文档库 最新最全的文档下载
当前位置:文档库 › Abaqus中Topology和Shape优化指南

Abaqus中Topology和Shape优化指南

Abaqus中Topology和Shape优化指南
Abaqus中Topology和Shape优化指南

Abaqus中Topology和Shape优化指南

目录

1. 优化模块界面......................................................................................................- 1 -

2. 专业术语..............................................................................................................- 1 -

3.定义拓扑优化Task(general optimization和condition-based optimization).......- 2 -

3.1 General Optimization 参数设置.................................................................- 3 -

3.1.1 Basic选项参数..................................................................................- 3 -

3.1.2 Density选项参数..............................................................................- 4 -

3.1.3 Perturbation选项参数.......................................................................- 5 -

3.1.4 Advanced选项参数...........................................................................- 5 -

3.2 Condition-based topology Optimization 参数设置....................................- 6 -

3.2.1 Basic选项参数..................................................................................- 7 -

3.2.2 Advanced选项参数...........................................................................- 7 -

4 定义Shape Optimization Task方法....................................................................- 8 -

4.1 Basic选项参数............................................................................................- 8 -

4.2 Mesh Smoothing Quality选项参数............................................................- 9 -

4.3 Mesh Smoothing Quality选项参数..........................................................- 11 -

5 定义design response变量方法.........................................................................- 13 -

5.1 单个design response定义方法...............................................................- 14 -

5.2 combined design response定义方法........................................................- 15 -

5.3 design response使用注意事项.................................................................- 17 -

5.3.1 定义design response的操作.........................................................- 17 -

5.3.2 condition-based topology optimization的design response............- 18 -

5.3.3 general topology optimization的design response..........................- 18 -

5.3.4 design response for shape optimization...........................................- 21 -

6 定义objective function方法..............................................................................- 22 -

6.1 目标函数定义...........................................................................................- 23 -

6.2 目标函数的运算.......................................................................................- 23 -

6.2.1 min运算..........................................................................................- 23 -

6.2.2 max运算..........................................................................................- 24 -

6.2.3 minimizing the maximum design response......................................- 24 -

7 定义Constraints方法........................................................................................- 24 -

8 定义Geometric restrictions方法.......................................................................- 25 -

8.1 Defining a frozen area................................................................................- 26 -

8.2 Specifying minimum and maximum member size....................................- 26 -

8.3 maintaining a moldable structure(可拔模结构)........................................- 27 -

8.4 maintaining a stampable structure(冲压成型结构)...................................- 28 -

8.5 Specifying a symmetric structure...............................................................- 29 -

8.6 Applying additional restrictions during a shape optimization...................- 31 -

8.7 Combining geometric constraints..............................................................- 31 -

9 定义Stop conditions方法..................................................................................- 32 -

9.1 Global stop conditions...............................................................................- 32 -

9.2 Local stop conditions.................................................................................- 33 -

10 Abaqus优化模块支持.......................................................................................- 34 -

10.1 Support for analysis types........................................................................- 34 -

10.2 Support for geometric nonlinearities.......................................................- 34 -

10.3 Support for multiple load cases................................................................- 34 -

10.4 Support for acceleration loading..............................................................- 35 -

10.5 Support for contact during the optimization............................................- 35 -

10.6 Restrictions on an Abaqus model used for topology optimization..........- 35 -

10.7 Restrictions on an Abaqus model used for shape optimization...............- 35 -

10.8 Support materials in the design area........................................................- 36 -

10.8.1 Materials supported by condition-based topology optimization....- 36 -

10.8.2 Materials supported by general topology optimization.................- 36 -

10.8.3 Material support in shape optimization..........................................- 37 -

10.9 支持的单元类型.....................................................................................- 37 -

10.9.1 支持的二维实体单元...................................................................- 37 -

10.9.2 支持的三维实体单元...................................................................- 38 -

10.9.3 支持的对称实体单元...................................................................- 39 -

10.9.4 额外支持的单元...........................................................................- 39 -

11. Job模块中优化过程的设置............................................................................- 40 -

11.1 优化过程的理解.....................................................................................- 40 -

11.2 Optimization Process Manager................................................................- 42 -

12 拓扑优化理论...................................................................................................- 42 -

12.1 General Topology Optimization理论......................................................- 43 -

12.1.1 SIMP(Solid Isotropic Material With Penalization Method).......- 43 -

12.1.2 RAMP(Rational Approximation of Material Properties)...............- 43 -

12.1.3 Gradient-based methods.................................................................- 43 -

12.2 General与Condition-based Topology Optimization对比.....................- 44 -

13 拓扑优化结果后处理.......................................................................................- 44 -

13.1 单元相对密度值.....................................................................................- 44 -

13.2 Isosurfaces................................................................................................- 45 -

13.3 Extraction.................................................................................................- 47 -

14 形貌优化后处理...............................................................................................- 48 -

14.1 向量DISP_OPT.....................................................................................- 48 -

14.2 场变量DISP_OPT_V AL........................................................................- 48 -

