文档库 最新最全的文档下载
当前位置:文档库 › 6se70变频器调试及故障排除

6se70变频器调试及故障排除

6se70变频器调试及故障排除
6se70变频器调试及故障排除

6se70变频器调试及故障排除

发布者:admin 发布时间:2009-1-4 阅读:393次

6se70变频器调试及故障排除

变频调试部分

变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每

一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况

有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。

一加减速时间

加速时间就是输出频率从0 上升到最大频率所需时间,减速时间是指从最大频率下降到

0 所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频

率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引

起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频

器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减

速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,

以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。

二转矩提升

转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而

把低频率范围f/V 增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,

使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过

试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费

电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。三电子热过载保护

本功能为保护电动机过热而设置,它是变频器内CPU 根据运转电流值和频率计算出电

动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则

应在各台电动机上加装热继电器。

电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。

四频率限制

即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出

故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况

设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械

和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮

带输送机运行在一个固定、较低的工作速度上。

五偏置频率

有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行

设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率

设定信号为0%时,偏差值可作用在0~fmax 范围内,有的变频器(如明电舍、三垦)还可对

偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为

xHz,则此时将偏置频率设定为负的xHz 即可使变频器输出频率为0Hz。

六频率设定信号增益

此功能仅在用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频

器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信

号为最大时(如10v、5v 或20mA),求出可输出f/V 图形的频率百分数并以此为参数进行设

定即可;如外部设定信号为0~5v 时,若变频器输出频率为0~50Hz,则将增益信号设定为

200%即可。

七转矩限制

可分为驱动转矩限制和制动转矩限制两种。它是根据变频器输出电压和电流值,经

CPU 进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。转矩限

制功能可实现自动加速和减速控制。假设加减速时间小于负载惯量时间时,也能保证电动机

按照转矩设定值自动加速和减速。

驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,

而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,

也不会引起变频器跳闸。在加速时间设定过短时,电动机转矩也不会超过最大设定值。驱动

转矩大对起动有利,以设置为80~100%较妥。

制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数

值设置过大会出现过压报警现象。如制动转矩设定为0%,可使加到主电容器的再生总量接

近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。但在有的负

载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流

大幅度波动,严重时会使变频器跳闸,应引起注意。

八加减速模式选择

又叫加减速曲线选择。一般变频器有线性、非线性和S 三种曲线,通常大多选择线性

曲线;非线性曲线适用于变转矩负载,如风机等;S 曲线适用于恒转矩负载,其加减速变化

较为缓慢。设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉

引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变

许多参数无效果,后改为S 曲线后就正常了。究其原因是:起动前引风机由于烟道烟气流

动而自行转动,且反转而成为负向负载,这样选取了S 曲线,使刚起动时的频率上升速度

较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用

的方法。

九转矩矢量控制

矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。矢量

控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合

成后的定子电流输出给电动机。因此,从原理上可得到与直流电动机相同的控制性能。采用

转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行

区域。

现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行

转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外

部设置速度反馈电路。这一功能的设定,可根据实际情况在有效和无效中选择一项即可。

与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对

应于负载电流的转差频率。这一功能主要用于定位控制。

矢量控制又叫磁场定向控制,他的基本思想:把异步机经过坐标变换等效成直流机,,然后仿

照直流机的控制方法,求得直流电动机的控制;再经过相应的坐标变换,就可以控制交流机了。

下面详细介绍一下矢量控制的基本思想: 他是以旋转磁场不变为准则,进行坐标变换。首

先是把三相静止坐标系下得定子交流电流ia,ib,ic,通过三相/ 两相变换,等效成两相静止坐标

下得交流电流iα1,iβ1。然后,再把两相静止电流iα1,iβ1,通过转子磁场定向得旋转变

换VR,等效成两相旋转坐标系下得电流iM1,iT1。此时如果观察者站在铁心上与坐标系一

起旋转,他所看到得就是一台直流电机,原交流电机的总磁通就是等效直流电机的磁通,

iM1 相当于直流电机的励磁电流,iT1 相当于直流机的电枢电流。这样从外部看,他是一台

交流电机;从内部看,他是一台经过变换的直流电机。

可以看到在矢量控制中,定子电流被分解为互相垂直的两个分量iM1,iT1,其中iM1 用

以控制转子磁链,称为磁链分量,iT1 用于调节电机转矩,称为转矩分量。因此,矢量控制

的最终结果就是实现了定子电流分解,分别进行转子磁链和电磁转矩的解藕控制。

关于功率、转矩、转速之间关系的推导如下:

功率=力*速度

P=F*V---公式1

转矩(T)=扭力(F)*作用半径(R)------推出F=T/R---公式2

线速度(V)=2πR*每秒转速(n 秒)=2πR*每分转速(n 分)/60=πR*n 分/30---公式3

将公式2、3 代入公式1 得:

P=F*V=T/R*πR*n 分/30=π/30*T*n 分-----P=功率单位W,T=转矩单位Nm,n 分=每分钟

转速单位转/分钟

如果将P 的单位换成KW,那么就是如下公式:

P*1000=π/30*T*n

30000/π*P=T*n

30000/3.1415926*P=T*n

9549.297*P=T*n

T=9550*P/n

这就是为什么会有功率和转矩*转速之间有个9550 的系数的关系。。。

适用于伺服电机额定功率、额定转速和额定转矩之间的关系互导,但实际的额定转矩值应该

是实际测量出来为准,因为有能量转换效率问题,基本数值大体一致,会有细微

减小。

十节能控制

风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,

而具有节能控制功能的变频器设计有专用V/f 模式,这种模式可改善电动机和变频器的效

率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置

为有效或无效。

要说明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,根本无

法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。究其原因有:(1)原用电

动机参数与变频器要求配用的电动机参数相差太大。(2)对设定参数功能了解不够,如节能

控制功能只能用于V/f 控制方式中,不能用于矢量控制方式中。(3)启用了矢量控制方式,但

没有进行电动机参数的手动设定和自动读取工作,或读取方法不当。

只要把使用时原出厂值不合适的予以重新设定就可,例如外部端子操作、模拟量操作、基底

频率、最高频率、上限频率、下限频率、启动时间、制动时间(及方式)、热电子保护、过流

保护、载波频率、失速保护和过压保护等是必须要调正的。当运转不合适时,再调整其他参

数。

整流单元调试步骤

1.1 出厂参数设定

P052=1 选定建立工厂设置功能

按下“P”键,运行显示“001”,根据P077 对所有参数进行工厂设置。

结束工厂设置后,显示“008”或“009”。

1.2 标准应用设置

P051=2 存取级“标准模式”

P053=7 参数设置权限使能“CB+PMU+SST1&OP”

P052=5 传动系统设置

P071=400 电源电压

P052=21 选择电路识别功能

在PMU 按下“I”键,进行电路识别,约需10s。如果出现故障,则必须重新识别。(r947,r949 显示故障码和故障值)

