文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理学生实验:二阶开环系统的频率特性曲线

自动控制原理学生实验:二阶开环系统的频率特性曲线

自动控制原理学生实验:二阶开环系统的频率特性曲线
自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线

一.实验要求

1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。

二.实验内容及步骤

本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。

自然频率:T iT

K

=

n ω 阻尼比:KT Ti

2

1=

ξ (3-2-1) 谐振频率:

2

21ξωω-=n r 谐振峰值:2

121lg

20)(ξ

ξω-=r L (3-2-2)

计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+?

=n c (3-2-3)

相位裕度: 4

24122arctan

)(180ξξξω?γ++-=+=c

(3-2-4)

γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使

二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望:

30°≤γ≤70° (3-2-5)

本实验所构成的二阶系统符合式(3-2-5)要求。

被测系统模拟电路图的构成如图1所示。

图1 实验电路

本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤:

(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。

(2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。

(3)运行、观察、记录:

① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面

的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。

② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

环’字上双击,将在示波器界面上弹出‘开环/闭环’选择框,点击确定后,示波器界面左上角的红字,将变为‘开环’然后再在示波器界面下部‘频率特性’选择框点击(任一项),在示波器上将转为‘开环’频率特性显示界面。可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的开环对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图)。 ③幅值穿越频率ωc ,相位裕度γ的测试:

在开环对数幅频曲线中,用鼠标在曲线L(ω)=0 处点击一下,待检测完成后,就可以根据‘十字标记’测得系统的幅值穿越频率ωc ,见图3-2-6 (a );同时还可在开环对数相频曲线上根据‘十字标记’测得该系统的相位裕度γ。实验结果与式(3-2-3)和(3-2-4)的理论计算值进行比对。

④ 改变惯性环节开环增益:改变运算模拟单元A3的输入电阻R=10K 、4K 、2K 。 Ti=1(C1=2u ),T=0.1(C2=1u )( R 減小(ξ減小))。

改变惯性环节时间常数:改变运算模拟单元A3的反馈电容C 2=1u 、2u 、3u 。 Ti=1(C1=2u ),K=25(R=4K ),(C 2增加 (ξ減小))。

改变积分环节时间常数:改变运算模拟单元A3的反馈电容C 1=1u 、2u 。 T=0.1(C2=1u ),K=25(R=4K ) ,(C1減小(ξ減小))。

重新观测结果,界面上方将显示该系统用户点取的频率点的ω、L 、φ、Im 、Re 、谐振频率ωr ,谐振峰值L(ωr )等相关数据,填入实验报告。

三.实验数据及数据处理

实验条件: 12R=10K ,C =2F,C =1F,μμΩ侧得开环频率特性曲线如下图

图2: 幅频特性曲线

图3: 幅相特性曲线

图4: 相频特性曲线

取点前数据表 取点后数据表

实验条件: 12R=4K ,C =2F,C =1F,μμΩ测得波形图如下所示:

图5:幅频特性曲线 图6:相频特性曲线 图7:幅相特性曲线

取点前数据表 取点后数据表

实验条件: 12R=2K ,C =2F,C =1F,μμΩ侧得开环频率特性曲线如下图

图8:幅频特性曲线 图9:相频特性曲线 图10: 幅相特性曲线

取点前数据表 取点后数据表

实验条件: 12R=4K ,C =2F,C =2F,μμΩ测得波形图如下所示:

图11: 幅频特性 图12:相频特性 图13: 幅相特性

取点前数据表 取点后数据表

实验条件: 12R=4K ,C =2F,C =3F,μμΩ测得波形图如下所示:

图14: 幅频特性 图15: 相频特性 图16: 幅相特性

取点前数据表 取点后数据表

实验条件: 12R=4K ,C =1F,C =1F,μμΩ测得波形图如下所示:

图17幅频特性 图18相频特性 图19: 幅相特性

取点前数据表 取点后数据表

用MATLAB分析闭环系统的频率特性(1)