14.3 正常分析步中的优化迭代过程中的应力和位移等场变量.................- 49 -

14.4 Extracting a surface mesh........................................................................- 49 -

15 几何非线性的开与闭对拓扑优化结果的影响...............................................- 50 -

16. 形貌优化中的几何约束..................................................................................- 53 -

16.1 Demold control(脱模控制)......................................................................- 53 -

16.2 Turn control(车床加工控制)...................................................................- 55 -

16.3 Drill control(钻孔控制)...........................................................................- 56 -

16.4 Planar symmetry(平面对称约束)............................................................- 57 -

16.5 Stamp control(锻造控制)........................................................................- 58 -

16.6 Growth约束............................................................................................- 58 -

16.7 Design direction约束..............................................................................- 59 -

16.8 Penetration check(穿越检查)..................................................................- 60 -

1. 优化模块界面

2. 专业术语

① optimization task:对优化任务的一个定义,即定义一个优化Job;

② design responses:一个设计响应可以直接从输出数据库中提取,例如模型的体积,另外,对于拓扑优化模块的设计响应不仅可以直接从输出数据库中提取,而且可以计算设计响应,如模型的应变能;

③ objective function:目标函数指的是设计响应的函数值或者是一组设计响应的组合,如整个模型的应变能的最小值;

④ constraints:约束是一个设计响应的函数值,但不能是多个设计响应组合的函数值;

⑤ geometric restriction:A geometric restriction places restrictions on the changes that the Abaqus Topology Optimization Module can make to the topology of the model. Geometrical restrictions include frozen regions from which material cannot be removed and manufacturing constraints, such as restrictions on cavities and undercuts, that would prevent the optimized model from being removed from a mold

⑥ stop condition:停止条件是对优化计算收敛的一个指示器,如当在一个指定数量的迭代后一个优化被认为完成了;global stop condition定义了优化迭代的最大数目,local stop condition指定了优化迭代达到所需最小或最大数目;

⑦ optimization processes:需要在job模块中创建;

⑧ design varible:对于topo优化,优化区域的每个单元的密度即为设计变量;而shape优化,优化区域表面单元的节点的位移即为设计变量;

⑨ design cycle:优化过程中的每个迭代成为design cycle;

【提示】:I、优化算法总是在满足了约束的基础上才开始最大或最小化目标函数;

II、一个优化任务中最多只能包含一个体积约束;

【附英文原版】

3.定义拓扑优化Task(general optimization和condition-based optimization)

3.1 General Optimization 参数设置 3.1.1 Basic选项参数

3.1.2 Density选项参数

3.1.3 Perturbation选项参数

3.1.4 Advanced选项参数

在优化计算过程中,拓扑优化模块会自动给优化区域分配一个指定的质量来满足约束和目标函数,在优化结束时,整个优化区域的结构包含了硬单元(hard elements)和软单元(soft elements),其中软单元对结构的刚度没有任何影响,但是影响着结构的自由度,因此会影响优化计算的速度。

删除软化单元的方法:需要用户自己指定一个区域,当每个(些)单元的周围指定半径内的单元均为软化单元时,则软件会自动删除这个(些)单元。

判断为软化单元的原则:根据用户设定一个单元材料密度的阀值,低于该阀值的单元被认定为软单元;

拓扑优化根据单元的密度值来计算该单元的刚度,其有一定的算法依据,这里指的是”Material interpolation technique”技术,对于静态问题,适合SIMP算法,其Penalty factor应该大于1,推荐值为3;对于动态问题,适合RAMP算法,其Penalty factor应该大于0,推荐值为3;

拓扑优化计算结束的判断法则:一个是目标函数变化量法则,另一个是单元密度变化量法则,用户可以设定同时满足这两个法则,还是满足其中任一个法则时,拓扑优化计算任务收敛,停止计算。

3.2 Condition-based topology Optimization 参数设置

一个condition-based topology optimization是指使用应变能作为目标函数和体积作为约束的一个拓扑优化。

3.2.1 Basic选项参数

该选项与general topology optimization设置一样,参照其设置方式;

3.2.2 Advanced选项参数

【提示】:

(1). general optimization algorithm在优化开始前是不知道其迭代循环数,但通常情况介于30与45之间;condition-based optimization algorithm需要优化前就设置一个最大迭代循环数(默认为15),当优化迭代达到了最大循环数,则表示优化结束;

(2). 分析类型:general optimization algorithm支持线性与非线性的静态分析类型,同时支持线性模态分析类型;分析过程也可以定义接触、非线性材料;

(3). 拓扑优化只能定义一个目标函数,可以定义多个约束,但是condition-based optimization algorithm只能使用应变能作为目标函数、材料体积作

为约束条件;

(4). 通常情况下condition-based optimization用于最大化刚度优化;

(5). 建议在Advanced中勾选”Delete soft elements in region”,因为软化单元容易发生过度扭曲,从而导致收敛困难;

例子参考:Abaqus Example Problems Manual 中的section 11.1.1

4 定义Shape Optimization Task方法

Shape optimization是通过控制每个曲面上的单元节点的位移来实现应力平均化和满足目标函数与约束的。在优化过程中,系统只能修改模型表面节点而不会控制内部节点,因此会产生网格扭曲现象,为了解决这一问题,形状优化应用了mesh smoothing技术来调整内部节点来配合外表面节点的调整。