P052=0 选定返回功能。

1.3 其他设置

P554.1=P555.1=1010 由PMU 输出分闸指令,在分闸前不等待中间回路电压放电至1.35×P071 的20%。

P603.1=1001 端子17/18 故障输出

P555.1=1005 端子13 急停

P70 设置MLFB

6SE70 变频装置调试步骤

一.内控参数设定

1.1 出厂参数设定

P053=7 允许CBP+PMU+PC 机修改参数

P60=2 固定设置,参数恢复到缺省

P366=0 PMU 控制

P970=0 启动参数复位

执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器

的设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机

调试。

1.2 简单参数设定

P60=5 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数

P071= 进线电压(变频器400V AC / 逆变器540V DC)

P95=10 IEC 电机

P100=1 V/F 开环控制

3 不带编码器的矢量控制

4 带编码器的矢量控制

P101= 电机额定电压

P102= 电机额定电流

P107= 电机额定频率HZ

P108= 电机额定速度RPM

P114=0 标准应用系统

P115=1 自动参数设置

P368=0 设定和命令源为PMU+MOP

P370=1 启动简单应用参数设置

P60=0 结束简单应用参数设置

P128=最大输出电流A

P571=6 PMU 正转

P572=7 PMU 反转

P462=2 从静止加速到参考频率的时间, P463=0(单位为秒S)

P464=2 从参考频率减速到静止的时间, P465=0(S)

执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手

册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。

1.3 调试说明

先将P100=3, P130=11 电机旋转,校验编码器的反馈波形是否正确

编码器波形正确的前提下,设定P100=4,P130=11,P151=1024。进行P115=2,4,5 的参

优化,保证编码器矢量控制的稳定运行。

P115=2 静止状态电机辨识按P 后,警告号A087 出现后,必须在20S 内启动电机。

P115=4 空载测试。按P 后,警告号A080 出现后,必须在20S 内启动电机。等待至开机信号O009

P536=50% or 100% 速度环优化快速响应指标

P115=5 速度调节器优化

按P 后,警告号A080 出现后,必须在20S 内启动电机。等待至开机信号O009 输入三个参数后均需按合闸按钮启动优化过程,该优化只适用于100=3,4 的控制方式

1.3 系统参数设置

P60=5

P115=1 电机模型自动参数设置,根据电机参数设定自动计算

P130=10 无编码器

11 有编码器(P151 编码器每转脉冲数)

P350=电流量参考值A

P351=电压量参考值V

P352=频率量参考值HZ

P353=转速量参考值1/MIN

P354=转矩量参考值NM

P452=正向旋转最大频率或速度%(100%=P352,P353)

P453=反向旋转最大频率或速度%(100%=P352,P353)

P60=1 回到参数菜单,不合理的参数设置导致故障

补充参数设定如下

P643.1=10V×电机最高频率/频率表最大指示

P643.2=10V×电机最大电流/电流表最大指示

P492=150% 电机转矩正限幅

P498=-150% 电机转矩负限幅

P602=1s 预励磁时间

P278=100% 无编码器速度控制中,所需最大静态转矩

P383=1000s 电机热时间常数

P384.1=150,P384.2=200 电机过载报警和停机门槛值。

二. 辅助功能设置

2.1 相关参数设定

P651.1=104 开关量端子3 输出功能,变频运行指示。

P652.1=106 开关量端子4 输出功能,变频故障指示。

P653.1=0 禁止开关量端子5 输出功能,允许开关量输入功能

P654.1=0 禁止开关量端子6 输出功能,允许开关量输入功能 ;

P795=KK148 选择需要比较的实际值的源

零速定义:

P796=2% 转速大于或等于2%时状态字bit10 为1

P797=1% 回环宽度,比较频率滞后值

P798=0.1s 延迟时间

2.2 抱闸功能参数设定

U953.48=2 使能制动功能块

P605=2 带抱闸反馈的控制功能使能

P561=278 逆变器使能控制

P564=277 设定值允许控制

P652=275 从端子4 输出控制抱闸开闭

P613=17 抱闸闭合反馈

P612=16 抱闸打开反馈

P615=148 实际速度作为抱闸控制源2

P616=1.5 最高速度的1.5%作为抱闸门限值,此参数设定要大于P800 参数设定P800=0.5 实际速度的0.5%作为装置封锁门限

P607=0.2 抱闸接触器反馈动作延时

P617=0 抱闸信号延时

P801=0.2S

P610=184

P556.01=18 抱闸开闭准备好作为电机启动必要条件(端子101:7,0=OFF2)

P611=0 转矩门槛值设定

三. 外控参数设定

所有上述参数设定要在内控状态下设定完成。

P362=12 将第一个电机数据组MDS 拷贝到第二个电机数据组

P363=12 将第一个BICO 数据组拷贝到第二个BICO 数据组

P364=12 将第一个功能数据组拷贝到第二个功能数据组

功能数据组选择

P576.01=P576.02=22 内外控参数选择

P578.01=P578.02=22 内外控参数选择

P590 =22 内外控参数选择

外控命令组参数设定

P443.B(01)=58 P443.B(02)=3002 内外控速度设定

P554.B(01)=5 P554.B(02)=3100 控制字的源

P571.B(01)=6, P571.B(02)=1 正转给定的源

P572.B(01)=7, P572.B(02)=1 反转给定的源

P555.2=14 外部急停命令

P384.1=130%, P384.2=150%

四. 通讯参数设定

P60=4 通讯板配置

P712=2 PPO TYPE(1,2,3,4,5) 2 : 4PKW+6PZD

P722=0 禁止通讯故障

P918= DP 总线地址

P60=1 返回参数菜单

传动反馈到PLC 的通讯字设定

P734.1=32 装置状态字1

P734.2=148 传动的速度反馈

P734.3=22 变频电流反馈

1.通讯方式的设定:PPO 4,这种方式为0 PKW/6 PZD,输入输出都为6 个PZD,(只需要在STEP7

里设置,变频器不需要设置);

PROFIBUS 的通讯频率在变频器里也不需要设置,PLC 方面默认为1.5MB.

在P60=7 设置下,设置P53=3,允许CBP(PROFIBUS)操作.

P918.1 设置变频器的PROFIBUS 地址.

2., 设置第一个输出的PZD 为变频器给PLC 的状态字,设置第二个为变频器反

馈给PLC 的

实际输出频率的百分比值, 第三个为变频器反馈给PLC 的实际输出电流的百分

比值

因此参数设置如下:P734.1=32 P734.2=148 P734.3=22

3. 设置第一个输入的PZD 为PLC 给变频器的控制字PLC 给变频器的第一个PZD 存储在变

频器里的K3001 字里.

K3001 有16 位,从高到底为3115 到3100(不是3001.15 到3001.00).

变频器的参数P554 为1 时变频器启动为0 时停止,P571 控制正转,P572 控制

反转.

如果把P554 设置等于3100,那么K3001 的位3100 就控制变频器的启动与停止,P571 设置

等于3101 则3101 就控制正转,P572 设置等于3102 则3102 就控制反转.(变频器默认P571

与P572 都为1 时正转,都为0 时为停止).

经过这些设置后K3001 就是PLC 给变频器的第一个控制字.

此时K3001 的3100 到3115 共16 位除了位3110 控制用途都不是固定的,所以当设置P554

设置等于3101 时则3101 可以控制启动与停止,

P571 等于3111 时则3111 控制正转, P572 等于3112 时则3112 控制反转等等. K3001 的位3110 固定为“控制请求”,这位必须为1 变频器才能接受PLC 的控制讯号,所

以变频器里没有用一个参数对应到这个位,

必须保证PLC 发过来第一个字的BIT 10 为1.

