文档库 最新最全的文档下载
当前位置:文档库 › 一元一次方程应用题类型与解题技巧

一元一次方程应用题类型与解题技巧

一元一次方程应用题类型与解题技巧
一元一次方程应用题类型与解题技巧

列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

(2)等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;②原料体积=成品体积。

(3)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问题要搞清人数的变化,常见题型有:

①既有调入又有调出;

②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

(4)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程

追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程

②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程

环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)航行问题:相对运动的合速度关系是:

顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:

①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。

②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长

③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长

④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长

行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

(5)工程问题。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(6)溶液配制问题。

其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

(7)利润率问题。

其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。商品售价=商品标价×折扣率

(8)银行储蓄问题。

其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

(9)数字问题。

要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。

(10)年龄问题其基本数量关系:大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

(11)比例分配问题:

这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。

一元一次方程应用题步骤解题技巧

列方程(组)解应用题

一概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答题。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

三年级应用题解题思路和混合运算法则

班级:姓名:座号:. 应用题解题思路: 什么时候用加法? (求和,求一共有多少,用加法) 什么时候用减法?(求相差多少用减法) 什么时候用乘法? (求几个几是多少用乘法) 什么时候用除法?(除法有三种含义) ①“÷”表示平均分,即求每份的个数用除法。如:把20平均分成5份,每份是多少? 20÷5 ②“÷”表示包含分,即求分几份用除法。如:有20人,5人一组,可以分成几组? 20÷5,表示20里面包含有几个5。 ③“÷”表示一个数是另一个数的几倍,用除法。如:20是5的几倍? 20÷5 混合运算法则: ①只有同级运算,从左往右按顺序计算。 ②不同级运算,先乘除,后加减。 ③有括号的,要先算括号里面的。 注:“同级运算”指的是只有加减法而没有乘除法,或只有乘除法而没有加减法的运算。 -----------------------------以上内容请背熟---------------------------背熟后家长签名: 一、算一算。 8×3+15 43-4×5 45-18÷920-3×415+6×938-15÷5 6×9+17 8+8×3 15-6÷3 6×(7-3)58-25+234×5+18 二、应用题。 1、小明拿了30元钱买食品,花生每包7元,小明买了4包。小明还剩多少钱? 2、商店上午卖出4袋开心果,每袋3千克,下午卖出24千克,全天一共卖出多少千克? 3、为了预防甲型H1N1流感,妈妈为家里人共买了6只口罩,每只口罩3元钱。她带了30元钱,还剩多少钱? 三、合并算式,试身手。 2×3 = 6 10÷2 = 53÷3 = 1 7-6 = 1 5+5 = 1026+1 = 27

初一一元一次方程练习题(一)

初一一元一次方程练习 题(一) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 初一一元一次方程练习题(一) 一、 基础训练: 1、x 比它的一半大6,可列方程为 。 2、 若22172a b b a n m n ++-与 是同类项,则 n = , m =_ 。 3、 若已知方程6521=+-n x 是关于x 的一元一次方程,则 n= 。 4、 方程5x-4=4x-2变形为5x-4x=-2+4的依据是 。 5、 方程-5x=6变形为 x=56-的依据是 。 6、 若253=-a ,则a = ;若y x 124-=,则x = ; 7、 若x%=2.5,则x= 。 8、 日历中同一竖列相邻三个数的和为63,则这三个数分别 为 。 (用逗号隔开) 9、 1,-2,21三个数中,是方程7x +1=10-2x 的解的是 。 10、 某件商品进价100元,售价150元,则其利润是 元,利润率是 。 11、 下列方程中,是一元一次方程的是( ) 。 A. ;342=-x x B. ;0=x C. ;32=+y x D. .11x x =- 10、 方程356+=x x 的解是( ) 。 A. 3-=x B. 2-=x C. 3=x D. 无解

