它加电压时,它的电阻为______Ω。 10.如图2所示,甲、乙分别是两个电阻的I-U图线,甲电阻阻值为______Ω,乙电阻阻值为______Ω,电压为10V时,甲中电流为______A,乙中电流为______A。 11.图3所示为两个电阻的U-I图线,两电阻阻值之比R1∶R2=______,给它们两端加相同的电压,则通过的电流之比I1∶I2______。 12.某电路两端电压不变,当电阻增至3Ω时,电流降为原来的 13.设金属导体的横截面积为S,单位体积内的自由电子数为n,自由电子定向移动速度为v,那么在时间t内通过某一横截面积的自由电子数为______;若电子的电量为e,那么在时间t内,通过某一横截面积的电量为______;若导体中的电流I,则电子定向移动的速率为______。 14.某电解槽内,在通电的2s内共有3C的正电荷和3C的负电荷通过槽内某一横截面,则通过电解槽的电流为______A。 三、计算题 15.在氢原子模型中,电子绕核运动可等效为一个环形电流。设氢原子中电子在半径为r的轨道上运动,其质量、电量分别用m和e来表示,则等效电流I等于多少? 16.在彩色电视机的显像管中,从电子枪射出的电子在加速电压U作用下被加速,且形成电流为I的平均电流,若打在荧光屏上的高速电子全部被荧光屏吸收。设电子质量为m,电量为e,进入加速电场之前的初速不计,则t秒内打在荧光屏上的电子数为多少? 电流欧姆定律练习题答案 一、选择题 1、D 2、C 3、D 4、AD 5、CD 6、D 7、B 二、填空题 8、1.6×10-5,1×10149、4,4,4 10、2.5,5,4,211、4∶1,1∶4 12、2.413、nsvt,ensvt,I/ens 14、3 三、计算题

高中物理竞赛——稳恒电流习题

高中物理竞赛——稳恒电流习题 一、纯电阻电路的简化和等效 1、等势缩点法 将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析—— 【物理情形1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图 对于图8-4的乙图,求R AB 就容易了。 【答案】R AB = 8 3R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系? ☆学员判断…→结论:相等。 因此,将C 、D 缩为一点C 后,电路等效为图8-5乙 对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足2 1R R =4 3R R 的关系, 我们把桥式电路称为“平衡电桥”。

【答案】R AB = 4 15Ω 。 〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。 请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺读出的)。 ☆学员思考、计算… 【答案】R x =AC CB L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。 不难求出,R 1B = 14 5R ,而R AB = 2R 1B 。 【答案】R AB = 75R 。 2、△→Y 型变换 【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。 【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。 根据前面介绍的定式,有

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ = ,单位是:安培每平方米(A/m 2)。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + =。 4、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ?? =____μ0I__; 对环路b :d B l ?? =___0____; 对环路c :d B l ?? =__2μ0I__。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2πr 2B B. πr 2B C. 0 D.无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. 0.90 B. 1.00 C. 1.11 D.1.22 (D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

(物理)物理稳恒电流练习题20含解析

(物理)物理稳恒电流练习题20含解析 一、稳恒电流专项训练 1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l = 【解析】 【分析】 细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】 解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得: 1 2 2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E I R =③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2 22 23mgR v B l = 【点睛】 能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻. 2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,

物理竞赛课件-奥赛训练稳恒电流A

稳恒电流 A 编号:971017 1、令每段导体的电阻为R ,求R AB。 2、对不平衡的桥式电路,求等效电阻R AB。 3、给无穷网络的一端加上U AB = 10V的电压,求R2消耗的功率。已知奇数号电阻均为5Ω,偶数号电阻均为10Ω。 4、试求平面无穷网络的等效电阻R AB,已知每一小段导体的电阻均为R 。 5、右图电路中,R1 = 40Ω,R2 = R3 = 60Ω,ε1 = 5V ,ε2 = 2V ,电源内阻忽略不计,试求电源ε2的输出功率。 6、右图电路中,ε1 = 20V ,ε2 = 24V ,ε3 = 10V ,R1 = 10Ω,R2 = 3Ω,R3 = 2Ω,R4 = 28Ω,R5 = 17Ω,C1 = C2 = 20μF ,C3 = 10μF ,试求A、B两点的电势、以及三个电容器的的带电量。