这里设置为:P554=3100,P571=3101,P572=3102, 当PLC 发送W#16#0403 时( 既0000,0100,0000,0011)变频器正转.

4.PLC 给变频器的第二个PZD 存储在变频器里的K3002 字里.

变频器的参数P443 存放给定值.

如果把参数P443 设置等于K3002,那么整个字K3002 就是PLC 给变频器的主给定控制字.

PLC 发送过来的第二个字的大小为0 到16384(十进制),(对应变频器输出的0

到100%),当

为8192 时,变频器输出频率为25Hz., 这方面得参照参数P352=?频率量参考值HZ

5.变频器的输出给PLC 的第一个PZD 字是P734.1,第二个PZD 字是P734.2,等等.

要想把PLC 接收的第一个PZD 用作第一个状态字,需要在变频器里把

P734.1=0032(既字

K0032),

要想把PLC 接收的第二个PZD 用作第二个状态字,需要在变频器里把

P734.2=0033(既字

K0032).

(K0032 的BIT 1 为1 时表示变频器准备好,BIT 2 表示变频器运行中,等等.) (变频器里存贮状态的字为K0032,K0033 等字,而变频器发送给PLC 的PZD 是

P734.1,P734.2 等)

6.程序:(建立DB100,调用SFC14,SFC15,6SE70 的地址为512 既W#16#200)

A. 读出数据

CALL "DPRD_DAT"

LADDR :=W#16#200

RET_VAL:=MW200

RECORD :=P#DB100.DBX0.0 BYTE 12(读取12 个BYTE)

NOP 0

B. 发送数据

CALL "DPWR_DAT"

LADDR :=W#16#200

RECORD :=P#DB100.DBX12.0 BYTE 12(写入12 个BYTE)

RET_VAL:=MW210

NOP 0

控制字定义:

变频器的工作状态可在只读参数r001 读出:例如,开机准备:r001 = 009。

实际实现功能过程描述如下:

功能图180 和190 参见使用大全中的功能图。

位0:ON/OFF1 命令(↑“ON”)(L“OFF1”)

条件在开机准备状态(009)从L→H 上升沿发生。

主接触器(选件)/旁路接触器,如有则接通。直流回路进行预充电。

位1: OFF2 命令(L“OFF2”)电气的

条件低信号

结果逆变器脉冲被封锁,主接触器(选件)/旁路接触器如有的话则断开。开机封锁(008),直

到命令取消

注意 OFF2 命令可以从三个源(P555,P556 和P557)同时作用!

位2: OFF3 命令(L“OFF3”)(快停)

条件低信号该命令有两个可能的作用:DC 制动被激活(P395 = 1) :

DC 制动(017)

系统按参数设定的OFF3 (P466)下降时间减速,直到DC 制动频率(P398)。

位3:逆变器使能命令(H“逆变器使能”)/(L“逆变器封锁”)

位4:斜坡函数发生器封锁命令(L“RFG 封锁”)

位5:斜坡函数发生器保持命令(L“RFG 保持”)。

位6:设定值使能命令(H“设定值使能”)

位7:确认命令(↑“确认”)

条件在故障状态(007)从L → H 上升沿。所有当时故障在转移到诊断存储器后被删除。

如无新的故障发生,进入开机封锁(008)状态。如无故障,进入故障(007)状态。注意确认命令从三个源(P565,P566 和P567)同时起作用并始终可以从PMU 起

作用!

位8:点动1 ON 命令(↑“点动1 ON”) / (L“点动1 OFF”)

位9:点动2 ON 命令(↑“点动2 ON”) / (L“点动2 OFF”)

位10:PLC 来的控制命令(H“PLC 来的控制”)

条件高信号;只在接收命令后处理过程数据PZD (控制字,设定值);这些数据通过CU 的SST1 接口,CB/TB 接口(选件)和SST/SCB 接口(选件)传送。

当接口之一传送高信号时,只读参数r550“控制字1”显示高信号。

位11:顺时针旋转磁场命令(H“顺时针旋转磁场”)

位12:逆时针旋转磁场命令(H“逆时针旋转磁场”)

位13:电动电位计增加命令(H“电动电位计增加”)

位14:电动电位计减小命令(H“电动电位计减小”)

位15:外部故障1 命令(L“外部故障1”)

条件低信号故障(007)和故障信号(F035)逆变器脉冲被封锁,主接触器/旁路接触器如有的

话则断开。

变频维修部分

变频器是把工频电源(50Hz 或60Hz)变换成各种频率的交流电源,以实现电机的变速运行

的设备。其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电

路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变

频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应

的电路。

1. 整流器,它与单相或三相交流电源相连接,产生脉动的直流电压。

2. 中间电路,有以下三种作用:

a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。

b. 通过开关电源为各个控制线路供电。

c. 可以配置滤波或制动装置以提高变频器性能。

3. 逆变器,将固定的直流电压变换成可变电压和频率的交流电压。

4. 控制电路,它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的

信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是:

a. 利用信号来开关逆变器的半导体器件。

b. 提供操作变频器的各种控制信号。

c. 监视变频器的工作状态,提供保护功能。

6se70 变频器一般包括以下几个部分:整流桥、逆变桥、中间直流电路、预充电电路、控制电

路、驱动电路等。一台变频器的好坏,驱动电路起着至关重要的作用,现就来谈谈驱动电路

常见的问题以及解决的办法。

一.凭借数字式万用表根据上图可简单判断主回路器件是否损坏。(主要是整流桥,

IGBT,IPM)

为了人身安全,必须确保机器断电,并拆除输入电源线R 、S、T 和输出线U、V、W

后放可操作!

第一种方法是把万用表打到“二级管”档,然后通过万用表的红色表笔和黑色表笔按以下

步骤检测:

1、黑色表笔接触直流母线的负极P(+),红色表笔依次接触R、S、T,记录万用表上的

显示值;然后再把红色表笔接触N(-),黑色表笔依次接触R、S、T,记录万用表的显示值;

六次显示值如果基本平衡,则表明变频器二极管整流或软启电阻无问题,反之相应位置的整

流模块或软启电阻损坏,现象:无显示。

2、红色表笔接触直流母线的负极P(+),黑色表笔依次接触U、V、W,记录万用表上的

显示值;然后再把黑色表笔接触N(-),红色表笔依次接触U、V、W,记录万用表的显示值;

六次显示值如果基本平衡,则表明变频器IGBT 逆变模块无问题,反之相应位置的IGBT 逆

变模块损坏,现象:无输出或报故障。

第二种方法是:用万用表(最好是用模拟表)的电阻1K 档,黑表棒接变频器的直流端(-)

