文档库 最新最全的文档下载
当前位置:文档库 › 膜式联轴器对透平压缩机轴系扭振的影响

膜式联轴器对透平压缩机轴系扭振的影响

膜式联轴器对透平压缩机轴系扭振的影响
膜式联轴器对透平压缩机轴系扭振的影响

轴系扭振

汽轮发电机组的轴系扭振 电力系统的某些故障和运行方式,往往导致大型汽轮发电机组的轴系扭转振动,以致造成轴系某些部件或联轴器的疲劳损坏。轴系扭振是指组成轴系的多个转子,如汽轮机的高、中、低压转子,发电机、励磁机转子等之间产生的相对扭转振动。随着汽轮发电机组单机容量增大,轴系的功率密度亦相对增大,以及轴系长度的加长和截面积相对下降,整个轴系成为一个两端自由的弹性系统,并存在着各种不同振型的固有的轴系扭转振动频率。同时随着大电网远距离输电使系统结构和输电技术愈趋复杂。由于这两方面的原因,电力系统因故障或运行方式的改变所引起的电气系统与轴系机械系统扭振频率的耦合作用,将会导致大型汽轮发电机组的轴系扭转振动,严重威胁机组的安全运行。 产生轴系扭振的原因,归纳起来为两个方面:一是电气或机械扰动使机组输入与输出功率(转矩)失去平衡,或者出现电气谐振与轴系机械固有扭振频率相互重合而导致机电共振;二是大机组轴系自身所具有的扭振系统的特性不能满足电网运行的要求。因此,无论产生的原因如何,从性质上又可将轴系扭振分为:短时间冲击性扭振和长时间机电耦合共振性扭振等两种情况。 从原则上讲,电力系统出现的各种较严重的电气扰动和切合操作都会引起大型汽轮发电机组轴系扭振,从而产生交变应力并导致轴系疲劳或损坏,只是其影响程度随运行条件、电气扰动和切合操作方式、频率(次数)等不同而异。其中影响较大的可归纳为以下四个方面: 1.电力系统故障与切合操作对轴系扭振的影响:通常的线路开关切合操作,特别是功率的突变和频繁的变化;手动、自动和非同期并网;输出线路上各种 类型的短路和重合闸等都会激发轴系的扭振并造成疲劳损伤。 2.发电厂近距离短路和切除对轴系扭振的影响:发电厂近距离(包括发电机端)二相或三相短路并切除以及不同相位的并网,都会导致很高的轴系扭转机械 应力。例如在发电机发生三相短路时,短路处电压下降接近于零,于是在短 路持续时间内,一方面与短路前有功负荷对应的同步电磁转矩接近于零,同 时发电机因短路并以振荡形式出现的暂态电磁转距将激发起整个轴系的扭 转振动。 3.电力系统次同步振荡对轴系扭振的影响:在电力系统高压远距离输电线路上,当采用串联补偿电容用以提高输电能力时,该电容器同被补偿的输电线 路的电感,将构成L-C回路(略去回路电阻)并产生谐振。当电网频率与上 述的谐振频率的差值与轴系某一机械固有扭振频率相同或接近时,则上述的 电气谐振与机械扭振合拍并相互激励,从而给机组轴系的安全运行构成严重 的威胁。由于电气谐振频率低于电网频率,通常称为次同步振荡。 4.电力系统负序电流对轴系扭振的影响:发电机定子绕组中的负序电流可由三相负荷不平衡、各种不对称短路、断线故障引起。负序电流相当于一个外力 源,因此由负序电流产生的轴系扭振有别于上述的自激扭振,并称之为强迫 扭振。负序电流在电机中产生的旋转磁场与转子的励磁磁场相互作用,并产 生交变转矩作用在轴系上,如果这一交变转矩的频率同机组轴系某一个固有 的扭振频率重合,就会激发起轴系的扭振。 预防和抑制轴系扭振的措施可以从设计制造、运行方式,机—电配合、在线监测等几个方面针对不同的情况采取相应的措施。 设计制造,是指包括汽轮发电机轴系扭振频率、绕组的设计、选材、工艺和机械加工以及输电系统的线路的结构方式、继电保护、控制手段以及串联电容补偿方式的设计与选择

透平压缩机

透平压缩机 工作原理 具有高速旋转叶轮的动力式压缩机[1]。它依靠旋转叶轮与气流间的相互作用力来提高气体压力,同时使气流产生加速度而获得动能,然后气流在扩压器中减速,将动能转化为压力能,进一步提高压力。在压缩过程中气体流动是连续的。透平压缩机是在通风机的基础上发展起来的。它广泛用于各种工艺过程中输送空气和各种气体,并提高其压力。 分类 按气体流动方向的不同,透平压缩机主要分为轴流式和离心式两类。在轴流压缩机中,气体近似地沿轴向流动(见彩图[轴流压缩机结构图])。在离心压缩机中,气体主要沿着径向流动。另外还有一种斜流(混流)压缩机,其气体流动方向介于这两者之间。排气压力在 1.5×10(~2×10(帕范围内的透平压缩机又称作透平鼓风机。排气压力低于1.5×10(帕的则属于通风机,不再称为透平压缩机。 性能

