文档库 最新最全的文档下载
当前位置:文档库 › 北京归纳推理题高效解题法 (15)

北京归纳推理题高效解题法 (15)

北京归纳推理题高效解题法 (15)
北京归纳推理题高效解题法 (15)

北京事业单位极值问题解题技巧

北京事业单位考试网为广大参加事业单位考试的考生整理了事业单位考试技巧,帮助大家备考。更多事业单位考试了解更多北京事业单位招聘信息,请点击北京事业单位考试网

事业单位考试中数学运算部分关于极值的问题,时常困扰着考生。下面中公教育专家为大家整理了关于极值问题的习题,通过例题的讲解,为大家提供这一类题目的解题技巧。

极值问题一:特定排名

该类问题一般表述为:若干个整数量的总和为定值,且各不相同(有时还会强调:各不为0或最大不能超过多少),求其中某一特定排名的量所对应的最大值或最小值。

解题技巧:将所求量设为n,如果要求n最大的情况,则考虑其它量最小的时候;反之,要求n最小的情况,则考虑其它量尽可能大。

【例1】5人的体重之和是423斤,他们的体重都是整数,并且各不相同,则体重最轻的人,最重可能重()。

A. 80斤

B. 82斤

C. 84斤

D. 86斤

【解析】体重最轻的人,是第5名,设为n。考虑其最重的情况,则其他人尽可能轻。

第四名的体重大于第五名n,但又要尽可能轻且不等于n,故第四名是n+1。同理,第三名至第一名依次大于排名靠后的人且取尽可能小的值,故依次为n+2,n+3,n+4。

五个人尽可能轻的情况下,总重量为n+n+1+n+2+n+3+n+4=4n+10。

实际总重量423应大于等于尽可能轻的总重量,故4n+10≤423,解得n≤82.6,所以n最大为82斤,答案选B。

极值问题二:多集合

该类问题一般表述为:在一个量的总和(即全集)里,包含有多种情况(即多个子集),求这多种情况同时发生的量至少为多少。

解题常用通法:多种情况交叉发生的量完全不知道,故无法正面求解,所以将题目转化为:至多有多少量并不是多种情况同时发生,也就是只要有一种情况不发生即可。求出题目中多个情况不发生的量,相加即可得到只要有一种情况不发生的最大值,再用总题量相减,即可得所求量。

计算通式:总和M,每种情况发生的量分别为a,b,c,d,则多种情况同时发生的量至少为M-【(M-a)+(M-b)+(M-c)+(M-d)】

【例2】某社团共有46人,其中35人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,这个社团至少有多少人以上四项活动都喜欢()?

A.5

B.6

C.7

D.8

【解析】每种活动不喜欢的人数分别为46-35=11人,16人,8人,6人。故四种活动都喜欢的反面——“四种活动不都喜欢”——即只要有一种活动不喜欢的人数最多为

11+16+8+6=41人,所以四种活动都喜欢的人数最少为46-41=5人,答案选A。

极值问题三:同色抽取

该类问题一般表述为:有若干种不同颜色的纸牌,彩球等,从中至少抽出几个,才能保证在抽出的物品中至少有n个颜色是相同的。

解题常用通法:先对每种颜色抽取(n-1)个,如果某种颜色的个数不够(n-1)的,就对这种颜色全取光,然后再将各种颜色的个数加起来,再加1,即为题目所求。

【例3】从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同。

A. 21

B. 22

C. 23

D. 24

【解析】先对四种常见花色“桃杏梅方”各抽取n-1=5个,总共抽取5×4=20张。

考虑到这是一副完整的扑克牌,再对特殊的花色“大小王”进行抽取,大小王只有2张,不够n-1的要求,就对其全部取光,总共抽取2张。

将以上各种颜色的个数加起来,再加1,即5×4+2+1=23张,即为所求,答案选C。

综上所述,中公教育专家提示:考生们在平时的练习中要善于归纳总结,将同类型的题目的解题思路进行整合,希望大家可以通过极值问题的解答,能够细细揣摩,举一反三,通过反复的练习和解题经验的总结,从而轻松地应对极值问题的测试!