极,用红表棒分别测量变频器的三相输入端和三相输出端的电阻,其阻值应该在5K-10K 之

间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。然后,反过

来将红表棒接变频器的直流端(+)极,黑表棒分别测量变频器三相输入端和三相输出端的电

阻,其阻值应该在5K-10K 之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且

没有充放电现象。否则,说明模块损坏。这时候不能盲目上电,特别是整流桥损坏或线路板

上有明显的烧损痕迹的情况下尤其禁止上电,以免造成更大的损失。

在现场对变频器以及周边控制装置常见的故障情况能作出判断和处理,就能大大提高工作效

率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。

以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

1,上电跳闸或变频器主电源接线端子部分出现火花。

检测办法和判断:断开电源线,检查变频器输入端子是否短路,检查变频器中间电路直流

侧端子P、N 是否短路。可能原因是整流器损坏或中间电路短路。

2,上电无显示

检测办法和判断:断开电源线,检查电源是否是否有缺相或断路情况,如果电源正常则再

次上电后则检查检查变频器中间电路直流侧端子P、N 是否有电压,如果上述检查正常则判

断变频器内部开关电源损坏。

3,开机运行无输出(电动机不启动)

检测办法和判断:断开输出电机线,再次开机后观察变频器面板显示的输入频率,同时测

量交流输出端子。可能原因是变频器启动参数设置或运行端子接线错误、也可能是逆变部分

损坏或电动机没有正确链接到变频器。

4,运行时“过电压”保护,变频器停止输出

检测办法和判断:检查电网电压是否过高,或者是电机负载惯性太大并且加减速时间太短

导致的制动问题,请参考第8 条。

5,运行时“过电流”保护,变频器停止输出

检测办法和判断:电机堵转或负载过大。可以检查负载情况或适当调整变频器参数。如无

法奏效则说明逆变器部分出现老化或损坏。

6,运行时“过热”保护,变频器停止输出

检测办法和判断:视各品牌型号的变频器配置不同,可能是环境温度过高超过了变频器允

许限额,检查散热风机是否运转或是电动机过热导致保护关闭。

7,运行时“接地”保护,变频器停止输出

检测办法和判断:参考操作手册,检查变频器及电机是否可靠接地,或者测量电机的绝缘

度是否正常。

8,制动问题(过电压保护)

检测办法和判断:如果电机负载确实过大并需要在短时间内停车,则需购买带有制动单元

的变频器并配置相当功率的制动电阻。如果已经配置了制动功能,则可能是制动电阻损坏或

制动单元检测失效。

9,变频器内部发出腐臭般的异味

检测办法和判断:切勿开机,很可能是变频器内部主滤波电容有破损漏液现象。10,如判断出变频器部件损坏,则联系供应商或送交专业维修中心处理。

变频器故障分析

目前人们所说的交流调速系统,主要指电子式电力变换器对交流电动机的变频调速系统。变

频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频

调速基本都采用16 位或32 位单片机作为控制核心,从而实现全数字化控制,调速性能与直

流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,我们普通电

气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。

一、参数设置类故障

常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数

设置不正确,会导致变频器不能正常工作。

1、参数设置

常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些

参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系

统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行:

(1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这

些参数可以从电机铭牌中直接得到。

(2)变频器采取的控制方式,即速度控制、转距控制、PID 控制或其他方式。采取控制方

式后,一般要根据控制精度,需要进行静态或动态辨识。

(3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情

况选择启动方式,可以用面板、外部端子、通讯方式等几种。

(4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、

外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一

种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控

制效果则只能根据实际情况修改相关参数。

2、参数设置类故障的处理

一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。

如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个

公司的变频器其参数恢复方式也不相同。

二、过压类故障

变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波

整流后的平均值。若以380V 线电压计算,则平均直流电压Ud= 1.35 U 线=513V。在过电

压发生时,直流母线的储能电容将被充电,当电压上至760V 左右时,变频器过电压保护动

作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏

变频器,常见的过电压有两类。

1、输入交流电源过压

这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路

出现故障,此时最好断开电源,检查、处理。

2、发电类过电压

这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,

而变频器又没有安装制动单元,有两起情况可以引起这一故障。

(1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的

速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率

所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流

直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障

可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制

动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流

回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通断。并联直流母线吸收

型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生

能量,这些能量通过并联母线被处于电动状态的电机吸收。能量回馈型的变频器网侧变流器

是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。

(2)多个电动施动同一个负载时,也可能出现这一故障,主要由于没有负荷分配引起的。

以两台电动机拖动一个负载为例,当一台电动机的实际转速大于另一台电动机的同步转速

时,则转速高的电动机相当于原动机,转速低的处于发电状态,引起故障。在纸机经常发生

在榨部及网部,处理时需加负荷分配控制。可以把处于纸机传动速度链分支的变频器特性调

节软一些。

三、过流故障

过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发

生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负

荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器

还是过流故障,说明变频器逆变电路已环,需要更换变频器。

四、过载故障

过载故障包括变频过载和电机器过载。其可能是加速时间太短,直流制动量过大、电网电压

太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。

负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者

则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。

五、其他故障

1、欠压

说明变频器电源输入部分有问题,需检查后才可以运行。

2、温度过高

如电动机有温度检测装置,检查电动机的散热情况;变频器温度过高,检查变频器的通风情

况。

唐山味不浓维修心得(我不是搞维修的,只是好奇不是很专业)

注:CUVC 板接触不实会造成很多假像现象。

一)显示008意思:装置脉冲封所,处于禁止运行状态可能原因如控制字1 的2,3

位(包括X9 使能端子);或运行信号未断,报故障了直接复位,

二)报警F002 ---故障意思:母线欠电压。

1)一般为熔断器烧毁。装置外有,装置内部也有。可用万用表量出是哪的烧了。换

报险时千万不要带电换,很危险,而且易烧内部保险。并且要检查好烧保险原因才能更换。

主要原因有几种,电机不匹配、电揽对地、母线接触不实。

2)显示电压底,看R006 显示电压,电压差太多,原因有下几种,装置内靠近保险出

来的检测电路中有 N 个电阻,作用是降电压比的,如果有烧毁的,电压显示就会变低,

我就遇到过几次,那几个电阻被腐蚀坏了(环境太潮,且含碱),电阻坏的越多显示电压越

3)CUVC 板坏

4)母线电压P071 标定的太高

三) F006 报警意思:母线过电压

1)停车太快,造成电机处于发电状态,倒置母线电压过高。可试当延长斜坡下降时

间 P464 如果还不能解决,应该在母线上加制动电阻

2)母线电压P071 标定的太低

四)F011 报警意思:过电流

1)编码器信号不好,或丢转

2)主板上有一取样电阻烧,拆到既可,不影响。

3)变频器输出是否短路或有接地故障

4)负载处于过载状态

5)电机与变频器是否匹配

6)是否动态要求过高

7)可能变频器的输出电流互感器损坏

五)F015 F053 报警意思:堵转

1)P830=15,屏蔽掉此故障

2)编码器信号不好,或丢转

降低负载释放抱闸,提高电流极限,提高失步/堵转时间P805

? 提高设定值-实际值偏差响应阈值P792

仅对于f/n/T 控制(P100 = 3,4,5)

提高转矩极限或转矩设定值

仅对于n/T 控制或带速度调节器的V/f 控制: (P100 =0,4,5)

检查测速机电缆

检查脉冲编码器的脉冲数

检查模拟测速机定标

电机侧和变频器侧测速机电缆屏蔽层是否接好

降低转速预控制的平滑度P216 (仅n/T 控制)仅对于频率控制: (P100 = 3)

增大加速时间(见P467-ProtRampGenGain)

增大低频时的电流(P278,P279,P280)