用MATLAB 分析闭环系统的频率特性 1、等M 圆图与等N 圆图原理 1.1设有单位系统如图1示。其闭环频率特性G B (j )与开环频率特性G K (j )的关系为 )(j G 1)(j G )(j X )(j X )(j G K K i 0B ωωωωω+== (1) 图 1 可将其开环频率特性G K (j )写成 G K (j )=U ()+jV() (2) 则闭环频率特性为 )(j B )e M(jV U 1jV U )G (j 1)G (j )(j G ωαωωωω=+++=+= (3) 式中 M()——闭环的幅频特性 ()——闭环的相频特性 闭环的幅频特性为 2 12222V )U (1V U |jV U 1||jV U |M ??????++++++= (4) 所以 222 22 V U)(1V U M +++= (5) 则有 2 22 2222 1)-(M M V )1-M M (U =++ (6) 显然,式(6)是一个元的方程,他表明了开环的实频U 、虚频V 和闭环的幅频M 之间 G K (j ) X i (j ) X 0(j )

的的关系,该圆方程的圆心坐标为(1M M 22--,j0),半径为|1-M M |2。当M 取不同的值时,便可以得到一簇圆,如图1,该图称为等M 圆图(邮称为等幅值轨迹图)。 有闭环的相频特性为 )V U U V (tg )U 1V (tg )U V (tg )jV U 1jV U (221-1-1-++=+=+++∠=-α (7) 令22V U U V tg N ++==α,上式可改为 22224N 1N )2N 1(V )21(U +=+++ (8) 可见式(8)也是一个圆方程,他表明了U 、V 与N 之间的关系。该圆方程的圆心坐标为 |。-,半径为|-1N )2N 1j ,21(2当N 取不同的值时,可画出一簇圆,如图2所示。该 方法复杂,也不准确,我们用一个具体的力来说明一下用MATLAB 解决这类问题的方

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

《自动控制原理》

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的 MATLAB仿真 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G200 , 100 2 ) ( 2 1 1 2 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ①比例环节1 ) ( 1 = s G和2 ) ( 1 = s G; ②惯性环节 1 1 ) ( 1+ = s s G和 1 5.0 1 ) ( 2+ = s s G ③积分环节 s s G1 ) ( 1 = ④微分环节s s G= ) ( 1 ⑤比例+微分环节(PD)2 ) ( 1 + =s s G和1 ) ( 2 + =s s G ⑥比例+积分环节(PI) s s G1 1 ) ( 1 + =和s s G21 1 ) ( 2 + = 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

系统频率特性的测试实验报告

东南大学自动化学院课程名称:自动控制原理实验 实验名称:系统频率特性的测试 姓名:学号: 专业:实验室: 实验时间:2013年11月22日同组人员: 评定成绩:审阅教师:

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

开环系统频率特性曲线的绘制方法

开环系统频率特性曲线的绘制方法 (一) 已知系统开环传递函数G k (s ),绘制Nyquist 曲线(开环幅相曲线) 一、ω:0+→+∞ 1、由已知的G k (s )求()()k k s j G j G s ωω==,A (ω),φ(ω) ,P (ω),Q (ω); 11211222 1 1 2 2 1 2 1 1 2 2 1 2 1121 12221 1221 2 1 1 2 2 1 2 22222 2 2 2(1)[(1)2](1)[(1)2]()()(1)[(1)2](1)[(1)2] m m m m j k j k k k j k j k k k k v n n n n i l i l l l i l i l l l j T j j T j k G j j j T j j T j ωωωωωξωξωωωωωωωωωωωξωξωωω ω+-+---= +-+---∏∏∏∏∏∏∏∏ (1) 式中:分子多项式中最小相位环节的阶次和为111212m m m =+, 分子多项式中非最小相位环节的阶次和为212222m m m =+, 分母多项式中最小相位环节的阶次和为111212n n n v =++, 分母多项式中非最小相位环节的阶次和为212222n n n =+, 分子多项式阶次之和为12m m m =+,分母多项式阶次之和为12n n n =+。 注:式中仅包含教材p192所列5种非最小相位环节,不包含形如1Ts -、 11Ts -、2 2 121 n n s s ξωω+-、22 21n n s s ξωω+-等非最小相位环节。 2、求N 氏曲线的起点 当ω→0+时,(1)式可近似为: 0lim ()()k v k G j j ωωω+ →→ (2) 于是,N 氏曲线的起点取决于开环放大系数k 和系统的型v 。 ① 当0v =时,N 氏曲线起始于实轴上的一点(k ,0)或(-k ,0); ② 当0v >时,N 氏曲线起始于无穷远点: 0k >时,沿着角度()2 v π?ω=-?起始于无穷远点; 0k <时,沿着角度()2 v π?ωπ=--?起始于无穷远点。 ③ 当0v <时,N 氏曲线起始于原点: 0k >时,沿着角度()2 v π?ω=?起始于原点; 0k <时,沿着角度()2 v π?ωπ=-+?起始于原点。 3、求N 氏曲线的终点 当ω→+∞时,(1)式中各环节的相角分别为:

自动控制原理实验报告

自动控制原理 实验报告 姓名学号 时间地点实验楼B 院系专业 实验一系统的数学模 实验二控制系统的时域分析 实验三控制系统的频域分析

实验一系统的数学模 一、实验目的和任务 1、学会使用MATLAB的命令; 2、掌握MATLAB有关传递函数求取及其零、极点计算的函数。 3、掌握用MATLAB 求取系统的数学模型 二、实验仪器、设备及材料 1、计算机 2、MATLAB软件 三、实验原理 1、MATLAB软件的使用 2、使用MATLAB软件在计算机上求取系统的传递函数 四、实验内容 1、特征多项式的建立与特征根的求取 在命令窗口依次运行下面命令,并记录各命令运行后结果 >>p=[1,3,0,4]; p = 1 3 0 4 >>r=roots(p) r = -3.3553 + 0.0000i 0.1777 + 1.0773i 0.1777 - 1.0773i >>p=poly(r) p = 1.0000 3.0000 -0.0000 4.0000 2、求单位反馈系统的传递函数: 在命令窗口依次运行下面命令,并记录各命令运行后结果 >>numg=[1];deng=[500,0,0]; >>numc=[1,1];denc=[1,2]; >>[num1,den1]=series(numg,deng,numc,denc); >>[num,den]=cloop(num1,den1,-1) num = 0 0 1 1

den = 500 1000 1 1 >>printsys(num,den) num/den = s + 1 --------------------------- 500 s^3 + 1000 s^2 + s + 1 3、传递函数零、极点的求取 在命令窗口依次运行下面命令,并记录各命令运行后结果>>num1=[6,0,1];den1=[1,3,3,1]; >>z=roots(num1) ; >>p=roots(den1) ; >>n1=[1,1];n2=[1,2];d1=[1,2*i];d2=[1,-2*i];d3=[1,3]; >>num2=conv(n1,n2) num2 = 1 3 2 >>den2=conv(d1,conv(d2,d3)) den2 = 1 3 4 12 >>printsys(num2,den2) s^2 + 3 s + 2 ---------------------- s^3 + 3 s^2 + 4 s + 12 >>num=conv(num1,den2);den=conv(den1,num2); >>printsys(num,den) 6 s^5 + 18 s^4 + 25 s^3 + 75 s^2 + 4 s + 12 ------------------------------------------- s^5 + 6 s^4 + 14 s^3 + 16 s^2 + 9 s + 2 >>pzmap(num,den),title(‘极点-零点图’)

自动控制原理控制系统的频率特性实验报告

肇庆学院 工程学院 自动控制原理实验报告 12 年级 电气一班 组员:王园园、李俊杰 实验日期 2014/6/9 姓名:李奕顺 学号:201224122130老师评定 ________________ 实验四:控制系统的频率特性 一、实验原理 1.被测系统的方块图:见图4-1 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化, 并施加于 被测系统的输人端[r(t)],然后分别测量相应的反馈信号 [b(t)]和误差信号[e(t)]的对数幅 值和 相位。频率特性测试仪测试数据经相关运算器后在显示器中显示。 根据式(4 — 3)和式(4 — 4)分别计算出各个频率下的开环对数幅值和相位, 在半对数座标 纸上作出实验曲线:开环对数幅频曲线和相频曲线。 系统(或环节)的频率特性 幅值和相角: G (j 3)是一个复变量,可以表示成以角频率 3为参数的 G(j 3)= G(j 3)|/G(j 3) (4 — 1) 本实验应用频率特性测试仪测量系统或环节的频率特牲。 图4-1所示系统的开环频率特性为: G 1(j 3)G 2(j 3) B(j 3) 」 B(j 3) E(j 3) E(j 3) E(j 3) (4—2) 采用对数幅频特性和相频特性表示,则式( 20lgG1(j 3) G2(j 3)H(j 3)= 2 叫鵲 = 20lgB(j 3) -20lg E(j 3) (4— 3) G 1(j 3)G 2(j 3)H(j 3) 二 B(j 3)- . E(j 3) (4—4) 图4-1 被测系统方块图 4— 2 )表示 为:

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转 角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特牲(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频 (相 对于转角频率)时不等于-90 ° (q —p)[式中p和q分别表示传递函数分子和分母的阶次], 那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 2.被测系统的模拟电路图:见图4-2 图4-2被测系统 二、实验内容 (1)将U21 DAC单元的OUT端接到对象的输入端。 ⑵将测量单元的CH1 (必须拨为乘I档)接至对象的输出端。 ⑶将Ul SG单元的ST和S端断开,用排线将ST端接至U26控制信号单元中的PB0。(由于在每次测量前,应对对象进行一次回零操作,ST即为对象锁零控制端,在这里,我们用8255的PB0 口对ST进行程序控制) ⑷在PC机上分别输入角频率为1, 10,100,300,并使用“ +”、“―”键选择合适的幅值,按ENTER键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得到相应的幅值和相位,得到的实验波形图如图4-3到图4-10所示: 图4-3输入频率为1的波形图1

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

系统开环频率特性的绘制

5.3 系统开环频率特性的绘制 对自动控制系统进行频域分析时,通常是根据开环系统的频率特性来判断闭环系统的稳定性和估算闭环系统时域响应的各项性能指标,或者根据开环系统的频率特性绘制闭环系统的频率特性,然后再分析及估算时域性能指标。因此,掌握开环系统的频率特性曲线的绘制和特点是十分重要的。 5.3.1 开环幅相曲线的绘制 开环系统的幅相频率特性曲线简称为开环幅相曲线。准确的开环幅相曲线可以根据系统的开环幅频特性和相频特性的表达式,用解析计算法绘制。显然,这种方法比较麻烦。在一般情况下,只需要绘制概略开环幅相曲线,概略开环幅相曲线的绘制方法比较简单,但是概略曲线应保持准确曲线的重要特征,并且在要研究的点附近有足够的准确性。 下面首先介绍幅相频率特性曲线的一般规律与特点,然后举例说明概略绘制开环幅相曲线的方法。 设系统开环传递函数的一般形式为 ) 1()1()()(11 ++= ∏∏-==s T s s K s H s G j v n j v m i i τ )(m n ≥ (5-49) 式中,K 为开环增益;v 为系统中积分环节的个数。 则系统的开环频率特性为 ) 1() ()1()()(1 1∏∏-==++= v n j j v m i i T j j j K j H j G ωωωτωω (5-50) 1.开环幅相曲线的起点 在低频段当0→ω时,由式(5-50)可得 )90(0 lim ) (lim )()(lim ??-→→→==v j v v e K j K j H j G ω ωωωωωω (5-51) 由式(5-51)可知,当0→ω时,开环幅相曲线的起点取决于开环传递函数中积分环节的个数v 和开环增益K ,参见图5-23(a )。 0型(v =0)系统,开环幅相曲线起始于实轴上的)0,(j K 点。 Ⅰ型(v =1)系统,开环幅相曲线起始于相角为?-90的无穷远处。当+ →0ω时,曲线渐近于与虚轴的平行的直线,其横坐标

自动控制原理课程实验

上海电力学院实验报告 自动控制原理实验课程 题目:2.1.1(2.1.6课外)、2.1.4(2.1.5课内)班级:gagagagg 姓名:lalalal 学号:hahahahah 时间:zzzzzzzzzzz