稳恒电流A答案与提示 1、等势缩点法。设图中最高节点为C 、最低节点为D ,则U C = U D… 答案:7R/15 。 2、法一:“Δ→Y”变换; 法二:基尔霍夫定律,基尔霍夫方 程两个…解得I1 = 9I/15 ,I2 = 6I/15 , 进而得U AB = 21IR/15 。 答案:1.4R 。 3、先解R AB = R右= 10Ω 答案:2.5W 。 4、电流注入、抽出…叠加法 求U AB表达式。 答案:左图R/2 ;右图R 。 5、设R3的电流为I(方向向 左),用戴维南定理解得I = 0 。 答案:零。 6、设电路正中间节点为P点,接地点为O点,求A、B电势后令U P大于U A而小于U B,则三电容器靠近P点的极板的电性分别是+、?、+ ,据电荷守恒,应有Q1 + Q2 = Q3… 答案:U A = 7V ,U B = 26V ;Q1 = 124μC(A板负电),Q2 = 256μC(B板正电),Q3 = 132μC (O板负电)。

高中物理稳恒电流常见题型及答题技巧及练习题

高中物理稳恒电流常见题型及答题技巧及练习题 一、稳恒电流专项训练 1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P . 【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】 (1)由部分电路的欧姆定律,可得电阻为:5U R I = =Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】 部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握. 2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求: (1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】 (1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为: =2A

(2)根据热功率公式 ,可得固定电阻的发热功率:=12W (3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V 电动机消耗的功率: =18W 一部分是线圈内阻的发热功率:=4W 另一部分转换为机械功率输出,则 =14W 【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程 ,求出热功率;(3)电动机消耗的电功率有两个去向:一部 分是线圈内阻的发热功率;另一部分转化为机械功率输出。 3.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量 3310kg m =?.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流 I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电; (2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2); (3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考. 已知太阳辐射的总功率26 0410W P =?,太阳到地球的距离 ,太阳光传播 到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%. 【答案】(1)3 1.510W P =?电 (2)/0.045f mg = (3)2101m S = 【解析】 试题分析:⑴31.510W P IU 电==? ⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg = ⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积 204πS r = 若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则 00 P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-' 由于15%P P =电,所以电池板的最小面积 ()00 130%P S P S =-

高中物理竞赛讲义:恒定电流.

专题十二 恒定电流 【扩展知识】 1.电流 (1)电流的分类 传导电流:电子(离子)在导体中形成的电流。 运流电流:电子(离子)于宏观带电体在空间的机械运动形成的电流。 (2)欧姆定律的微观解释 (3)液体中的电流 (4)气体中的电流 2.非线性元件 (1)晶体二极管的单向导电特性 (2)晶体三极管的放大作用 3.一段含源电路的欧姆定律 在一段含源电路中,顺着电流的流向来看电源是顺接的(参与放电),则经过电源后,电路该点电势升高ε;电源若反接的(被充电的),则经过电源后,该点电势将降低ε。不论电源怎样连接,在电源内阻r 和其他电阻R 上都存在电势降低,降低量为I (R+r )如图则有: b a U Ir Ir IR U =-+---2211εε 4.欧姆表 能直接测量电阻阻值的仪表叫欧姆表,其内部结构如图所示,待测电阻的值由:)(0R r R I R g x ++-=ε 决定,可由表盘上直接读出。在正式测电阻前先要使红、黑表笔短接,即:

中R r R R I g g ε ε =++=0。 如果被测电阻阻值恰好等于R 中,易知回路中电流减半,指针指表盘中央。而表盘最左边刻度对应于∞=2x R ,最右边刻度对应于03=x R ,对任一电阻有R x ,有:x g R R n I I +== 中ε, 则中R n R x )1(-=。 由上式可看出,欧姆表的刻度是不均匀的。 【典型例题】 1、两电解池串联着,一电解池在镀银,一电解池在电解水,在某一段时间内,析出的银是0.5394g ,析出的氧气应该是多少克? 2、用多用电表欧姆档测量晶体二极管的正向电阻时,用100?R 档和用k R 1?档,测量结果不同,这是为什么?用哪档测得的电阻值大?

高中物理稳恒电流技巧小结及练习题及解析

高中物理稳恒电流技巧小结及练习题及解析 一、稳恒电流专项训练 1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】 (1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于 x V A x R R R R >,所以电流表应内接.电路图如图所示. (2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为: 130.4515000.3010R -=Ω=Ω?,2 30.91 1516.70.6010R -=Ω=Ω?,33 1.50 15001.0010R -= Ω=Ω?, 431.791491.71.2010R -= Ω=Ω?,5 3 2.71 15051.8010R -=Ω=Ω?, 故电阻的测量值为1 2345 15035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于 0150010150 R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略). (3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化); (4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关. 本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总

相关文档
相关文档 最新文档