接通转速调节器预控制(P471 > 0)。

设置EMF 调节器动态(P315)最大系数为2

提高EMF 模型的转换频率(P313)。

当n/f 调节器过调制时,用带脉冲编码器的速度调节代替之。

转速设定值用转速实际值跟踪,这样设定-实际值偏差总是小于P792 设定值

其实就是装置监测到转速调节器的输入设定值和转速实际值之差超过了允许值。如果是转矩控制的话,这个故障应该屏蔽,因为转矩控制状态,转速调节器是经常饱和的。就会报这个故障。如果是速度控制,说明动态过程不是很好,调节器没有优化。当然也还有其他的可能导致F015 激活

六)F021 报警意思:大电流时间过长

1)P830=21或P383 小于100即可屏蔽此故障

2)加大P383 时间,

七)F025 F026 F027 F029 故障意思:在某相上存在UCE 关机

1)有无短路或接地故障包括电机

2)CU 板是否正确插入

3)IGBT

八)F037 故障意思:信号丢失

1)信号电缆开路。

2)参数不正确 P632

3)主板跳线设置不对

九)6SE70 系列变频器的整流单元突然开始频频报F009 故障。具体现象为——都是在整

流单元合闸上电的时候报,若上10 次电,可能会有4、5 次报故障。而一旦上电成功,变频

器即正常工作,整流、逆变单元全部正常运行,不论工作时间多长,都不会报故障

发现将参数P793(电网电压的稳定时间)从原来的工厂设定值0.03S 改为0.09S 后,好像就

不再报F009 故障了(起码到目前为止还没报)。

十)单位的6se70 的变频器,遇到这么一种情况:由于一台变频器损坏了,于是我更换了新

变频器,在更换时,我让电动机拖动的负载保持稳定,然后使用P115=3 进行变频器的参

数优化,优化也顺利的完成了,但是再投入使用的过程中有时会遇到电动机启动力矩不好

的,或者运转起来后速度不稳定的现象,我的系统一直没有使用光电编码器,机械设备也

没有任何变动,我考虑问题应该还是出在对变频器参数的优化上。在使用P115=3 优化完

成后,还是否需要手动的调整一下速度环的参数

解决方法:可能是优化没有做好所致,优化最好在环境温度20 度时进行,最好使用无传

感器的矢量控制,在输完电机参数后设定P115=1 ,然后做P115=2,再断开负载P115=4,

然后连接负载作P115=5 ,基本可以满足使用要求。

其实若换了相同型号的变频器,可以直接下载原来变频器参数,基本不需要做优化,就可

以直接使用,当然重新作优化是最好的。

更多软启(起)动相关产品、资料请浏览中国软启动网

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“OC” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTRO-VERT2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“OU”。

分析与维修:首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004变频器,上电显示正常,但是加负载后跳“DCLINKUNDERVOLT”(直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一路桥臂开路,更换新品后问题解决。 四、过热(OH)。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW变频器客户反映在运行半小时左右跳“OH”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。

一般变频器常见故障及处理

一般变频器常见故障及处理 目前人们所说的交流调速系统,主要指电子式电力变换器对交流电动机的变频调速系统。变频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频调速基本都采用 16位或32位单片机作为控制核心,从而实现全数字化控制,调速性能与直流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,企业的普通电气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。 1.参数设置类故障 常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。 1.1参数设置 常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行: 第一,确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 第二,变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 第三,设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。 第四,给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2参数设置类故障的处理 一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。 2.过压类故障 变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以 380V线电压计算,则平均直流电压Ud= 1.35 U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。 2.1输入交流电源过压 这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。 2.2发电类过电压 这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。 第一,当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通断。并联直流母线吸收型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生能量,这些能量通过并联母线被处于电动状态的电机吸收。能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5、5kW变频器时,客户送修時标明电机行抖动,此时第一反应就是输出电压不平衡、在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1、5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的就是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不就是参数问题,又怀疑就是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此瞧来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3、7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的就是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于就是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查瞧,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7、5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬

变频器常见故障及处理

变频器常见故障及处理

作者:日期:

变频器常见故障 (1)变频器驱动电机抖动 在接修一台安川616P C 5-5.5 k W变频器时,客户送修時标明电机行抖动,此时第一反应是 输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三 相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻 二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修 复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1. 5kW变频器时,客户标明频率上不去,只能上到2 0Hz,此 时第一想到的是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不是参数问题,又怀疑是频率给定方式不对,后改成面板给定频率,变频器最高可运行到 60Hz,由此看来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3 )变频器跳过流 在接修一台台安N2系列,4 00V, 3 . 7 kW变频器时,客户标明在起动时显示过电流。在检 查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示O C 2,首先想到的是 电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于是扩大检测范围,检查驱 动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路, 更换后,变频器运行良好。 (4)变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后, 带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也 未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P- P1与N之间的塑料绝缘端子 有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5 )变频器小电容炸裂 在接修一台三肯S V F 7.5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正

西门子变频器常见故障代码报警分析

西门子变频器常见故障代码报警分析 西门子变频器维修常见故障代码报警,一般来说,当西门子变频器发生故障后,上电之前首先要用万用表检查一下整流桥和IGBT,模块有没有烧,线路板,上有没有明显烧损的痕迹。 西门子变频器维修常见故障代码报警: (1) 上电后显示正常,一运行即显示过流[F0001](MM4) [F002](MM3)即使空载也一样,一般这种现象,说明IGBT模块损坏或驱动板有问题,需更换IGBT模块并仔细检查驱动部分后才能再次上电,不然可能因为驱动板的问题造成IGBT 模块再次损坏!这种问题的出现,一般是因为变频器多次过载或电源电压波动较大(特别是偏低)使得变频器脉动电流过大主控板CPU来不及反映并采取保护措施所造成的。 (2) 上电后面板无显示(MM4变频器),面板下的指示灯[绿灯不亮,黄灯快闪],这种现象说明整流和开关电源工作基本正常,问题出在开关电源的某一路不正常。 (3) 上电后面板显示[F231]或[F002](MM3变频器),这种故障一般有两种可能。常见的是由于电源驱动板有问题,也有少部分是因为主控板造成的,可以先换一块主控板试一试,否则问题肯定在电源驱动板部分了。 (4) 有时显示[F0022,F0001,A0501]不定(MM4),敲击机壳或动一动面板和主板时而能正常,一般属于接插件的问题,

检查一下各部位接插件。也发现有个别机器是因为线路板上的阻容元件质量问题或焊接不良所致。 (5) 上电后显示[-----](MM4),一般是主控板问题。多数情况下换一块主控板问题就解决了,一般是因为外围控制线路有强电干扰造成主控板某些元件(如帖片电容、电阻等)损坏所至,我分析与主控板散热不好也有一定的关系。但也有个别问题出在电源板上。 (6) 使用的过程中经常“无故”停机。再次开机可能又是正常的,上电后主接触器吸合不正常-有时会掉电,乱跳。查故障原因,开关电源出来到接触器线包的一路电源的滤波电容漏电造成电压偏低,这时如果供电电源电压偏高还问题不大,如果供电电压偏低就会致使接触器吸合不正常造成无故停机。 北京天拓四方科技有限公司