3 11、 下列变形正确的是( ) 。 A. 4x – 5 = 3x+2变形得4x –3x = –2+5 B. 32x – 1 = 2 1x+3变形得4x –6 = 3x+18 C. 3(x –1) = 2(x+3) 变形得3x –1 = 2x+6 D. 3x = 2变形得 x =32 12、 已知2是关于 x 的方程 ;03=+a x 的一个解,则a 的值是( ) 。 A. 5- B. 3- C. 4- D. 6- 13、 数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3 分,要得到34分必须答对的题数是( ) 。 A. 6 B. 7 C. 9 D. 8 14、下列判断错误的是( ) A.若a=b,则ac-5=bc-5 B.若a=b,则1122+=+c b c a C.若x=2,则x x 22= D.若ax=bx,则a=b 15、关于x 的方程)()(m x m k x k -=-有唯一解,则k,m 应满足的条件是( ) A.k ≠0,m ≠0 B. k ≠0,m=0 C.k=0,m ≠0 D. k ≠m 二、解下列方程(基础训练) 16、 4485-=+y y 17、 191 =-x

一元一次方程应用题精选(带答案)

一元一次方程应用题精选(带答案) 1.有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是( ). A .1000元 B .800元 C .600元 D .400元 2.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得(_________________________) 3.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期成,问规定日期为﹙ ﹚天 A .3 B .4 C .5 D .6 4.小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是( ) A .25斤 B .20斤 C .30斤 D .15斤 5.如图,宽为50cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ) A .4002cm B .5002cm C .6002cm D.40002 cm 6.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( ) A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-= D .5(21)6x x += 7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( ) A .1800元 B .1700元 C .1710元 D .1750元 8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是( ) A .120元 B .100元 C .72元 D .50元 9.甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的航速与水流速度分别是( ) A .24/,8/km h km h B .22.5/,2.5/km h km h C .18/,24/km h km h D .12.5/,1.5/km h km h

小学三年级数学应用题分类及解法

小学三年级数学应用题分类解法 一、一步简单应用题 (一)、求一个数的几倍,用乘法计算(解题方法:小数乘以倍数=大数) 1、小明今年9岁,爸爸的年龄是小明的5倍,爸爸今年多少岁? 分析:根据爸爸的年龄是小明的3倍,用乘法算出爸爸的年龄。 2、买一支笔2元钱,买60支这样的笔要多少钱? 分析:根据单价乘以数量=总价,即可解答。 (二)、求一个数是另一个数的几倍,用除法计算(解题方法:大数除以小数=倍数) 3、小明今年9岁,爸爸今年45。爸爸的年龄是小明的几倍? 分析:用爸爸的年龄除以小明的年龄即可求出爸爸年龄是小明的几倍。 4、买一支笔2元钱,花120元可以买多少支这样的笔? 分析:根据总价除以单价=数量,即可解答。 5、三个同学做纸花。做了24朵红花,6朵黄花。红花是黄花的几倍? 分析:根据倍数除法的意义求解。 (三)已知一个数是另一个数的几倍,求另一个数,用这个数除以倍数(解题方法:大数除以倍数=小数)

6、爸爸今年45岁,是小明年龄的5倍,小明今年多少岁? 7、买一朵玫瑰花需要2元钱,用140元可以买多少支玫瑰花? 分析:根据总价除以单价=数量,即可解答。 8、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只? 9、图书馆买来40本故事书,是科技书的5倍,科技书几本? 10、一只海狮重378千克,是一只企鹅体重的9倍。这只企鹅的体重是多少千克? 二、两步应用题 (一)几倍多几(解题方法:单位量乘以倍数加多的量) 1、文具店运来三箱红墨水,每箱100瓶。运来的蓝墨水比红墨水多200瓶,运来蓝墨水多少瓶? 分析:根据题意,用每箱红墨水的数量乘以3,再加200,即为蓝墨水瓶数。 2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少? (二)几倍少几(单位量乘以倍数减去少的量) 3、、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头? 分析:根据题意,用前年养猪头数乘以3,再减去卖掉的4头,即剩下猪的头数。

一元一次方程计算题

一元一次方程计算题 一元一次方程——移项,合并同项 1、移项 (1)x,7,13移项得 ; (2)x,7,13移项得 ; (3)5,x,,7移项得 ; (4),5,x,,7移项得 ; (5)4x,3x,2移项得 ; (6)4x,2,3x移项得 ; (7),2x,,3x,2移项得 ; (8),2x,,2,3x移项得 ; 完成下面的解题过程: 2. (1)解方程6x,7,4x,5. (5)完成下面的解题过程: 解:移项,得 . 解方程,3x,0.5x,10. 合并同类项,得 . 解:合并同类项,得 . 系数化为1,得 . 系数化为1,得 . (3).完成下面的解题过程: 解方程2x,5,25,8x. (4)在相应括号内指明该步骤的依据: 解:移项,得 . 解方程:5x+2=7x-8 合并同类项,得 . 解:____,得2+8=7x-5x.( ) 系数化为1,得 . 合并,得10=2x.( ) 即2x=__________. 系数化为1,得x=_____.( )