实验内容一: 一、问题描述: 已知系统结构图,(1)用matlab编程计算系统的闭环传递函数;(2)用matlab转换函数表示系统状态空间模型;(3)计算其特征根。 二、理论方法分析 (1)根据系统结构图的串并联关系以及反馈关系,分别利用tf ()函数series()函数,parallel函数以及feedback函数构建系统传递函数;(2)已求出系统传递函数G,对于线性定常系统利用函数ss(G)课得到系统的状态空间模型。(3)利用线性定常系统模型数据还原函数[num,den]=tfdata(G,‘v’)可得到系统传递函数的分子多项式num与分母多项式den,利用roots(den)函数可得到系统的特征根。 三、实验设计与实现 新建M文件,编程程序如下文所示: G1=tf([0.2],[1,1,1]); G2=tf([0.3],[1,1]); G3=tf([0.14],[2,1]); G4=series(G2,G3);%G2与G3串联 G5=0.7*feedback(G4,-1,1); G6=0.4*feedback(G1,G5,1); G7=feedback(G6,0.6)

ss(G7)%将系统传递函数转化为状态空间模型 [num den]=tfdata(G7,'v');%还原系统传递函数分子、分母系数矩阵 roots(den)%求系统传递函数特征根 点击Run运行 四、实验结果与分析 M文件如下: 运行结果如下:

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

自动控制原理实验-控制系统频率特性的测试..

实验四 控制系统频率特性的测试 1、实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。 2、实验装置 (1)PC586微型计算机。 (2)自动控制实验教学系统软件。 3、实验步骤及数据处理 (1)首先确定被测对象模型的传递函数G (S ),根据具体情况,先自拟三阶 系统的传递函数, )12)(1()(22221+++= s T s T s T K s G ξ,设置好参数K T T ,,,21ξ。 要求:1T 和2T 之间相差10倍左右,1T <2T 或2T <1T 均可,数值可在0.01秒 和10秒之间选择,ξ取0.5左右,K ≤10。 设置T1=0.1,T2=1,ξ =0.5,K=5。 (3)设置好各项参数后,开始作仿真分析,首先作幅频特性测试。 ①根据所设置的1T ,2T 的大小,确定出所需频率范围(低端低于转折频率小者10倍左右,高端高于转折频率高者10倍左右)。 所需频率范围是:0.1rad/s 到100rad/s 。 ②参考实验模型窗口图,设置输入信号模块正弦信号的参数,首先设置正弦信号幅度Amplitude,例如设置Amplitude=1,然后设置正弦频率Frequency ,单位为rads/sec 。再设置好X 偏移模块的参数,调节Y 示波器上Y 轴增益,使在所取信号幅度下,使图象达到满刻度。 ③利用Y 示波器上的刻度(最好用XY 示波器上的刻度更清楚地观察),测试输入信号的幅值(用2m X 表示),也可以参考输入模块中设置的幅度,记录于表7--2中。此后,应不再改变输入信号的幅度。 ④依次改变输入信号的频率(按所得频率范围由低到高即ω由小到大慢慢改变,特别是在转折频率处更应多测试几点,注意:每次改变频率后要重新启动Simulation|Start 选项,观察“李沙育图形” 读出数据),利用Y 示波器上的刻度(也可以用XY 示波器上的刻度更清楚地观察,把示波器窗口最大化,此时格数增多更加便于观察),测试输出信号的幅值(用2m Y 表示),并记录于表7--2 (本表格不够,可以增加)。注意:在转折频率,特别是11T 和21T 附近应多测几点。 由题意知传递函数的两个转折频率为1rad/s 和10rad/s,所以选取的频率为0.5rad/s 、0.7rad/s 、0.98rad/s 、0.99rad/s 、1rad/s 、1.2rad/s 、4rad/s 、7rad/s 、9rad/s 、9.8rad/s 、9.9rad/s 、10rad/s 、10.1rad/s 、10.2rad/s 、14rad/s 、20rad/s 、40rad/s 、80rad/s 、100rad/s 以下是在不同频率下李沙育图及幅频特性和相频特性的分析情况

控制系统频率特性实验

实验名称控制系统的频率特性 实验序号实验时间 学生姓名学号 专业班级年级 指导教师实验成绩 一、实验目的: 研究控制系统的频率特性,及频率的变化对被控系统的影响。 二、实验条件: 1、台式计算机 2、控制理论计算机控制技术实验箱系列 3、仿真软件 三、实验原理和内容: .被测系统的方块图及原理被测系统的方块图及原理: 图—被测系统方块图 系统(或环节)的频率特性(ω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。 本实验应用频率特性测试仪测量系统或环节的频率特性。 图—所示系统的开环频率特性为: 采用对数幅频特性和相频特性表示,则式(—)表示为: 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施