西门子6se70变频器参数

6SE70调试基本参数设置 恢复缺省设置 P053=6 允许参数存取 6:允许通过PMU和串行接口OP1S变更参数 P060=2 固定设置菜单 P366=0 0:具有PMU的标准设置 1:具有OP1S的标准设置 P970=0 参数复位 参数设置 P060=5 系统设置菜单 P071= 装置输入电压 P095=10 异步/同步电机,国际标准 P100= 1:V/f控制 3:无测速机的速度控制 4:有测速机的速度控制 5:转矩控制 P101= 电机额定电压 P102= 电机额定电流 P103= 电机励磁电流,如果此值未知,设P103=0 当离开系统设置,此值自动计算。 P104= 电机额定功率因数 P108= 电机额定转速 P109= 电机级对数 P113= 电机额定转矩 P114=3 3:高强度冲击系统(在:P100=3,4,5时设置) P115=1 计算电机模型 参数值P350-P354设定到额定值 P130= 10:无脉冲编码器 11:脉冲编码器 P151= 脉冲编码器每转的脉冲数 P330= 0:线性(恒转矩) 1:抛物线特性(风机/泵) P384.02= 电机负载限制 P452= % 正向旋转时的最大频率或速度 P453= % 反向旋转时的最大频率或速度 数值参考P352和P353 P060=1 回到参数菜单 P128= 最大输出电流 P462= 上升时间 P464= 下降时间 P115=2 静止状态电机辩识(按下P键后,20S之内合闸) P115=4 电机模型空载测量(按下P键后,20S之内合闸) 6SE70 变频装置调试步骤

一.内控参数设定 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的 设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0 P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手 册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障

变频器常见故障分析与处理

变频器常见故障分析与处理 本系列变频器具有过流、过热、过载、欠压多种保护功能。当发生故障时,变频器就会立即报警跳开,LED监视器上显示相应的故障类型,并且电动机自动停止转动。当排除故障后,按“STOP”键或输入控制电路端子复位命令,即能解除报警跳开状态。 故障代码表: 一过压:分别为加速时过电压(E002)、定速时过电压(E003)、停止时过电压(E00A)、减速时过电压(E00B) 分析:E002、E003、E00A、E00B故障出现的直接原因就是变频器本身检测到的电压过高。

而出现E002、E003、E00A根本原因有三个:1)外部实际电网电压过高,处理方法:降低电网电压(可采用稳压电源)。2)变频器检测到的电压(U)比外部实际的高,处理方法:重新检测电压(进入内部参数b123)。3)能量反馈,电机实际转速高于变频器输出(即电机被拖动);处理方法:去除电机拖动现象或加能耗电阻。4)变频器内部电压检测电路有故障,与办事处联系维修。 出现E00B则与下列几个因素有关:减速时间、制动器(制动电阻或制动单元)、负载惯性 减速时间过短会使变频器在减速过程中产生反馈电压(减速时间越短同样的负载产生的反馈电压越大),如果没有制动器或制动器过小,那就无法消耗这部分多余的电压,当电压高到一定值时(460)就会跳E00B报警,而负载惯性越大同样的减速时间产生的反馈电压就越高。所以,应适当的加长减速时间。 二欠压:E001 出现E001故障报警的原因有: 1)外部电网电压异常(缺相、三相不平衡、电压过低); 2)有大容量负载在同一线运行,处理方法:另选电源; 3)变频器检测到的电压(U)比实际低,处理方法:重新检测电压(进入内部参数b123); 4)变频器内部故障,继电器没吸合(现象是带负载时跳)。处理方法:检查继电器接口是否接触良好;否,则为变频器内部电压检测电路故障,与办事处联系。 三过流:分别为加速时过电流(E004)、定速时过电流(E005)、减速时过电流(E006)出现这三类故障的原因有: 1)电机连接端子相间短路,处理方法:检查输出线路及负载; 2)负载突变或过重,处理方法:减小线路负载,检查变频器与电机搭配是否适当; 3)加速时间过短,处理方法:加长加速时间;

西门子6se70系列变频器参数设置

西门子6se70系列变频器参数设置 一加减速时间 加速时间就是输出频率从0 上升到最大频率所需时间,减速时间是指从最大频率下降到0 所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二转矩提升 转矩提升又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V 增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三电子热过载保护 本功能为保护电动机过热而设置,它是变频器内CPU 根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。 四频率限制 即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。 五偏置频率 有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率

AB变频器常见故障的原因及处理方法

AB变频器常见故障一、电动机不能启动 原因:没有输出电压送给电动机。 补救措施:检查电源电路,如电源电压、所有熔断器以及断路装置,检查电动机票,核查电动机连接是否正确,控制输入信号,起动信号是否存在。I/O端子01是否激活,核查P036与组态是否匹配。核查A095是否没有禁止转动。 AB变频器常见故障二、变频器不能从端子排连接线所送入的启动或运行输入启动 原因: 变频器存在故障。这类原因补救措施主要是清除故障,按停止键,重新上点,将A100设置为选项1“清除故障”。若A051—A052被设置为选项7“清除故障”,则重新送入数字量输入信号。 编程不正确。补救措施为检查参数设置。 输入接线不正确。补救措施:正确接线并/或安装跳线。 AB变频器常见故障三、变频器不能从集成式键盘启动 原因: 集成式键盘没被使能。将参数P036设置为选项0,将参数A051—A052设置为选项5,并激活输入。 I/O端子01的“停止”输入信号不存在。正确接线并/或安装跳线。 AB变频器常见故障四、变频器对速度命令不作响应 原因: 速度命令源中没有给定速度。检查参数D012,看控制信号来源是否正确。如果是模拟量输入,则检查接线并用表计检查信号是否存在。检查参数D002,核查命令是否正确。 通过远程设备或数字量输入选择了不正确的基准信号源。检查参数D012,检查参数D014,看输入是否选择交流电源。核查A051—A052的设置。检查P038中的速度基准来源。如果有必要就重新编程。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/044774904.html,/

西门子M430变频器故障排除

F0001 过流 ?电动机的功率(P0307)与变频器的功率(P0206)不对应 ?电动机电缆太长 ?电动机的导线短路 ?有接地故障 检查以下各项: 1. 电动机的功率(P0307)必须与变频器的功率(P0206)相对应。 2. 电缆的长度不得超过允许的最大值。 3. 电动机的电缆和电动机内部不得有短路或接地故障 4. 输入变频器的电动机参数必须与实际使用的电动机参数相对应 5. 输入变频器的定子电阻值(P0350)必须正确无误 6. 电动机的冷却风道必须通畅,电动机不得过载 > 增加斜坡时间 > 减少“提升”的数值 F0002 过电压 ?禁止直流回路电压控制器(P1240=0) ?直流回路的电压(r0026)超过了跳闸电平(P2172) ?由于供电电源电压过高,或者电动机处于再生制动方式下引起过电压。 ?斜坡下降过快,或者电动机由大惯量负载带动旋转而处于再生制动状态下。 检查以下各项: 1. 电源电压(P0210)必须在变频器铭牌规定的范围以内。 2. 直流回路电压控制器必须有效(P1240),而且正确地进行了参数化。 3. 斜坡下降时间(P1121)必须与负载的惯量相匹配。 4. 要求的制动功率必须在规定的限定值以内。 注意 负载的惯量越大需要的斜坡时间越长;外形尺寸FX 和GX 的变频器应接入制动电阻。 F0003 欠电压 ?供电电源故障。 ?冲击负载超过了规定的限定值。检查以下各项: 1. 电源电压(P0210)必须在变频器铭牌规定的范围以内。 2. 检查电源是否短时掉电或有瞬时的电压降低。 3. 使能动态缓冲(P1240=2) F0004 变频器过温 ?冷却风量不足 ?环境温度过高。