更多北京事业单位考试信息、考试资讯尽在北京事业单位考试网

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

公务员考试之数字推理类(解题规律总结)

公务员考试之数字推理类(解题规律总结) 本文包括以下两部分: 一、数量关系测验类 (一)、考点分析 (二)、解题技巧及规律总结 (三)、题型分析 二、数学题快速获得答案方法之-----十字相乘法 一、数量关系测验类 (一)、考点分析 数量关系测验主要是测验考生对数量关系的理解与计算的能力,体现了一个人抽象思维的发展水平。在行政职业能力测验中,数量关系测验主要是从数字推理和数学运算两个角度来考查考生对数量关系的理解能力和反应速度。 数量关系测验含有速度与难度的双重性质。在速度方面,要求考生反应灵活活,思维敏捷;在难度方面,其所涉及的数学知识或原理都不超过小学与初中水平,甚至多数是小学水平。如果时间充足,获得正确答案是不成问题的。但在一定的时间限制下,要求考生答题既快又准,这样,个人之间的能力差异就显现出来了。可见,该测验难点并不在于数字与计算上,而在于对规律与方法的发现和把握上,它实际测查的是个人的抽象思维能力。因此,解答数量关系测验题不仅要求考生具有数字的直觉能力,还需要具有判断、分析、推理、运算等能力。 1.数字推理 数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。 在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与

前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。 两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。 由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。 需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。 此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。 在做这些难题时,有一个基本思路:“尝试错误”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。 2.数学运算 数学运算题主要考查解决四则运算等基本数字问题的能力。在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。 数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

高中数学解题八个思维模式和十个思维策略

高中数学解题八种思维模式 和十种思维策略 引言 “数学是思维的体操” “数学教学是数学(思维)活动的教学。” 学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。 高中数学思维中的重要向题 它可以包括: 高中数学思维的基本形式 高中数学思维的一般方法 高中数学中的重要思维模式 高中数学解题常用的数学思维策略 高中数学非逻辑思维(包括形象思维、直觉思维)问题研究; 高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究; 高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性 高中数学思维的基本形式 从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维 一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式。3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。 二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感。6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。7图形

商业资料数字推理题的解题技巧

A thesis submitted to in partial fulfillment of the requirement for the degree of Master of Engineering 目录:单击进入相应的页面 目录:F (1) 第一部分:数字推理题的解题技巧..2 第二部分:数学运算题型及讲解 (6) 第三部分: 数字推理题的各种规律..8 第四部分:数字推理题典!! (16) (数字的整除特性) (62) 继续题典 (65) 本题典说明如下:本题典的所有题都适用!1)题目部分用黑体字 2)解答部分用红体字 3)先给出的是题目,解答在题目后。 4)如果一个题目有多种思路,一并写出.

5)由于制作仓促,题目可能有错的地方,请谅解!!! ts_ljm 06-3-7中午第一部分:数字推理题的解题技巧 行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。应广大版友,特别是MM版友的要求,甘蔗结合杨猛80元书上的习题,把自己的数字推理题解题心得总结出来。如果能使各位备考的版友对数字推理有所了解,我在网吧花了7块钱打的这篇文章也就值了。 数字推理考察的是数字之间的联系,对运算能力的要求并不高。所以,文科的朋友不必担心数学知识不够用或是以前学的不好。只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。抽根烟,下面开始聊聊。 一、解题前的准备 1.熟记各种数字的运算关系。 如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数字推理题材的前提。常见的需记住的数字关系如下: (1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400 (2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000 (3)质数关系:2,3,5,7,11,13,17,19,23,29...... (4)开方关系:4-2,9-3,16-4...... 以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。当看到这些数字时,立刻就能想到平方立方的可能性。熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。 2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。根号运算掌握简单规律则可,也不难。

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数字推理题的解题技巧大全

数字推理题的解题技巧大全 篇一:2019数字推理题的解题技巧大全剖析(5) 2019数字推理题的解题技巧大全剖析(5) 1、102,96,108,84,132,( ) A.36 B.64 C.70 D.72 2、1,32,81,64,25,(),1 A.5 B.6 C.10 D.12 3、-2,-8,0,64,( ) A.-64 B.128 C.156 D.250 4、2,3,13,175,( ) A.30625 B.30651 C.30759 D.30952 5、3,7,16,107,( ) A.1707 B.1704 C.1086 D.1072 1.A【解析】拿到题一看,数列5项呈现一大一小的波浪型,可知运用交替规律,进一步思考就可得出结果是A. 2.B【解析】数字由小到大再到小,立即考虑使用乘方规律。本题就是乘方规律的变化运用,底数分别是1,2,3,4,5,6,对应的指数分别是6,5,4,3,2,1. 3.D【解析】可以看出给出的数字稍加变化都是一些数的乘方,分析一下可知是自然数1,2,3,4立方的各项,对应乘以另一个数列-2,-1,0,1所得,下一个应该是5的立方乘以2,得出答案是D.