透平压缩机主要性能参数是流量、排气压力、功率、效率和转速。描绘这些参数之间的关系的曲线称为透平压缩机的性能曲线。图1 [轴流压缩机与离心压缩机的性能曲线] 是轴流压缩机和离心压缩机在不同转速下排气压力与流量关系的性能曲线。轴流压缩机的性能曲线比离心压缩机的陡得多,在高速下更为明显。在等转速下增大流量时,通过压缩机的流量达到某一临界值后便不再继续增加,这一工况称为阻塞工况。当减小流量至某一工况时,压缩机和管路中气体的流量和压力会出现周期性低频率、大振幅的波动,这种不稳定现象称为喘振。一旦发生喘振,机组就会产生强烈振动,如不及时防止或停车,机组便会毁坏。把不同转速下的喘振工况点连接起来的曲线称为喘振线,它表示喘振不稳定工作区的界限。喘振工况点到同转速下阻塞工况点的范围称为稳定工况区,压缩机必须远离喘振线而在稳定工况区工作。为了防止喘振,一般采取防喘振措施,例如放气或回流以增加进口流量,把静叶(导流器叶片)做成可以调整角度的形式。 透平压缩机所需功率很大,其通流部分的完善程度,常用绝热效率或多变效率(见热力过程)来评定。轴流压缩机级的绝

轴系扭振

电信号扰动下的轴系扭振 摘要 本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。 关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动 1.引言 转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。 当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法 (TMM)解决频域内的动态问题。TMM使用了一种匹配过程,即从系统一侧的边界条 1

常见透平机械工作原理图解

常见透平机械工作原理图解 风机包括通风机、透平鼓风机、罗茨鼓风机和透平压缩机,详细划分为离心式压缩机、轴流式压缩机、离心式鼓风机、罗茨鼓风机、离心式通风机、轴流式通风机和叶氏鼓风机等7大类 一、离心式压缩机 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。

有些化工基础原料,如丙烯、乙烯、丁二烯、苯等,可加工成塑料、纤维、橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式压缩机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式压缩机也是极为关键的设备。我国在五十年代已能制造离心式压缩机,从七十年代初开始又以石油化工厂,大型化肥厂为主,引进了一系列高性能的中、高压力的离心式压缩机,取得了丰富的使用经验,并在对引进技术进行消化、吸收的基础上大大增强了自己的研究、设计和制造能力。 性能特点: 优点: 离心式压缩机之所以能获得这样广泛的应用,主要是比活塞式压缩机有以下一些优点。 1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。 2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。 3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。 4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型化工厂,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。但是,离心式压缩机也还存在一些缺点。 缺点: 1、离心式压缩机还不适用于气量太小及压比过高的场合。 2、离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。 3、离心式压缩机效率一般比活塞式压缩机低。 二、轴流式压缩机 轴流式压缩机是属于一种大型的空气压缩机,最大的功率可以达到 150000KW,排气量是20000m3每分钟,它的压缩机能效比可以达到百分之90左右,比离心机要节能一些。它是由3大部分组成,一是以转轴为主体的可以旋转的部分简称转子,二是以机壳和装在机壳上的静止部件为主体的简称定子(静子),三是壳体、密封体、轴承箱、调节机构、联轴器、底座和控制保护等组成。轴流式压缩机也属于透平式或速度式压缩机,炼油厂多选用作催化裂化装置的主风机。 轴流压缩机的结构简图

压缩机的形式及分类

压缩机按结构形式的不同分类如下: 按其原理可分为: 往复式(活塞式)压缩机、回转式(旋转式)压缩机(涡轮式、水环式、透平)压缩机,轴流式压缩机,喷射式压缩机及螺杆压缩机等各种型式,其中应用最为广泛的是往复式(活塞式)压缩机。 活塞式压缩机怎样分类? 活塞式压缩机分类的方法很多,名称也各不相同,通常有如下几种分类方法:(一)按压缩机的气缸位置(气缸中心线)可分为: (1)卧式压缩机,气缸均为横卧的(气缸中心线成水平方向)。 (2)立式压缩机气缸均为竖立布置的(直立压缩机)。 (3)角式压缩机,气缸布置成L型、V型、W型和S型(扇型)等不同角度的。(二)按压缩机气缸段数(级数)可分为: (1)单段压缩机(单级):气体在气缸内进行一次压缩。 (2)双段压缩机(两级):气体在气缸内进行两次压缩。 (3)多段压缩机(多级):气体在气缸内进行多次压缩。 (三)按气缸的排列方法可分为: (1)串联式压缩机:几个气缸依次排列于同一根轴上的多段压缩机,又称单列压缩机。 (2)并列式压缩机:几个气缸平行排列于数根轴上的多级压缩机,又称双列压缩机或多列压缩机。 (3)复式压缩机:由串联和并联式共同组成多段压缩机。 (4)对称平衡式压缩机:气缸横卧排列在曲轴轴颈互成180度的曲轴两侧,布置成H型,其惯性力基本能平衡。(大型压缩机都朝这方向发展)。 (四)按活塞的压缩动作可分为: (1)单作用压缩机:气体只在活塞的一侧进行压缩又称单动压缩机。 (2)双作用压缩机:气体在活塞的两侧均能进行压缩又称复动或多动压缩机。(3)多缸单作用压缩机:利用活塞的一面进行压缩,而有多个气缸的压缩机。(4)多缸双作用压缩机:利用活塞的两面进行压缩,而有多个气缸的压缩机。(五)按压缩机的排气终压力可分为:

透平压缩机

一、定义: 压缩机是用来提高气体压力和输送气体的机械。 二、主要用途: ⒈动力用压缩机 ⑴压缩气体驱动各种风动机械,如:气动扳手、风镐。 ⑵控制仪表和自动化装置。 ⑶交通方面:汽车门的开启。 ⑷食品和医药工业中用高压气体搅拌浆液。 ⑸纺织业中,如喷气织机。 ⒉气体输送用压缩机 ⑴管道输送--为了克服气体在管道中流动过程中,管道对气体产生的阻力。 ⑵瓶装输送--缩小气体的体积,使有限的容积输送较多的气体。 ⒊制冷和气体分离用压缩机 如氟里昂制冷、空气分离。 ⒋石油、化工用压缩机 ⑴用于气体的合成和聚合,如:氨的合成。 ⑵润滑油的加氢精制。 三、压缩机的分类 ⑴按作用原理分:容积式和速度式(透平式) ⑵按压送的介质分类:空气压缩机、氮气压缩机、氧气压缩机、氢气压缩机等 ⑶按排气压力分类: 低压(0.3-1.0MPa)、中压(1.0-10MPa)、高压(10-100MPa)、超高压(>100MPa) ⑷按结构型式分类: 压缩机----容积式、速度式。 容积式----回转式(包括螺杆式、滑片式、罗茨式)、往复式(包括活塞式、隔膜式)。 速度式----离心式、轴流式、喷射式、混流式。 第二节压缩机的著名厂家 一、国外著名的压缩机企业有以下几家: ⑴日本有七家:日立(Hitachi)、三井、三菱(Mitsubishi)、川崎、石川岛(IHI)、荏原(EBRARA,包括美国埃理奥特ELLIOTT)和神钢(Kobelco); ⑵美国有五家:德莱赛兰(DRESSER-RAND)、英格索兰(Ingersoll-rand)、库柏(Cooper)、通用电气动力部(GE,原来的意大利新比隆Nuovo Pignone公司)和美国A-C压缩机公司; ⑶德国有二家:西门子工业(原来的德马格-德拉瓦)、盖哈哈-波尔西克(GHH-BORSIG); ⑷瑞士有一家:苏尔寿(SULZER); ⑸瑞典有一家:阿特拉斯(ATLAS COPCO); ⑹韩国有一家:三星动力。 另附:针对我厂使用的压缩机: ⒈国外压缩机企业简介: 美国英格索兰公司是一家在全球五百家,最大工业企业中名列前茅的跨国公司,成立于1871年,至今已有129年的历史。https://www.wendangku.net/doc/003917508.html,/ 瑞士苏尔寿公司公司”是世界著名跨国工业集团公司,创建于1834年,已有一百多年历史。

汽轮机轴系振动试验方案

江苏华电句容发电有限公司 一期(2×1000MW)工程 汽轮机轴系振动试验方案 联合体:华电电力科学研究院 上海电力建设启动调整试验所 二○一二年一月

1设备及系统概述 1.1系统描述 略(此方案为原则性方案,中标后根据现场实际情况另行完善) 2试验目的及目标 2.1对汽机轴系进行调整和试运,考察系统与设备设计的合理性、安装质量的好坏,了解系统设 备的运行特性,以便该系统能够长期、安全、经济运行; 2.2完成项目质量验评表要求,各项指标优良率达到85%以上; 2.3监测汽轮发电机组的振动升降速特性,对机组出现的振动原因进行故障诊断,并通过相应的 振动处理措施,保证机组的振动达到安全运行的目的; 2.4检验机组对运行环境的适应能力。适当改变运行工况,测量机组振动特性; 2.5汽轮发电机组的轴系稳定,主机各轴承的垂直和水平方向振动达到部颁新投产机组的振动标 准,小于50μm,轴振小于76μm; 2.6保证系统试运过程中,重要环境因素控制得当; 2.7保证系统试运过程中设备和人员的安全,例如,确保联锁保护试验完整并合格,防止设备在 异常工况下试运,保证不发生设备和人员损伤事故。 3编制依据及参考资料 3.1《火电工程启动调试工作规定》(原电力工业部建设协调司1996); 3.2《火力发电建设工程启动试运及验收规程》(国家发改委2009); 3.3《火电机组达标投产考核标准》(2006年版); 3.4《火电工程调整试运质量检验及评定标准》; 3.5《旋转机械转轴径向振动的测量和评定》GB/T11348.2-2007; 3.6设备厂家的运行维护说明书及设计图纸等; 4试验范围及相关项目 4.1汽机轴系系统各联锁、保护传动检查; 4.2机组的振动在线监测从机组整套启动试运开始,包括机组的冲转、升速、带负荷、超速、稳 定运行以及机组甩负荷期间的振动监测。 4.1测试机组升速过程中轴系振动情况。 4.2机组空负荷时,汽机排汽温度变化,机组轴系振动情况。 4.3机组半负荷时,汽机润滑油温度变化,机组轴系振动情况。 4.4机组满负荷时,机组轴系振动情况。 4.5机组超速试验升/降转速时的振动情况。

船舶轴系扭振计算步骤2006

船舶轴系扭振计算 1 已知条件 轴系原始资料 2 当量系统 2.1惯量计算(或给定) 2.2 刚度计算(或给定) 2.3 当量系统转化,即将系统转化成惯量-刚度系统,并给出当量系统图以及相关参数(见表) 当量系统参数