西门子6se70系列变频器与s7-300的PROFIBUS-DP通讯举例

西门子6se70系列变频器与s7-300/400的PROFIBUS-DP通讯举例 本文通过举例讲述了Profibus-DP现场总线在生产现场的具体应用,详细介绍了西门子PLC与变频设备通过PROFIBUS-DP通讯的硬件组态、软件编程以及变频器的相关参数设置。 关键字:西门子 Profibus-DP 变频器 PLC 在工业厂矿的生产应用中,尤其是钢铁冶金行业,利用PLC通过Profibus-DP现场总线对变频装置进行控制,实现电机的启动、停车和调速最为常见。下面通过一个具体的实例来讲述西门子6se70系列变频器与s7-300/400的PROFIBUS-DP通讯的全过程。 一、硬件组态变频器 在STEP 7软件中创建一个项目,再硬件组态该项目,并建一个Profibus-DP网络,6se70系列变频器在PROIBUS DP->SIMOVERT文件夹里进行组态,并设定好通讯的地址范围。如下 图所示: 二、建立通讯DB块 一般地,读写数据都做在一个DB块中,且最好与硬件组态设定的I,O地址范围大小划分相同大小的区域,便于建立对应关系和管理。如下图所示,读变频器的数据的12个字节在DB0~DB11中,写给变频器的12个字节数据放在DB12~DB23中。接下来还可以存放诸如通讯的错误代码和与变频器有关的其它计算数据。 三、写通讯程序 通讯程序可以直接调用STEP 7编程软件的系统功能SFC1(DPRD_DAT),SFC15(DPWR_DAT) 来实现。例程段如下: CALL SFC 14 //变频器->PLC LADDR :=W#16#230 //通讯地址:为硬件组态的起始地址,即I Addess中的560 RET_VAL:=DB15.DBW24 //错误代码:查帮助可得具体含义 RECORD :=P#DB15.DBX0.0 BYTE 12 //传送起始地址及长度 CALL SFC 15 //PLC->变频器 LADDR :=W#16#230 //通讯地址:为硬件组态的起始地址,即Q Addess中的560 RECORD :=P#DB15.DBX12.0 BYTE 12 //传送起始地址及长度 RET_VAL:=DB15.DBW26 //错误代码:查帮助可得具体含义 四、变频器参数设置 变频器的简单参数设置如下表 对于写变频器的数据是与变频器的k3001~k3016(参见变频器使用大全功能图120)建立对应关系,读变频器的数据则是与变频器的参数P734建立对应关系。如下图所示:

变频器常见故障代码及处理实例

一、过流(OC) 令狐采学 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,

更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。三、欠压(Uu)

西门子440变频器常见故障

一般来说,当你拿到一台有故障的变频器,再上电之前首先要用万用表检查一下整流桥和IGBT模块有没有烧,线路板上有没有明显烧损的痕迹。 具体方法是:用万用表(最好是用模拟表)的电阻1K档,黑表棒接变频器的直流端(-)极,用红表棒分别测量变频器的三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。然后,反过来将红表棒接变频器的直流端(+)极,黑表棒分别测量变频器三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。否则,说明模块损坏。这时候不能盲目上电,特别是整流桥损坏或线路板上有明显的烧损痕迹的情况下尤其禁止上电,以免造成更大的损失。 如果以上测量结果表明模块基本没问题,可以上电观察。 1)上电后面板显示[F231]或[F002](MM3变频器),这种故障一般有两种可能。常见的是由于电源驱动板有问题,也有少部分是因为主控板造成的,可以先换一块主控板试一试,否则问题肯定在电源驱动板部分了。 2)上电后面板无显示(MM4变频器),面板下的指示灯[绿灯不亮,黄灯快闪],这种现象说明整流和开关电源工作基本正常,问题出在开关电源的某一路不正常(整流二极管击穿或开路,可以用万用表测量开关电源的几路整流二极管,很容易发现问题。 换一个相应的整流二极管问题就解决了。这种问题一般是二极管的耐压偏低,电源脉动冲击造成的。 3)有时显示[F0022,F0001,A0501]不定(MM4),敲击机壳或动一动面板和主板时而能正常,一般属于接插件的问题,检查一下各部位接插件。也发现有个别机器是因为线路板上的阻容元件质量问题或焊接不良所致。 4)上电后显示[-----](MM4),一般是主控板问题。多数情况下换一块主控板问题就解决了,一般是因为外围控制线路有强电干扰造成主控板某些元件(如帖片电容、电阻等)损坏所至,我分析与主控板散热不好也有一定的关系。 但也有个别问题出在电源板上。 例如:重庆某水泥厂回转窑驱动用的一台MM440-200kW变频器,由于负载惯量较大,启动转距大,设备启动时频率只能上升到5Hz左右就再也上不去,并且报警[F0001]。客户要求到现场服务,我当时考虑认为:作为变频器本身是没有问题的,问题是客户参数设置不当,用矢量控制方式,再正确设定电机的参数/模型就可以解决问题。又过了两天客户来电告诉我变频器已经坏了,故障现象是上电显示[-----]。经现场检查分析,这种故障是因为主控板出问题造成的,因为用户在安装的过程中没有严格遵循EMC规范,强弱电没有分开布线、接地不良并且没有使用屏蔽线,致使主控板的I/O口被烧毁。后来,我申请了维修服务,SFAE 的工程师去现场维修,更换了一块主控板问题解决了。 5)上电后显示正常,一运行即显示过流。[F0001](MM4)[F002](MM3)即使空载也一样,一般这种现象说明IGBT模块损坏或驱动板有问题,需更换IGBT模块并仔细检查驱动部分后才能再次上电,不然可能因为驱动板的问题造成IGBT模块再次损坏!这种问题的出现,一般是因为变频器多次过载或电源电压波动较大(特别是偏低)使得变频器脉动电流过大主控板CPU来不及反映并采取保护措施所造成的。 还有一些特殊故障(不常见但有一些普遍意义,可以举一反三,希望达到抛砖引玉的效果),例如:

变频器常见故障及处理方法

变频器常见故障及处理方法 1 引言 IGBT变频调速器,自研制开发投入市场以来,以其优越的调速性能,可观的节能量已为广大的电机用户所接受,正以每年大规模的销售量走向社会,为电力、建材、石油、化工、煤矿等各行业的发展提供了优质的服务,其用户群已遍布生产的各行各业,成为广大用户所喜爱的产品。 这里笔者结合自己在长期的售后服务工作中经历的一些常见故障及处理方法,提出来与广大的用户及维修工作者进行探讨,以期把该产品使用得更好,更切实的为顾客服务。 2 变频器运行中有故障代码显示的故障 在变频器的使用说明书中,有一栏具体阐述了变频器有故障代码显示的故障,具体如表1所示。 注:表1中Io、Vo分别是输出额定电流、输入额定电压;Vin是输入电压。 现就这几种情况作一下分析。 表1 故障代码显示的故障