4.B【解析】这道题更加明显,四个选项的数字很大,必用乘方规律。可以看出175的平方是30625,但不适用前面项,又知30651比175的平方大26,恰好是前一项13的2倍。推算可知,前项的2倍加上后项的平方等于第三项,因此,答案就是B. 5.A【解析】同样,这道题的四个选项也比较大,但可以看出这些数和一些数的乘方离得较远。再看能不能用乘法呢?从前两项直接是看不出的,但是我们发现16与107的积和1707相近,相差5,往前推发现,前两项的积减去5就等于后一项,因此答案是A. 篇二:考前必看数字推理题的解题技巧大全技巧归纳 写在前面的话 数字推理是行测中很多人眼里的“难题”,面对题目时有人因为惧怕而格外重视,也有人因为不会做而彻底放弃。我自己同样很怕做数字推理题。想过放弃,也想过题海战术,不过最后发现这两种方法都有不切实际的地方。放弃,显然是不可能的。因为不可能保证其他部分都做对,来补回放弃的这些分数。题海,也不科学。行测、申论,再加上法律加试,这么多类型中,数字推理只是一小部分了。把大部分精力放在小部分题目上,只能是弊大于利了。所以我最终选择的是:掌握最基本的,保证基础题目不丢分。放弃有难度的,保证学习和做题有效率。当然,这种方法只适合我这样对数字没什么感觉的人了,如果你学有余力,完全可以精益求精。 常见且易被忽视的数列: 1、质数列:(质数—只有1和其本身两个约数)2,3,5,7,

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

2018国家公务员考试如何掌握集合推理三个换位命题

2018国家公务员考试如何掌握集合推理三个换位命题 国家公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。 集合推理,是判断推理中的重要题型之一,很多考生对这类题目可谓是敬而远之,因为较难掌握,较难运用。然而,想要玩转集合推理,三个换位命题的掌握便是重中之重。 (一) 所有的S是P→有的P是S 值得注意的是,在三个换位命题中,这是唯一一个只能单向推出的命题,举个例子,由所有吴京的粉丝都看过《战狼2》(所有的S是P),可以推出:有的看过《战狼2》的人是吴京的粉丝(有的P是S),但不能推出所有看过《战狼2》的人是吴京的粉丝。相反的,有的女士喜欢包包(有的P是S),却不能推出所有喜欢包包的都是女士(所有的S是P)。因此,两个命题不能相互推出。 (二) 所有的S不是P?所有的P不是S 所有的央视新闻都不是虚假的(所有的S不是P)与所有虚假的新闻都不是央视播出的(所有的P不是S),这两句话可以相互推出。 (三) 有的S是P?有的P是S 有的王者荣耀的玩家是小学生(有的S是P)和有的小学生是王者荣耀玩家(有的P是S),这两句话可以相互推出。值得注意的是,“不是所有的S都是P”与“有的S不是P”等价,例如,不是所有的牛奶都叫特仑苏,可以推出:有的牛奶不是特仑苏。 掌握了这三个换位命题后,我们不妨来看一个例题。 【例】某科研机构的员工情况是:并非所有工程师都不是研究生,所有的工程师都是男性。根据以上陈述,可以得出以下哪项( )

A.有的男性不是工程师 B.有的男研究生不是工程师 C.有的研究生是男性 D.有的研究生是女性 本题解题思路如下: 并非所有工程师都不是研究生→有的工程师是研究生→有的研究生是工程师。 由“有的研究生是工程师”与“所有的工程师都是男性”可以推出:有的研究生是男性,因此,C项正确。 事实上,通过本题我们可以发现有一些易错项,由“有的研究生是男性”可以推出“有的男性是研究生”,但不能推出“有的男性不是工程师”,所以A、D项均不正确,即:“有的S是P”,无法推出“有的S不是P”。 三个换位命题的掌握是集合推理的核心,对于不易记忆的结论,建议大家带入具体的例子或者理解记忆,以防止记混、记错。