2.解方程 x511(1)6+x=10 (2) (3)7-6x=5-4x (4) xx,,,,5,,4x2233 x,5=11 3=11,x 4x-15=9 2x=5x-21 2-3x=6-5x 5+7x=-13-2x -5x+5=-6x 3x―7+6x=4x―8 76163xx,,, 2y+0.3=1+y 2x-19=7x+31. 3x,3,2x,7 3 xxxx,,,,,789342x+5=5x-7 3X+77=59 3X+189=521 4Y+119=22 5x+1-2x=3x-2 7x,6=16,3x 8x-5=4x+3 3y-4=2y+1 2x=2x+8 76163xx,,, 11x+64-2x=100-9x 3x+x=18 12.5-3x=6.5 59+x-25.31=0 820-16x=45.5×8 x+12.5=3.5x 8x-22.8=1.2 解一元一次方程(4)——去括号 1、将下列式子中的括号去掉,并使式子的值不变: 1 (1)2(x+3y-1) (2)-3(a-b) (3)-(a+b-c) (4)-(b-a+1) 22、.填空: (1)式子(x,2),(4x,1)去括号,得 ; (2)式子(x,2),(4x,1)去括号,得 ; (3)式子(x,2),3(4x,1)去括号,得 ; (4)式子(x,2),3(4x,1)去括号,得 . 3、完成下面的解题过程: (1)解方程4x,3(2x,3),12,(x, 4). 解:去括号,得 . 移项,得 . 合并同类项,得 . 系数化为1,得 .

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习 1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树? 2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采用一种高新技术后,每天多生产10台,结果用12天,不但完成任务,而且超额了60台,问原计划承做多少台机器? 3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张? 4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长? 5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际按照他的设计,鸡场的面积是多少?

6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元? 7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬? 8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度? 9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?

一元一次方程应用题专题讲义

一元一次方程应用题专题练习 一、年龄问题 1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的1 4 倍? 解:设x 年后小明的年龄是爷爷的 1 4 倍,根据题意得方程为 : 二、数字问题 2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么? 如果把个位数字和十位数字对调,新的两位数可以表示为什么?(添表格并完成解答过程) 解:设这个数的十位数字是x , 根据题意得 解方程得: 答 3.两个连续奇数的和为156,求这两个奇数,设最小的数为x ,列方程得 三、日历时钟问题 4、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗? 如果能,求出这四天分别是几号?如果不能,请说明理由. 四、几何等量变化问题(等周长变化,等体积变化) 常用公式:三角行面积= ,正方形面积 圆的面积 , 梯形面积 矩形面积 柱体体积 椎体体积 球体体积 5、已知一个用铁丝折成的长方形,它的长为9cm ,宽为6cm ,把它重新折成一个宽为5cm 的长方形, 则新的长方形的宽是多少? 个位 十位 表示为 原数 对调后的新数

设新长方形长为xcm ,列方程为 6、将棱长为20cm 的正方体铁块没入盛水量筒中,已知量筒底面积为12cm 2 ,问量筒中水面升高了多少cm ? 五、打折销售:公式:利润=售出价-进货价(成本价) 利润率=×100%商品利润 商品进价 7、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的? 8、某种商品的市场需求量D(千件)与单价 p(元/件)服从需求关系: 117033D P +-=.问: (1)当单价为4元时,市场需求量是多少? (2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化? 9、八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1 米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克. (1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每 张仍获利4.8元(五夹板必须整张购买): (2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34 元.试问购买五夹板和油漆共需多少钱? 六、人员分配调配问题: 10、某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍

一元一次方程基础练习题精品范本

一元一次方程部分周末作业单 解方程 : (1)5x-2=7x+8 (2)4x-2=3-x (3)-7x+2=2x-4 (4) 2x-31=3 x -+2 (5) -x=x 52-+1 (6)1-x 2 3 =3x+4 (7) 3(x-2)=2-5(x-2) (8) 2(x+3)-5(1-x)=3(x -1) (9) 3(1)2(2)23x x x +-+=+ (10) 3(2)1(21)x x x -+=--

(11) 2x -13 =x+22 +1 (12)124362 x x x -+--= (13) 38123x x ---= (14) 3142125 x x -+=- (15) 143321=---m m (16) 5 2 221+-=--y y y (17)12136x x x -+-=- (18) 223 146 x x +--= (1935.012.02=+--x x (19) 301 .032.01=+-+x x

第五章一元一次方程 第三节应用一元一次方程——水箱变高了 模块一预习反馈 一、预习准备 1、长方形的周长= ;面积= 2、长方体的体积= ;正方体的体积= 3、圆的周长= ;面积 = 4、圆柱的体积= 第三节应用一元一次方程——水箱变高了 模块二、教材精读 5、理解解应用题的关键是找等量关系列方程 将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变成了多少? 设锻压后圆柱的高为x 厘米,填写下表: 解:根据等量关系,列出方程: 解得x= 因此,“矮胖”形圆柱,高变成了 模块三形成提升 1、把直径6cm ,长16cm的圆钢锻造成半径为4cm的圆钢,求锻造后的圆钢的长。 2.小圆柱的直径是8厘米,高6厘米,大圆柱的直径是10厘米,并且它的体积是小圆柱体体积的2.5倍,那么大圆柱的高是多少? 3. 用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,问:需要截取多长的圆钢?

一元一次方程应用题及答案经典汇总大全

一元一次方程应用题类型知能点1:市场经济、打折销售问题 (1)商品利润=商品售价-商品成本价 (2)商品利润率= 商品利润 商品成本价 ×100% (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.

1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元? 2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? 3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为() A.45%×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50 C. x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折. 5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价. 知能点2:方案选择问题 6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行粗加工. 方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,?在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成. 你认为哪种方案获利最多?为什么? 8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a. (2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时??应交电费是多少元? 9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,?销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案? 10.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。 (1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费) (2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。 知能点3储蓄、储蓄利息问题 (1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做

一元一次方程应用题带答案

一元一次方程应用题带答案 1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完? 还要运x次才能完 29.5-3*4=2.5x 17.5=2.5x x=7 还要运7次才能完 2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90*2 18x=180 x=10 它的高是10米 3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个 4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800

x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵? 平均每行梨树有x棵 6x-52=20 6x=72 x=12 平均每行梨树有12棵 10、一块三角形地的面积是840平方米,底是140米,高是多少米? 高是x米 140x=840*2 140x=1680 x=12 高是12米 11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米? 每件儿童衣服用布x米 16x+20*2.4=72 16x=72-48 16x=24 x=1.5 每件儿童衣服用布1.5米 12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 女儿今年x岁 30=6(x-3) 6x-18=30 6x=48 x=8 女儿今年8岁 13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

一元一次方程应用题专题复习

一元一次方程全章专题训练 (一)方程、一元一次方程 <练习> 1.关于x 的方程(m -1)x 2+(m -2)x+4=0是一元一次方程,则m (二)是方程的解 1.如果x=-2是方程 ()()x a x a x -=++22 1 13的解,求代数式56a 2-a 的值。 2.小明在做解方程作业时,不小心将方程中一个常数污染了,被污染的方程是3x -,怎么办 呢?小明想了想,便翻开看了答案,方程的解是x=-3,他很快补好了这个常数,并迅速地完成了作业,请你补出这个常数。 (三)解相同 1.关于x 的方程4 ) 2(35)3(m 10-- =+-x m x x 与方程8-2x =3x -2的解相同,求m 的值。 (四)解方程 1.下列的叙述正确的是( ) A.若ac=bc ,则a=b; B .若 c b =c a ,则a=b; C .若a 2=b 2,则a=b ; D.若-31x =6,则x=-2 (五)应用题 找等量关系 有规律的 3个量 分量之和=总量 一个量的两种表示方法 题目中的一句话