3 固有频率计算(自由振动计算并画出振型图) Holzer表 4 共振转速计算 5强迫振动计算(动力放大系数法的计算步骤) 步骤1:激励计算

步骤2:计算第1惯性圆盘的平衡振幅 步骤3:计算各部件的动力放大系数

步骤4:求总的放大系数 d r s p e Q Q Q Q Q Q 111111++++= 步骤5:计算第1质量的振幅 A =Q ×A 1st 步骤6:轴段共振应力计算 101,A k k ?=+ττ 步骤7:共振力矩计算 步骤8:非共振计算 2 22 2 1111??? ? ??+??? ???????? ? ??-= c c st n n Q n n A A 步骤9:扭振许用应力计算(按CCS96规范) 步骤10:作出扭振应力或振幅-转速曲线 能量法计算步骤: 步骤1 相对振幅矢量和的计算(如为一般轴系,可省略) 步骤2 激励力矩计算M v (若为柴油机轴系,方法同动力放大系数法步骤1;若为一般轴系,则已知条件给定) 步骤3:激励力矩功的计算 ∑=k T A M W απν1 步骤4:阻尼功的计算 各部件的阻尼功

部件外阻尼功的计算: 步骤5:阻尼力矩功W c 的计算(为系统各部件总阻尼功之和) +++++=cr cs cp cd ce c W W W W W W 步骤6:求第1质量振幅A1 c T W W A = 1 步骤7-11同动力放大系数法步骤6-10 强迫振动计算结果表:

某船舶推进轴系扭振计算分析-不错的论文(精)

第22卷 第5期(总第131期)2011年10月 船舶 SHIP&BOAT Vol.22No.5October,2011 [船舶轮机] 某船舶推进轴系扭振计算分析 金立平 (吉林省地方海事局 [关键词]船舶推进轴系;有限元;转动惯量;扭振[摘 要]提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参数。基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅,分析了轴段应力和扭矩随曲轴转角及转速的变化关系。结果表明在整个转速范围内,扭转振幅小于限定值,轴段的最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号]U664.21 [文献标志码]A [文章编号]1001-9855(2011)05-0046-04 长春130061)Torsionalvibrationcalculationandanalysisofashippropulsionshaft JINLi-ping (JiLinLocalMaritimeSafetyAdministration,Changchun130061) Keywords:marinepropulsionshafting;FEM;inertiamoment;torsionalvibration Abstract:Thepreciseoriginalparametersarecriticalforimprovingthecalculationaccuracyofshafttorsi onalvibration.Athree-dimensionalmodeofahalfcrankisestablishedinthefiniteelementanalysissoftwaretoaccurate lycalculatetheoriginalparameterssuchasthemomentofinertiaandtorsionalstiffnessofeachs haftsection.Basedontheestablishedrealshipshaftingequivalentsystem,thispapercalculatedt hefreevibrationfrequencyandthecorrespondingresonancespeed,aswellasthevibrationampl itudeofthefreeendandtheflywheeloutputend,analyzedtherelationshipofthestressandtorque ofshaftsandthecrankangleandenginespeed.Theresultsshowthatinthewholespeedrange,thet

透平压缩机常见故障及处理方法

透平压缩机常见故障及处理方法 表11 常见故障及处理方法 序号 故障现象 故障原因 处理措施 1 调节系统故障(调速器波动,调速器不能自控) 1) 仪表PRC-27变送器故障 2) 气动马达仪表空气接管或气动马达气缸漏气 3) 调速油压低,油质太脏或油压波动 4) 调节汽阀和油动机连接整定不正确 5) 传动机构卡涩,阀杆断裂,阀芯脱落松动 6) 连接整定不正确,低负荷时调速器波动 7) 进汽蒸汽参数降低,使调节汽阀全开 8) 手阀开得太多 9) 气动定位器输出信号波动 1) 仪表控制改为手动同步器控制,检修自控元件 2) 机组由仪表控制改为手动同步器控制,仪表人员检修自控元件 3) 检查油泵出口油压,油泵转速,启动辅助油泵 4) 重新整定各连接尺寸 5) 检修时对卡涩损坏的部件进行修复 6) 检修中重新整定调速器各部参数 7) 调整蒸汽参数,使之达到设计要求 8) 在满足运行条件要求的前提下,逐个关闭手阀 9) 检查气动定位器 2 压缩机油气压差波动或压差小于规定 1) 密封油压降低到设计值下 2) 油气压差调节阀故障,控制失灵

3) 机械密封装配不良,漏油量超过设计值 4) 缸体密封腔中分面错位漏油 5) 污油收集器故障 6) 缓冲气压力不稳定或压力太高 1) 检测油泵转速是否在工作转速 2) 仪表人员调整压差调节阀或切除运行解体检修 3) 检查机械密封组件装配情况和机械密封压缩量 4) 调整和重新紧固中分面螺栓 5) 检查污油收集器内浮球阀和返回气管孔板尺寸 6) 检查孔板和阀门有无堵塞现象 表11 (续) 序号 故障现象 故障原因 处理措施 3 油过滤器压差大于设计值 1) 过滤器太脏 2) 油中带水 3) 辅油泵启动,两台泵同时运行压差增大,造成滤芯压扁变形 1) 更换由过滤器 2) 对油进行脱水处理 3) 更换油过滤芯 4 压缩机油气分离罐满液位 1) 浮球阀卡涩或损坏 2) 机械密封泄漏量增大 3) 浮球阀传动杠杆整定不正确 4) 污油回油管或启闭阀堵塞

轴承支承长度及间距对船舶轴系振动特性影响

轴承支承长度及间距对船舶轴系振动特性影响 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订:___________________ 审核:___________________ 单位:___________________