数字推理解题技巧

数字推理解题技巧 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

数字推理是我国目前所有公务员考试行政能力测试的必考题形之一,主要考察考生对数字和基本数列的敏感程度,也是反映考生基本思维能力的重要手段。增加这方面的练习也能有效的锻炼考生正确的思维方式,对图形推理和类比推理等一些题型的深度把握也有重要的意义。今天,我们就来讲一讲,数字推理中应用到的三种思维模式。 首先我们要说的是三种思维模式中的第一种,也是最基本的思维模式,那就是横向递推的思维模式。 横向递推的思维模式是指在一组数列中,由数字的前几项,经过一定的线性组合,得到下一项的思维模式。举个简单的例子。 5 11 23 47 ( ) 根据横向递推的思维模式,思考方向是如何从5得到11,会想到乘2再加1,按照这样的思路继续向下推,发现,每一项都是前一项的2倍再加1,于是找出规律,这里应该填95。 再举一例。 2 3 5 8 13 ( ) 这个数列是大家都比较熟悉的一个基本数列,和数列。这一类数列是前几项加和会得到下一项。这里应该填8于13的和,21。 我们总结一下横向递推思维模式的解题思路特点,在这种思维模式的指导下,我们总是习惯于在给出数列的本身上去找连续几项之间的线性组合规律,这也是这一思维模式的根本所在。 相较于横向递推思维模式,稍为复杂的就是纵向延伸的思维模式。他不再是简单的考虑数列本身,而是把数列当中的每一个数,都表示为

另外一种形式,从中找到新的规律。我们一起来看一个例子。 1/9 1 7 36 ( ) 注意这样一个数列,如果我们把36换成35的话,我们会发现,前后项之间会出现微妙的倍数变化关系,即后向除前项得到数列9 7 5 3,这里可以填上105。但这里时36的话就没有这样的倍数变化关系了。 那么我们可以用纵向延伸的思维模式,把数列中每一个数字都用另外一种形式来表述,即9-1 80 71 62 53,这里可以填125。 通过以上两种思维模式的简单介绍,我们可以总结出,实际上,数字推理这种题型的本质就在于考察数字与数字之间的位置关系,以及数字与数字之间的四则运算关系,考生只要能把握住这样两点,很多题目就都可以迎刃而解了。 当然,对于一个古典型数字推理来讲,横向与纵向只是其中最简单的最基本的位置关系,相对较为复杂的,是网状的位置关系,也就是我们接下来要谈到的,构造网络的思维模式。请大家看这样第一个例题。 2 12 6 30 25 100 ( ) 我们先来观察一下这个题目,通过观察,可以很容易的看出,这里面每两项之间都有一个明显的倍数关系,我们可以根据这样的规律把原来的数列变成 2 12 6 30 25 100 ( ) 6 5 4 实际上,如果后面有两个数需要我们填的话我们可以确定,它们之间应该是3倍的关系,但现在只需要我们写出下一个数字是多少。这个

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

数学解题技巧与解题思路

解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后, 如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+...+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

逻辑判断推理技巧大全

逻辑判断推理技巧大全 一、演绎推理 1. 指的是通过一些的前提来论证从而推断出某个结论。 2. 基本原则:头脑清空原则(按人家来,不要按自己的来) 题设为真原则(人家题设说的是绝对不可怀疑的) 形式统一原则 3. 解题步骤:(1)看问题,定题型; (2)看题目,做简化; (3)据技巧,得答案。 4. 演绎推理的分类: (1)论证类 ——加强论证型 ——减弱论证型 (2)结论类 ——形式推理结论类:侧重规则的考察 ——日常推理结论类:侧重脉络的考察 (一)形式推理结论类 1. 分类:有真有假型;翻译推理型(强调对于肯定确定信息的认识);排列组合型(匹配型的题型);集合运算型(很像数学的一种题型) 2. 有真有假型: (1)首先看矛盾;其次看包容;然后看反对;最后带题中(实在不行就代入排