加于被测系统的输入端[()],然后分别测量相应的反馈信号[()]和误差信号[()]的对数 幅值和相位。频率特性测试仪测试数据经相关器件运算后在显示器中显示。 根据式(—)和式(—)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸 上作出实验曲线:开环对数幅频曲线和相频曲线。 根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的 频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。如果测量所得的相位 在高频(相对于转角频率)时不等于-°(-)[式中和分别表示传递函数分子和分母 的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 .被测系统的模拟电路图被测系统的模拟电路图:见图- 注意:所测点()、()由于反相器的作用,输出均为负值,若要测其正的输出点, 可分别在()、()之后串接一组的比例环节,比例环节的输出即为()、()的 正输出。 四、实验步骤: 在此实验中,利用型系统中的转换单元将提供频率和幅值均可调的基准正弦信 号源,作为被测对象的输入信号,而型系统中测量单元的通道用来观测被测环节的输出(本实验中请使用频率特性分析示波器),选择不同角频率及幅值的正弦信号源作 为对象的输入,可测得相应的环节输出,并在机屏幕上显示,我们可以根据所测得的 数据正确描述对象的幅频和相频特性图。具体实验步骤如下: ()将转换单元的端接到对象的输入端。 ()将测量单元的(必须拨为乘档)接至对象的输出端。 ()将信号发生器单元的和端断开,用号实验导线将端接至单元中的。 (由于在每次测量前,应对对象进行一次回零操作,即为对象锁零控制端,在这里,我们用的口对进行程序控制) ()在机上输入相应的角频率,并输入合适的幅值,按键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得 到相应的幅值和相位。 ()如需重新测试,则按“”键,系统会清除当前的测试结果,并等待输入新的角频率,准备开始进行下次测试。 ()根据测量在不同频率和幅值的信号源作用下系统误差()及反馈()的幅值、相 对于信号源的相角差,用户可自行计算并画出闭环系统的开环幅频和相频曲线。 实验数据处理及被测系统的对数幅频曲线和相频曲线 表实验数据(ωπ)

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试 一.实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性 (2)实验方法 设有两个正弦信号: 若以) (y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以) (t 化,) (y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和) (t 曲线(通常是一个椭圆)。这就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym,φ, 四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。(2)首先确定被测对象模型的传递函数, 预先设置好参数

T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。 (三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性

自动控制原理实验报告

自动控制原理 实验报告 实验一典型系统的时域响应和稳定性分析 (2) 一、实验目的 (3) 二、实验原理及内容 (3) 三、实验现象分析 (5) 方法一:matlab程序 (5) 方法二:multism仿真 (12)

方法三:simulink仿真 (17) 实验二线性系统的根轨迹分析 (21) 一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21) 二、根据根轨迹图分析系统的闭环稳定性 (22) 三、如何通过改造根轨迹来改善系统的品质? (25) 实验三线性系统的频率响应分析 (33) 一、绘制图1. 图3系统的奈氏图和伯德图 (33) 二、分别根据奈氏图和伯德图分析系统的稳定性 (37) 三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导 出系统的传递函数 (38) 实验四、磁盘驱动器的读取控制 (41) 一、实验原理 (41) 二、实验内容及步骤 (41) (一)系统的阶跃响应 (41) (二) 系统动态响应、稳态误差以及扰动能力讨论 (45) 1、动态响应 (46) 2、稳态误差和扰动能力 (48) (三)引入速度传感器 (51) 1. 未加速度传感器时系统性能分析 (51) 2、加入速度传感器后的系统性能分析 (59) 五、实验总结 (64) 实验一典型系统的时域响应和稳定性分 析

一、 实验目的 1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、 实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:见图1 图1 (2) 对应的模拟电路图 图2 (3) 理论分析 导出系统开环传递函数,开环增益0 1 T K K = 。 (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2), s 1T 0=, s T 2.01=,R 200 K 1= R 200 K =?

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

相关文档