文件编号:KG-A0-4761-53 轴承支承长度及间距对船舶轴系振 动特性影响 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 本文主要对轴承的支承长度以及间距对于船舶轴系 振动的特性进行相应的分析,发现在不同位置处,以及 不同的支承长度对船舶的轴系的固有振动的影响, 并且经 过计算,不同位置轴承的变化对于船舶轴系固有振动的 影响都不同。其中对于船舶轴系的振动的影响最大的是 船舶前后醍架轴承和船舶醍管轴承,并且这些轴承所工 作的环境都是十分的恶劣,在运行的过程中会发生很大 的变化。 在船舶的轴承的正常的运作中,轴承的支承的面积 是随之改变的,所以必须要对轴承的长度对于轴系振动 的影响进行相应的研究,并且要根据一些条件,来对相 应的轴系进行调整,以此来避开共振所产生的危害。主 要是对船舶的轴系的后醍架轴承和船舶艇管轴承进行相

三种压缩机性能特点、优缺点比较

1螺杆式压缩机 螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。 以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 2离心式压缩机 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。

早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。 3往复活塞压缩机 是各类压缩机中发展最早的一种,公元前1500年中国发明的木风箱为往复活塞压缩机的雏型。18世纪末,英国制成第一台工业用往复活塞空气压缩机。20世纪30年代开始出现迷宫压缩机,随后又出现各种无油润滑压缩机和隔膜压缩机。50年代出现的对动型结构使大型往复活塞压缩机的尺寸大为减小,并且实现了单机多用。

机械设备振动特性分析

机械设备振动特性分析 佟德纯 教授 一 振动波形变换 设备的振动监测与诊断,振动波形的分析,提取表征状态信息的特征量是最常用的有效方法之一,振动波形的分析主要有两种:一是时域分析,即将振动作为时间τ(秒)的函数x(τ)来观测。二是频域分析,即按傅立叶变换方法将x(τ)变换成频率f (赫芝)的函数X(f)。这个变换关系和过程可用空间简图来表示,见图5.1。 图5.1 振动波形分析 1. 振动的时域波形特征量 (1) 均值x :描述振动过程的静态成分,又称为直流分量,即 ?=T dt t x T x 0)(1 (5.1) 式中T —平均时间(样本长度),以秒或毫秒计。 (2) 绝对值平均x ,即 dt t x T x T ?=0)(1 (5.2) (3) 均方值2x :表示振动的平均能量或平均功率的指标,即 ?=T dt t x T x 022)(1 (5.3) (4) 均方根值(有效值)rms X :描述振动的有效正振幅,即 ?=T rms dt t x T X 0 2)(1 (5.4) (5) 方差2x σ :描述振动偏离均值散布情况,其标准差σx 表示振动的动态分量 ,即 []?-=T x dt x t x T 02 2 )(1σ (5.5) 为了进一步理解上述振动特征量的物理意义,特用模拟电路表示特征量的运算过程,具

体如图5.2所示。 图5.2 振动特征量的运算电路 3. 复杂周期振动的分解 复杂的周期振动)()(nT t x t x T +=都可用傅立叶级数的形式展开,即分解成若干个 谐波(简谐)振动之各,即 ∑∑∞=∞=++=++=1 010)cos()sin cos (2n n n n n n T t n A A t n b t n a a x θωωω (5.6) 式中 ω为角频率,T f ππω220== 0A 为直流分量,200a A = n A 为n 阶谐波的振幅,)2,1(,?????=+=n b a A n n n n θ为n 阶谐波的相角,)2,1(),(???=-n a b arctg n n n θ 由(5.6)式可知,复杂的周期振动)(t x τ是由直流分量0A 和各次谐波振动 )3,2,1(,???=n A n 所组成。这就是振动信号的频率分析,又称谐波分析,是振动监测与诊断的基本方法之一。 示例:柴油机扭振分析 柴油机是六缸四冲程星形连接,点火次序如图5.3所示。转速n=195rpm ,即基频f 0

船舶轴系扭振计算步骤2008

船舶轴系扭振计算的一般步骤 (能量法和放大系数法) 1 已知条件 轴系原始资料

2 当量系统 2.1惯量计算(或给定) 2.2 刚度计算(或给定) 2.3 当量系统转化,即将系统转化成惯量-刚度系统,并给出当量系统图以及相关参数(见表) 当量系统参数 3 固有频率计算(自由振动计算并画出振型图) Holzer表 4 共振转速计算

5强迫振动计算(动力放大系数法的计算步骤) 步骤1:激励计算

步骤2:计算第1惯性圆盘的平衡振幅 步骤3:计算各部件的动力放大系数 步骤4:求总的放大系数 d r s p e Q Q Q Q Q Q 111111++++= 步骤5:计算第1质量的振幅

A =Q ×A 1st 步骤6:轴段共振应力计算 101,A k k ?=+ττ 步骤7:共振力矩计算 步骤8:非共振计算 2 22 2 1111??? ? ??+??? ???????? ? ??-= c c st n n Q n n A A 步骤9:扭振许用应力计算(按CCS96规范) 步骤10:作出扭振应力或振幅-转速曲线 6强迫振动计算(能量法的计算步骤) 步骤1 相对振幅矢量和的计算(如为一般轴系,可省略) 步骤2 激励力矩计算M v (若为柴油机轴系,方法同动力放大系数法步骤1;若为一般轴系,则已知条件给定) 步骤3:激励力矩功的计算 ∑=k T A M W απν1 步骤4:阻尼功的计算 各部件的阻尼功 部件外阻尼功的计算:

步骤5:阻尼力矩功W c 的计算(为系统各部件总阻尼功之和) +++++=cr cs cp cd ce c W W W W W W 步骤6:求第1质量振幅A1 c T W W A = 1 步骤7-11同动力放大系数法步骤6-10 强迫振动计算结果表: 7 一缸不发火的扭振计算 1)不发火气缸的平均指示压力近似为零,相应的气体简谐系数为bv ;其他气缸的平均指示压力pimis 为: i i mi s p z z p 1 -= N/mm2;式中:z-气缸数,pi 按前面计算公式计算。 2)相应的Cimis 为:v im is v im is b p a C += 3)一缸不发火影响系数为:∑∑=a C a C mis imis νγ 式中:Cv 、Cvmis ——分别为正常发火与一缸不发火时的简谐系数; ∑a 、∑mis a 分别为正常发火与一缸不发火时的相对振幅矢量和,其中∑mis a 按下式计算: ∑∑∑==+=z k z k k k k k k k mis a a a 1 1 2 ,12 ,1)cos ()sin (νζβνζβ 不发火缸vmis k C b νβ= ,其他气缸为1; 4)一缸不发火的振幅、应力和扭矩: 第1质量振幅为: 11A A mis γ= 轴段应力为: 1,!,1++=k k k m isk γττ 齿轮啮合处振动扭矩为:G gmis T T γ= 弹性联轴器振动扭矩为:R rmis T T γ=

透平压缩机开车步骤

第一节准备工作 一、油系统的冲洗 为保证机组设备安全运行,在机组初次安装和大修后应对油系统进行冲洗。 1.确认油泵安装检修结束,油泵单体试车合格,处于正常备用状态。 2.确认系统管线、仪表安装结束,用软管连接轴承供油管线和控制油供油管线,将油引到回油管线,供油暂不进轴承润滑点和控制油系统。 3.各安全泄压阀应盲死,防止污物进入阀门,拆下管线上的孔板。 4.将油箱清洗干净,加入与正常使用相同型号的润滑油至工作液位。在供油和返回油箱的法兰加上100目的临时过滤网。 5.按电器操作规程泵投运程序启动油泵运行。利用PCV-201旁路阀控制泵出口压力,逐步加大油循环量,检查油冲洗管线有无泄漏并消除。 6.连续运行24小时,以每4小时为一周期对油进行加热到66~71℃,然后冷却到环境温度,使所有管线得到热胀冷缩,在循环过程中要不断敲击管线。 7.以上工作结束,可停下油泵,拆出旁通连接软管,按正常流程连接好管线,同时在汽轮机、压缩机轴承供油点和控制油供油点前装上100目过滤器,注意选择点应尽量靠近润滑点,对返回油箱的过滤网清洗后重新装回。 8.重新检查油系统,确信处于能接受润滑油状况。 9.重新启动油泵运行,再次进行清洗。油循环4小时后,可停泵对过滤网进行检查、清洗。如此反复,直到清洗合格。 10.当清洗验收合格后,拆除所有的临时滤网,装回孔板,恢复泄压阀。 11.排掉所有的清洗用油,特别注意未能完全排回油箱的区域。 12.对泵进口过滤器和油滤器进行清洗或更换,油箱重新清洗。 13.对油箱进行加油,此时清洗所用的油可以清洁过滤后注入油箱使用。必要时应拆开轴承清洗。 以上工作结束,下一步对油系统进行调试,此工作应在单体试车前进行。注意压缩机没有充压至4~5barg时,密封油不能送入机组内。 二、透平的单体试车 1.试车前的准备工作 启动前的准备工作是透平安全,正常运行的重要保证。机组运行人员应在透平启动之前对全部设备进行详细检查,认真周密做好准备工作。 2.启动前准备工作的内容: 2.1 检查所有安装检修过的地方,确认工作已全部结束并验收合格。 2.2主、辅机设备及附近地面清扫干净,安装检修机具、易燃物品已经清除。 2.3检查工艺管、蒸汽管道及机组各附属设备应无施工遗漏,阀门、管道、设备保温完成(汽轮机缸体可在单机试车合格后保温)。 2.4对安装检修后经过改进的设备和系统应充分了解,并掌握其操作方法。 2.5工艺系统、蒸汽系统、冷却水系统、油系统、真空及冷凝系统等均应具备开车条件,临时加的滤网和盲板必须拆除。 2.6油泵及其驱动机经试车后确认正常,各轴承符合润滑要求。 2.7机组所需仪表空气及仪表、动力和照明电源已正常投用。

轴系扭振计算例子

1 轴系基本数据 轴系布置数据 船舶类型海船 安装类型螺旋桨 中间轴连接方式键槽 减振器无 弹性联轴器无 齿轮箱无 总质量数12 主支质量数12 1级分支数0 2级分支数0 柴油机基本参数 型号7S60MC 制造厂/ 气缸数目7 冲程数 2 气缸型式直列 额定功率(kW) 13570 额定转速(r/min) 105 最低稳定转速(r/min) 30 缸径(mm) 600 活塞行程(mm) 2292 往复部件重量(kg) 5559 平均有效压力(MPa) 1.7 连杆中心距(mm) 2628 发火顺序1-7-2-5-4-3-6 机械效率0.83 第1气缸质量号 2 螺旋桨基本参数 型号Fault 制造厂Fault 直径(mm) 700 叶数 4 盘面比0.7 螺距比 1.1 转动惯量(kg.m^2) 230 螺旋桨所处单元号12