【A.简单应用题】 1. 当x 等于什么值时,代数式 2x 3-与53 x 24-+互为相反数。 【B.行程问题】--------三个量: 1.汽车匀速行驶途径王家庄、青山、秀水三地的时间分别为10:00,13:00;15:00,翠湖在青山和秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远? (1)顺逆流问题:等量关系-----顺流路程=逆流路程 1.一架飞机在两个城市之间飞行,无风时飞机每小时飞行552千米,在一次往返飞行中,顺风飞行用了5.5小时,逆风飞行6小时,求这次飞行时风的速度。 2.一架飞机在无风情况下每小时航速为1200千米,该飞机逆风飞行一条x 千米的航线用了3小时,顺风飞行这条航线用了2小时,依照题意列出方程为1200- 3x =2 x -1200,这个方程表示的意义是 。 3.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需3小时,求无风的速度和两城之间的距离。 (2)相遇问题:等量关系-----S 相遇=S 甲+S 乙 1.甲乙两人相距33千米,分别以5千米/小时,6千米/小时的速度同时同向而行,甲所带的狗以7.5千米/小时的速度奔向乙,狗遇到乙后即回头奔向甲,遇到甲后又奔向乙,遇到乙后又奔向甲...直到甲乙相遇,求狗所走的路程。 2.电汽车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电汽车速度的5倍还快20千米/小时,半小时后两车相遇,两车的速度各是多少? 3.甲从A 地到B 地,乙从B 地到A 地,两人都匀速行驶,一只两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。求A,B 两地间的距离。

小学三年级应用题及答案

小学三年级应用题及答案 【篇一:小学三年级数学上册应用题练习题及答案】lass=txt>1、看线段图,先标出中间条件,再列式解答. 2、解答下面各题. ①学校买来篮球30个,足球16个.如果买的羽毛球再添4个就与篮球和足球的个数和同样多.买羽毛球多少个? ②学校买来篮球30个,足球16个.买羽毛球的个数是篮球与足球个数差的3倍.买羽毛球多少个? ③一本书有200页,小明看了96页,剩下的要在8天内看完.平均每天要看多少页?④一本书有200页,小明看了96页.看了的比没看的少几页? ⑤小力今年10岁,爸爸的年龄是他的4倍.3年后,爸爸多少岁? 3、提高题: a. 一幢六层楼,每层之间有20级楼梯,从楼下走到5层,要走多少级楼梯? b. 在一道减法算式中,已知被减数、减数与差的和是100,那么被减数是多少?参考答案 1、14+13=27(棵) 27-8=19(棵) 答:(略) 2、① 30+16=46(个) 46-4=42(个)答:(略) ④ 200-96=104(页) 104-96=8(页)答:(略) 3、a.思路分析:因为1--5层之间一共有4个间隔,所以从1层到5层走了4个20级,即80级. 答:要走80级楼梯. b.思路分析:由题中可知:被减数+减数+差=100,而减数加差就是被减数.因此,100是2个被减数的和. 小学三年级数学上册应用题练习题(3) 31、坐碰碰车每人3元,20人要多少钱? 答:人要60元。 32、每张门票8元,29个同学参观,带250元够吗? 250元>232元 答:带250元钱够了。 33、每瓶矿泉水2元,买20瓶需要多少钱? 答:买20瓶需要40元。 35、每箱苹果30千克,8箱有多少千克? 答:8箱有240千克。

一元一次方程应用题及答案

应用题 1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇? 2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。 3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数? 4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。 5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人? 6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?按比例解决

7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本? 8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗? 9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油? 10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人) 11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。 12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解) 13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)

一元一次方程应用题 (含答案)

一元一次方程应用题 列方程解应用题的一般步骤(解题思路) (1)审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系). (2)设出未知数:根据提问,巧设未知数. (3)列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值. (5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案. (注意带上单位) 一、相遇与追击问题 1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间 2.行程问题基本类型 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40 千米,设甲、乙两地相距x千米,则列方程为。 2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定 时间晚到15分钟;求从家里到学校的路程有多少千米? 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经 过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人 的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米? 6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的 速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