2.1 短路保护 若变频器运行当中出现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。这有以下几方面的原因: (1) 负载出现短路 这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。 (2) 变频器内部问题 如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。如图1所示。

图1 变频器主电路示意图 在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。 (3) 变频器内部干扰或检测电路有问题 有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。 变频器的短路保护一般是从主回路的正负母线上分流取样,用电流传感器经主控板的检测传至主控芯片进行保护的,因此这些环节上任何一处出现问题,都可能造成故障停机。 对于干扰问题,现低压大功率的及中高压变频器都加了光电隔离,但也有出现干扰的,主要是电流传感器的控制线走线不合理,可将该线单独走线,远离电源线、强电压、大电流线及其他电磁辐射较强的线,或采用屏蔽线,以增强抗干扰能力,避免出现误保护。

变频器常见故障分析和预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 变频器常见故障分析和预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8745-86 变频器常见故障分析和预防措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、变频器的主要故障原因及预防措施 由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。为防患于未然,事先对故障原因进行认真分析显得尤为重要。 1、外部的电磁感应干扰 如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本限制,在外部采取噪声抑制措施,消除干扰源显得更合理、更必要。以下几项措施是对噪声干扰实行“三

不”原则的具体方法:变频器周围所有继电器、接触器的控制线圈上需加装防止冲击电压的吸收装置,如RC吸收器;尽量缩短控制回路的配线距离,并使其与主线路分离;指定采用屏蔽线回路,须按规定进行,若线路较长,应采用合理的中继方式;变频器接地端子应按规定进行,不能同电焊、动力接地混用;变频器输入端安装噪声滤波器,避免由电源进线引入干扰。 2、安装环境 变频器属于电子器件装置,在其规格书中有详细安装使用环境的要求。在特殊情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件生锈、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,特别是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

高压变频器32个常见故障及处理

高压变频器32个常见故障及处理 1、如何区分重故障和轻故障? 轻故障时,系统发出报警信号,故障指示灯闪烁。重故障发生时,系统发出故障指示,故障指示灯常亮。同时发出指令去分断高压、合闸禁止,并对故障信息、高压分断指令作记忆处理。重故障状态不消除,故障指示、高压分断指令依然有效。 2、轻故障都有哪些? 轻故障包括:变压器超温报警、柜温超温报警、柜门打开、单元旁路,系统对轻故障不作记忆处理,仅有故障指示,故障消失后报警自动消除。变频器运行中出现轻故障报警,系统不会停机。停机时出现轻故障报警,变频器可以继续启动运行。 3、重故障具体都有哪些? 系统发生下列故障时,按照重故障处理,并在监视器左上角显示重故障类型:外部故障、变压器过热、柜温过热、单元故障、变频器过流、高压失电、接口板故障、控制器不通讯、接口板不通讯、电机过载、参数错误、主控板故障。单元故障包括:熔断器故障、单元过热、驱动故障、光纤故障、单元过压。外部故障必须先解除高压分断(柜门按钮或外部接点)状态再系统复位,才能使系统恢复到正常状态;除外部故障以外的重故障发生后,直接系统复位即可使系统恢复到正常状态,但在再次上电前一定要找出故障原因。单元故障发生后,只有再次上高压电源方能检测到单元状态。若故障较难分析且无法确定能否二次上高压时,请向厂商咨询。注意:切忌在未查明故障原因前贸然二次上电,否则可能严重损坏变频器! 4、变压器超温报警当变压器温控仪测量温度大于其设置的报警温度(默认设置为100℃)时,温控仪超温报警触点闭合;

检查变压器柜顶风机或柜底风机是否工作正常(如果柜底风机工作不正常,可能出现三相温度相差较大);测温电阻是否正常(有无断线、线路插头接触不良,如果接触不良,温度值将偏高);过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是否过高(环境温度应低于45℃,否则需要加强通风);安装于变压器柜内正面底部的风机开关和接触器是否断开;变压器柜风机控制和保护电路是否正常。 5、柜温超温报警单元柜测温点的温度大于55℃时,系统会发出柜温超温轻故障报警。 检查单元柜柜顶风机是否工作正常,安装于二次室内的风机开关是否跳闸;过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网);变频器是否长期工作于过载状态;环境温度是否过高(环境温度应低于45℃,否则需要加强通风(墙上安装通风机或柜顶安装风道)或安装制冷设备);变压器柜风机控制和保护电路是否正常。 6、变压器过热变压器温控仪测量温度大于其设置的跳闸温度 (默认设置为130℃)时,温控仪跳闸触点闭合,系统会报变压器过热重故障。温控仪显示的温度是否在130度以上,若不是则检查温控仪的超温报警值是否设定为130度;其余检查项见变压器超温报警。 7、柜温过热 单元柜测温点的温度大于60℃时,系统会报柜温过热重故障。检查项见柜温超温报警。 8、柜门联锁报警行程开关是否与柜门顶碰件压实; 行程开关的“预行程”和“过行程”是否合适;行程开关电气功能是否工作正常;否则更换接口板。 9、控制器不通讯确认监视器控制板到主控板的通讯线是否连接无误

6SE70变频器参数详解

后台gggggg 12655 P072:变频器进线电流 P095:电机类型 P100:选择开/闭环控制方式的功能参数 P114:选择各种工艺边界调节启动控制系统的功能参数 P115:选择各种启动环节和特殊功能的功能参数 P101:电机额定电压 P102:电机额定电流 P103:电机励磁电流 P104:功率因素 P107:电机额定频率 P108:电机额定转速 P109:电机极对数 P113:电机额定转矩 P120:与电机额定阻抗相关的电机电感 P121:设定定子与电缆电阻 P122:根据电机额定阻抗设定的电机定子侧总漏抗 P127:估算转子电阻温度影响 P128:最大输出电流 P130 编码器类型 P151 编码器脉冲数 P215:在一控制的采样时间(P357)内,设定所允许的转速实际值最大变法 P216:设定n/f实际值预控滤波时间常数 P223:设定接到速度调节器负输入端的n/f实际值滤波时间常数 P235:速度调节器增益 P235:速度调节环P参数 P240:速度调节环I时间参数 P240:速度调节器积分时间 P258:最大允许电动的有功功率 P259:运行回馈的最大有功功率 P273:转矩平滑给定的滤波时间常数功能参数,它只在弱磁区使用 P278:在低速范围内,无编码器速度控制(频率控制P100=3)过程中,所需最大附加动态转矩P279:在低速范围内,无编码器速度控制(频率控制P100=3)过程中最大附加动态转矩 P283:在调制器异步调制范围内设定PI电流调节器调整增益 P284:在调制器异步调制范围内设定PI电流调节器调整时间 P303:设定磁通给定滤波时间常数 P306:设定最大EMF的功能参数 P313:电流模式切换位反EMF模式 P315:设定电机额定电压反EMF模式的PI调节器积分增益 P316:设定用于反EMF模式的PI调节器积分时间 P319:输入电流提升 P322:设定低频高加速转矩的附加电流给定 P325:f=0Hz时的电压提升

相关文档
相关文档 最新文档