2 系统当量参数表 序号分支号惯量(Kgm^2) 刚度(MNm/rad) 外径(mm) 内径(mm) 传动比标识 1 0 209.0000 1329.787 2 672.0 115.0 1 2 0 10171.0000 1095.290 3 672.0 115.0 1 气缸#1 3 0 10171.0000 1135.0738 672.0 115.0 1 气缸#2 4 0 10171.0000 1054.8523 672.0 115.0 1 气缸#3 5 0 10171.0000 1055.9662 672.0 115.0 1 气缸#4 6 0 10171.0000 1133.7868 672.0 115.0 1 气缸#5 7 0 10171.0000 1165.5012 672.0 115.0 1 气缸#6 8 0 10171.0000 1538.4615 620.0 115.0 1 气缸#7 9 0 3901.0000 3115.2648 620.0 115.0 1 推力轴 10 0 5115.0000 60.3500 480.0 0.0 1 中间轴 11 0 613.9000 166.8335 590.0 0.0 1 螺旋桨轴 12 0 75197.0000 1.0000 100.0 0.0 1 螺旋桨

扭振测量与分析

扭振测量和Q T V介绍 1.引言 噪声及振动问题,在旋转部件开发中,是一个必须充分重视的因素。就车辆而言,旋转机械或旋转部件包括:发动机(引擎),动力传动系, 变速装置, 压缩机和泵等等?。对它们的动力特性, 必须了解得非常透彻, 力图实现宁静、平顺、安全地运转?。通常, 对线振动和角振动的测量和分析, 是分头进行的??。旋转件横向振动的测量方法, 是大家熟悉的,研究得已经比较透彻?,为了充分把握结构的动力特性, 通常会实施多通道并行的测量和分析?。而扭振测量则需使用专门的设备, 它们一般并不集成在一总体动力学测试系统内?。 2.扭振的“源—传导—接收”模型 研究动力学问题的一般方法,是建立所谓“源—传导—接收”模型(图1)。在某一部位(接收部位)观测到的响应,视为由源和源在结构上沿某途径传导产生的效果。由于结构的共振或反共振效应,源可能在传导过程中被放大或者被衰减。此外,它们可能沿多个不同途径,传导至接收部位。 图1 扭振的“源——传导——接收”模型接收部位或响应部位的振动,通常是刚体运动伴随柔体运动的复合现象。前者一般不产生交变应力,后者则会引起交变应力,并成为某种耐久性问题的根源。传递途径分析(TPA)涉及到某接收部位对源的干扰,这种干扰经由其可能的传导途径,并依赖于传导途径固有的动力学特性,影响整个结构的响应。 用同样的方法,我们来研究扭转振动。先是有一个“源”,譬如说,发动机给出的交变输入力矩。力矩传递过程,牵涉到轴系、齿轮传动系或皮带传动系等的动力特性。最终表现出来的,是旋转件的转速变化。如果沿整个轴,各部位的转速变化都是相同的、一致的,那么在严格的意义上,这不能算作是扭振,仅仅只是转速在变罢了(这相当于线振动分析中的刚体模态)。仅当沿轴不同部位检测到的转速增量有幅值和相位的相对变化时,扭振才确实发生了。当激励频率接近于扭振谐振频率时,会导致旋转件产生很大的内应力。如果未设置专门的监测设备,就有可能发生严重的耐久性问题。 习惯上,凡是在平均转速上、下发生得转速波动,都被称之为扭转振动,无论转轴的不同截面之间是否真正存在相对扭转。

透平空压机的基本知识

透平空压机的基本知识 一.离心式透平空压机的类型 1#、2#、4#透平机da350-61 3#透平机da350-64 5#透平机5tyd144电机功率2500kw 6#透平机4tyd112 电机功率5200kw 二.透平空压机主要组成部件: 机壳、转子 、轴瓦

、增速机、 电机 三.1#-4#离心式空压机的主要性能 2.1:介质:空气 2.2:进气压力:0.97mpa 排气压力:0.635mpa

2.3: 1#-4#离心式空压机电机转速:2985转主轴转速:8655转 2.4:5#透平机:电机转速:2985转主机转速:9681转 3.1:6#透平机:电机转速:2989转主机转速:7332转 3.2:1#-5#透平机轴向位移:0.4mm报警0.5mm停车 3.3:6#透平机轴向位移:0.5mm报警0.7mm停车 四.离心式空压机的工作原理 其实透平空压机的工作原理和普通离心水泵的工作原理差不多,只是压缩级数不同。透平压缩机是由装在轴上叶轮在驱动力的驱动下做高速旋转,叶片对气体做功是气体获得动能,经扩压流动后转变为压力能,从而提高气体压力,同时气体温度也相应升高。经过多级组合,也可以有中间冷却的多段组合,获得气体所需要的终压要求。离心式空压机是一种动力式压缩机,在其中有一个或多个旋转叶轮使气体加速,主气流是径向的,离心式空压机就属于透平式空压机组。在离心式空压机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。 五.离心式空压机的优点 1、流量大、功率大、运行稳定、周期长、利于节能。透平机械流经叶轮的介质,一直是连续不断的,气体的容量较大,叶轮能够高速旋转,因此,透平机械的排气流量和发生的功率可大大增加。所以离心空压机排气均匀,气流无脉冲。 2、结构紧凑、密封效果好,泄露现象少,尺寸小,因而机组占地面积及重量都比同气量的活塞式压缩机小得多。 3、运转平稳,操作可靠,因此它的运转率高,有平坦的性能曲线,操作范围较广,维护量少。 4、离心式压缩机的压缩过程可以做到绝对无油,机内不需要润滑,这对许多行业的生产是很重要的。 5、易损件少、运转周期长,运动零件少而简单,所以其制造费用相对低且可靠性高。 六.离心式空压机缺点 1、离心式空压机的目前还不适用于气量太小及压缩比过高的场合。