小学三年级应用题及解题思路教学文稿

小学三年级应用题及解题思路 提示:在分析一般应用题是题的数量关系时,一定要弄清题目中的条件和问题,哪些表示大数,哪些表示小数,哪些表示相差数,哪些表示部分数,哪些表示总数,哪些表示一倍数,哪些表示几倍数……。经常进行应用题练习,可以拓展自己的思维,提高解决实际问题的能力,使自己的头脑更加灵活、更加聪明。 例1、学校共买来600本图书,其中故事书480本,其余是连环画。故事书比连环画多多少本? 分析与解答:要求"故事书比连环画多多少本"必须知道故事书和连环画的本数,根据题意,应先求连环画的本数,再求多的本数。 (1) (2) 试一试1:庆"六、一"活动中,三(5)班做了50朵花,其中红花38朵,其余是绿花。红花比绿花多多少朵? 例2、李丽在百货大楼买了一件羽绒服和一条裤子,买羽绒服用去480元,是买裤子钱数的5倍,她给售货员600元,应找回多少元? 分析与解答:要求找回多少元,应知道一共用了多少元,要求一共用了多少元,应知道羽绒服和裤子分别用去多少元,所以应该先求买裤子钱数。 (1) (2) (3) 试一试2:同学们要做100面小旗,女同学做了56朵,是男同学做的2倍,还剩多少面没有做? 例3:果园里梨树的棵数是桃树的3倍,苹果树比桃树多280棵。果园里有苹果树820棵,有梨树多少棵?桃树、梨树、苹果树一共有多少棵?

分析与解答:要求梨树有多少棵,必须先求桃树有多少棵,最后再求一共有多少棵。 (1) (2) (3) 试一试3:饲养场养的鸡的只数是鸭的4倍,鹅比鸭少150只。饲养场养了200只鹅,养了多少只鸡?鸡、鸭、鹅一共多少只? 例4、在学校"科技节"上,四年级展出科技作品148件,五年级展出的作品件数比四年级的2倍还多14件,五年级展出多少件?比四年级多展出多少件? 分析与解答:根据题意要求五年级展出多少件,应知道四年级的件数,题中已知有。 (1) (2) (3) 试一试4:体育器械室有足球26只,排球的只数比足球的3倍少15只,排球有多少只?比足球多多少只? 例5、李强家到学校的距离是350米,比到文具店的距离少90米。学校到文具店的距离是李强家到学校的距离的2倍。李强放学后,先到文具店买铅笔再回家,李强要走多少米? 分析与解答:要求李强先到文具店买铅笔再回家要走多少米,应知道从从家到文具店的距离和学校到文具店的距离。 (1) (2) (3)

解一元一次方程50道练习题(经典、强化、带答案)

解一元一次方程(含答案) 1、71 2=+x ; 2、825=-x ; 3、7233+=+x x ; 4、735-=+x x ; 解:(移项) (合并) (化系数为1) 5、914211-= -x x ; 6、2749+=-x x ;7、162=+x ; 8、9310=-x ; 解:(移项) (合并) (化系数为1) 9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32 1 41+=-x x 解:(移项) (合并) (化系数为1 13、1623 +=x x 14、253231+=-x x ;15、152+=--x x ; 16、23 312+=--x x 解:(移项) (合并) (化系数为1) . 17、 4 75.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号) (移项) (合并) (化系数为1) 21、)12(5111+=+x x ; 22、32034)=-(- x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号) (移项) (合并) (化系数为1) 25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、3 232 36)=+(-x ; 解:(去括号) (移项) (合并) (化系数为1) 29、x x 2570152002+)=-( ; 30、12123)=+(x .31、452x x =+; 32、3 4 23+=-x x ; 解:(去分母) (去括号) (移项) (合并) (化系数为1)

一元一次方程计算题

1.)2(x-2)-3(4x-1)=9(1-x) 2. )11x+64-2x=100-9x 3. )15-(8-5x)=7x+(4-3x) 4. )3(x-7)-2[9-4(2-x)]=22 5)2(x-2)+2=x+1 6)0.4(x-0.2)+1.5=0.7x-0.38 7). 30x-10(10-x)=100 8). 4(x+2)=5(x-2) 12.)3(x-2)+1=x-(2x-1) 14.)14.59+x-25.31=0 15. )x-48.32+78.51=80 35. )0.52x-(1-0.52)x=80 46.)x -5 = ) 5(x - 47. ) )1 (2+ x = )1 (5+ x -1 48. ) 1 x +1 = 1 2+ x