除法) (2)矛盾关系:必然一真一假,两者构成整个全集,如生和死; ——A:其矛盾关系为否A A且B:其矛盾关系为否(A且B)即否A或否B A或B:其矛盾关系为否(A或B)即否A且否B A能够推出B:其矛盾关系为A且否B 所有:其矛盾关系为有的不 必然:其矛盾关系为可能不 ——即首先要寻找矛盾关系,然后根据题目中的真假结论来得出其他几个关系的真假,从而得出相应的最后答案 ——能用在很多地方,不光是在这里。比如说在后来的削弱关系中,矛盾是最强的削弱关系 ——构成矛盾关系的主体一定相同,这是观察矛盾关系的一个重要判断指标。(3)包容关系: ——当不能发现矛盾关系时,我们就要看包容关系,即寻找看几个关系之间是否存在包容。 ——即要寻找包容关系,几个关系如果为包容关系,则他们同时为真或为假(这和矛盾关系刚好相反),然后根据题目中的真假结论来得出其他几个关系的真假,从而得出相应的最后答案。 ——若A能推出B:则包容关系为若A为真则B为真+若B为假则A为假 只有一真,则A必为假——即“一真前假” 只有一假,则B必为真——即“一假后真”

数字推理解题方法汇总篇

数字推理解题方法汇总篇~~~~~~~~个人总结,让数推不纠结 第一部整体特征分析 一、项数较多或有两个括号 特点:项数较多,超过6个或者6个以上,或者是数列中有两个括号; 技巧:1、交叉分组 2、两两分组 注意,(1)如果数列中出现两个括号,那么一定要采用交叉分组来解答。 (2)当我们两两分组不能得到规律时,可以考虑三三分组,当试题很难时会出现首尾项为一组,不过这种情况比较少见。 ********************************************************* **************************** 例1:257,178,259,173,261,168,263,() A.163 B.164 C.178 D.275 【分析】数列比较长,所以先交叉分组。 奇数项数列:257、259、261、263 等差数列; 偶数项数列:178、173、168、()等差数列; 显然原数列是163,选A。 例2:5,24,6,20,4,(),40,3 A.28 B.30 C.36 D.4 2

【分析】数列较长,交叉分组后奇数项数列变化很大,不存在什么规律,考虑两两分组,组内做四则运算。 两两分组后发现,6、20与40、3的乘积一样,也等于24×5,所以未知项为30。 ********************************************************* **************************** 二、数列中存在分数 数列中存在分数,无非有两种情况,一种是分数的个数多于整数,一种是分数的分数少于分数,但是无论是那种情况都有对应的解题方法。 当分数的个数多于整数个数的时候,其实这就是我们常说的分数数列,在解答分数数列的时候用到的技巧主要有:约分、通分、反约分、做差、做积或者考虑前后项的关系;需要注意的是约分、通分的年代已经过去了,做差和做积的在浙江出现过,最流行的还非反约分、前后项关系莫属。 当分数的个数少于整数个数的时候,一般会有两种情况: 1、数列呈现橄榄枝型,此时应考虑多次方数列; 2、数列具有单调性,且只有一项或者两项分数,此时考虑等比数列或者递推数列,递推的规律是前两项的和或者乘积除以某个数值。 ********************************************************* ********************** 例1:5,3,7/3,2,9/5,5/3,() A.13/8 B.11/7 C.7/5 D.1

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

【专题整理】【解答题】【数学归纳法、放缩法】【数列】

数学归纳法和放缩法 放缩法证明不等式 1、添加或舍弃一些正项(或负项) 【例1】已知:* 21().n n a n N =-∈,求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈. 【解析】 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-,1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->-,*122311...().232 n n a a a n n n N a a a +∴-<+++<∈. 【点评】若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 【例2】函数x x x f 4 14)(+=,求证:2121)()2()1(1-+>++++n n n f f f (*∈N n ). 【解析】 由n n n n n f 2 21 14111414)(?->+-=+=得:n n f f f 221122112211)()2()1(21?-++?-+?- >+++ 2 1 21)21211(4111-+=+++-=+-n n n n (*∈N n ). 【点评】此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式.如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可. 3、先放缩,后裂项(或先裂项再放缩) 【例3】已知:n a n =,求证: 31 2 <∑=n k k a k .

相关文档
相关文档 最新文档