水力发电机组轴系振动特性及其故障诊断分析

水力发电机组轴系振动特性及其故障诊断分析 发表时间:2017-09-04T17:07:37.297Z 来源:《电力设备》2017年第14期作者:赵红伟 [导读] 摘要:随着社会的全面发展,水力发电机组轴系振动特性及其故障诊断分析十分重要。其能够使得水力发电机组的体系结构得到相应的优化。 (新安江水电厂) 摘要:随着社会的全面发展,水力发电机组轴系振动特性及其故障诊断分析十分重要。其能够使得水力发电机组的体系结构得到相应的优化。本文主要针对水力发电机组轴系振动特性及其故障进行相应的分析,并提出了相应的优化措施。 关键词:水力发电机组;轴系振动;故障诊断;分析 为了能够使得水利发电的效率得到相应的提升,在进行振动体系结构的分析过程中,其需要采用多种不同的形式使得水利发电的效率得到显著性的提高。在进行具体的故障诊断过程中,其需要对轴系振动结构进行较为明确的数据分析。从而使得其故障的整体诊断效果更加显著。 一、水利发电机组轴系振动特性分析 1.1水利发电机组振动规则 为了能够使得整体的水利发电效率得到相应的提升,在进行发电机组的整体控制。在轴承的整体支持上,其同样需要对轮机的径流的变化进行主轴系统参数的变化进行分析。在推力轴距的变化上,其需要对模型进行参数性的设计。一般情况下,其机组在正常的运行过程中会发生一定的振动。可以采用有限元复模态法计算了水电机组轴系横向回转振动的自振频率及临界转速。这样,其轴承的推力在整体的运转过程中同样会发生一定变化。在主轴的方向系统上,其需要利用发电机组的轴向变化规律对系统方程进行参数的求解。这样,其整体的振动规律就能得到确定。同时应用周期变换将叶片和转子的祸合振动方程转化为常系数微分方程,分析了转速、叶片阻尼等系数对转子系统稳定性的影响。 1.2水利发电机组的振动参数计算 在进行整体的参数计算中,其首先需要明确其机组的运动状态。对于机组的各种特性变化进行体系参数的整体分析。在机组的数据处理过程中,其还要对微分运动的模拟数值进行转子质量的选取。通常,在质量参数转移的过程中,其偏心率会随着偏心重量进行参数的设计。可以取0.5-3.3mm。【1】在离心数据的处理过程中,其同样需要对系统圆盘的径向位移参数进行相应的程序改变。最终使得其机组转子的偏心质量进行相应的程序改变。从而使得转子系统得到相应的平衡,最终达到相应的减震目的。其机组偏心质量的位移结构图如下所示: 从圆盘的径向位移中我们能够十分清晰的看到,其圆盘在不同的位移参数中会得到不同层面的改变。同时,其水利发电机组在横向范围的震幅也会出现不同的变化。其圆盘1的径向位移参数会随着时间的推进而逐渐地增加。但整体的增幅并不明显,其圆盘2的径向位移参数相对较大,在0.5-3h的范围内,会有较为明显的增幅。最终使得水利发电的效率得到明显性的提高。【2】 二、水力发电机组轴系振动的故障诊断分析 2.1水利发电机组的故障分析 2.1.1机械因素 为了能够有效地提升水利发电机组的效率,在进行故障分析的过程中,其首先需要对其机械因素进行相应的考虑。在保证机组逐渐地稳定情况下,其需要对机械部分的惯性以及摩擦力进行参数的考虑。在保证其运行稳定的情况下,需要对其机械的运行进行相应的故障检验。引发水力发电机组振动的机械因素指振动中的干扰力来自机组机械部分的惯性力、摩擦力等。通常来说,当其机组的整体润滑不足时,其很容易出现一定的机械故障,从而使得水力发电机组的轴系统难以得到全面性的维护。 2.1.2电气因素 由于现代的机械化水平逐渐地提升,其轴系统在整体的运行过程中同样很容易出现轴系统故障。其主要会表现在以下几个方面: ①绕线电阻出现的短路。这样情况在电气故障中同样十分显著。其首先需要对各个绕组的参数结构进行较为明确的数据分析。目前,很多机组在整体的运行过程中都容易出现短路的情况。主要在于其机组在整体的运行过程中,其温度常常会偏高,从而使得机组中的绝缘线出现脱落或者老化,最终使得机组在电气的运行中出现较为显著的故障。 ②发电机气隙不均匀。一般情况下,其发电机的会出现不同的气隙。从整体上而言,其不同程度的气隙在不同的参数层面会发生一定的改变。这就很容易导致其内部气流发生改变,使得机组出现共振。很难还原到原本的气流状态。 2.1.3水利因素 发电机组在整体的运行中,其水利因素的影响也会较为显著。一般情况下,由于水力发电机组振动的水力因素指机组振动的干扰力来

相关文档
相关文档 最新文档