70. ) 71.) 72.) 74. ) 75). 79. 216x +=21 3 x - 80. ) 13y -+24y +=3+2y 81.) 2(1)3x +-5(1)6x +=1 82. ) 0.10.03x --0.90.20.7 x -=1 83). 460.01x ---6.5=0.0220.02x ---7.5 87.) 43(1)323322x x ?? ---=???? 85).)12(43 )]1(31[2 1+=-- x x x 86.)2 233554--+=+-+x x x x ) 16. )7(2x-1)-3(4x-1)=4(3x+2)-1 17.) (5y+1)+ (1-y)= (9y+1)+ (1-3y) 18). 20%+(1-20%)(320-x)=320×40% 19. ) 2(x-2)-3(4x-1)=9(1-x) 21. 15-(8-5x)=7x+(4-3x) 22. ) 3(x-7)-2[9-4(2-x)]=22 24. ) 52 221+-=-- y y y 25. ))1(9)14(3)2(2x x x -=---

一元一次方程应用题专题训练

一元一次方程应用题归类汇集 一般行程问题(相遇与追击问题) 1.行程问题中的三个基本量及其关系: 路程=速度×时间时间=路程÷速度速度=路程÷时间 2.行程问题基本类型 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为 每小时40千米,设甲、乙两地相距x千米,则列方程为。 2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千 米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车 车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km, 骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴行人的速度为每秒多少米⑵这列火车的车长是多少米 6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千 米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因 事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。 8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下 发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度火车的长度是多少若不能,请说明理由。 9、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均 每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。 环行跑道与时钟问题: 1、在6点和7点之间,什么时刻时钟的分针和时针重合 2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地 同向出发,几分钟后二人相遇若背向跑,几分钟后相遇 3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵成平角;⑶成直角;

三年级数学应用题分类解法汇总完整版

小学三年级数学应用题分类解法一、一步简单应用题 (一)、求一个数的几倍,用乘法计算(解题方法:小数乘以倍数=大数) 1、小明今年9岁,爸爸的年龄是小明的5倍,爸爸今年多少岁? 分析:根据爸爸的年龄是小明的3倍,用乘法算出爸爸的年龄。 2、买一支笔2元钱,买60支这样的笔要多少钱? 分析:根据单价乘以数量=总价,即可解答。 (二)、求一个数是另一个数的几倍,用除法计算(解题方法:大数除以小数=倍数)3、小明今年9岁,爸爸今年45。爸爸的年龄是小明的几倍? 分析:用爸爸的年龄除以小明的年龄即可求出爸爸年龄是小明的几倍。 4、买一支笔2元钱,花120元可以买多少支这样的笔? 分析:根据总价除以单价=数量,即可解答。 1

5、三个同学做纸花。做了24朵红花,6朵黄花。红花是黄花的几倍? 分析:根据倍数除法的意义求解。 (三)已知一个数是另一个数的几倍,求另一个数,用这个数除以倍数(解题方法:大数除以倍数=小数) 6、爸爸今年45岁,是小明年龄的5倍,小明今年多少岁? 7、买一朵玫瑰花需要2元钱,用140元可以买多少支玫瑰花? 分析:根据总价除以单价=数量,即可解答。 8、饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只? 9、图书馆买来40本故事书,是科技书的5倍,科技书几本? 2

10、一只海狮重378千克,是一只企鹅体重的9倍。这只企鹅的体重是多少千克? 二、两步应用题 (一)几倍多几(解题方法:单位量乘以倍数加多的量) 1、文具店运来三箱红墨水,每箱100瓶。运来的蓝墨水比红墨水多200瓶,运来蓝墨水多少瓶? 分析:根据题意,用每箱红墨水的数量乘以3,再加200,即为蓝墨水瓶数。 2、一只猴子重25千克,一头熊猫的体重比猴子的6倍还多12千克一头熊猫的体重是多少? (二)几倍少几(单位量乘以倍数减去少的量) 3、、王大伯前年养猪2头,去年养猪头数是前年的3倍,到年底卖了4头,还有几头? 分析:根据题意,用前年养猪头数乘以3,再减去卖掉的4头,即剩下猪的头数。 4、一个牧民养了76只山羊,养的绵羊比山羊的4倍少16只。这个牧民养了多少只绵羊? 3

相关文档
相关文档 最新文档