【注】:目前mesh smoothing技术只能用于三角形单元、四边形单元和四面体单元,其他单元类型不适用;

4.1 Basic选项参数

元节点(即设计节点),如下图所示:

该页选项的可以默认不需要改,如有需要可以更改单元的质量表格中的参数;

4.3 Mesh Smoothing Quality选项参数

【提示】:

(1). 形貌优化用于局部修改结构表面形状,通常情况下用于最小化局部应力集中问题,利用一个应力分析来修改结构表面单元节点位置直到应力水平低于指定值;

(2). 形貌优化是通过不断重新定位指定区域表面单元节点位置来达到该区域表面应力均匀的目的,如下图所示;

(3). 可以使用的目标函数:stresses、contact stresses、selected natural frequencies和elastic\plastic\total strain与strain energy density;

(4). 可以使用的约束:只能使用volume作为约束,但可以使用多个几何约束;

(5). 当优化过程中,重新定位了某个单元在结果表面的节点,而该单元位移结构内部的节点没有跟着调整,从而导致了该单元严重扭曲,为了避免这个问题,在形貌优化过程中,可以使用mesh smoothing技术来实时调整单元内部节点位置从而来保证单元的质量;目前mesh smoothing技术仅支持三角形单元、四边形单元和四面体单元,对于其他单元类型将被忽略;注意,使用mesh smoothing 技术的单元节点不能被fixed 或者处于frozen regions;

(6). Mesh smoothing应用于design area的单元,同时也可以用于design area 周围的非design area的单元,这么做的目的为了单元变形的协调性,但是mesh smoothing计算成本很大,因此只能在期望形貌优化的区域进行mesh smoothing;同时不允许只在非design area区域使用mesh smoothing技术,即使用mesh smoothing技术的单元必须包含design area的单元;

(7). 对于位于非design area区域的自由表面节点(即没有载荷与位移约束),同时也没有几何加工约束,默认情况下,形貌优化过程中会固定这些表面节点所有的自由度;但是,用户可以选择允许这些自由表面节点沿着指定层数节点(这里的指定层数节点是指与design area相邻的非design area节点,这里的层数是指由这点节点所在单元为一层)移动;

(8). mesh smoothing技术默认使用constrained Laplacian mesh smoothing algorithm,当应用mesh smoothing技术的单元小于1000个节点时,用户可以选择一个local gradient mesh smoothing algorithm;

(9). 形貌优化的设计变量是设计节点(设计节点一定是属于结构的表面节点)的位移;

(10). 设计节点同时必须位于应用Mesh smoothing技术的单元的边界上;如下图所示:

例子参考:Abaqus Example Problems Manual 中的section 11.2.1

(11). 形貌优化本质上也是condition-base的优化,改变设计节点的位置是为了目标函数值关于一个参考值(默认情况,该参考值由软件自动计算,其值等于设计节点的目标函数值的平均值)的的均匀化,即通过均匀化使目标函数值最

小化,均匀化的规律如下所示:

5 定义design response变量方法

Design response变量需要指定响应区域,该区域与定义优化任务时指定的区

域保持一致即可,且design response变量不可以随便指定,只能使用系统指定的

变量。

一个design response一定是一个数量值(不能为矢量与张量),其值可以从模型数据和结果数据库中计算得到。

5.1 单个design response定义方法

5.2 combined design response定义方法

利用已经创建的多个design response来创建combined design response,因为每个design response是一个标量,如果要创建一个矢量的design response,这是就需要利用combined已经的多个design response,方法如下图所示。

对于genernal based optimization而言,combined design response支持三种操作:weighted combination、difference、absolute difference;对于condition-based 拓扑优化支持更多的combined design response定义;

Abaqus中Topology和Shape优化指南

Abaqus中Topology和Shape优化指南

目录 1. 优化模块界面......................................................................................................- 1 - 2. 专业术语..............................................................................................................- 1 - 3.定义拓扑优化Task(general optimization和condition-based optimization).......- 2 - 3.1 General Optimization 参数设置.................................................................- 3 - 3.1.1 Basic选项参数..................................................................................- 3 - 3.1.2 Density选项参数..............................................................................- 4 - 3.1.3 Perturbation选项参数.......................................................................- 5 - 3.1.4 Advanced选项参数...........................................................................- 5 - 3.2 Condition-based topology Optimization 参数设置....................................- 6 - 3.2.1 Basic选项参数..................................................................................- 7 - 3.2.2 Advanced选项参数...........................................................................- 7 - 4 定义Shape Optimization Task方法....................................................................- 8 - 4.1 Basic选项参数............................................................................................- 8 - 4.2 Mesh Smoothing Quality选项参数............................................................- 9 - 4.3 Mesh Smoothing Quality选项参数..........................................................- 11 - 5 定义design response变量方法.........................................................................- 13 - 5.1 单个design response定义方法...............................................................- 14 - 5.2 combined design response定义方法........................................................- 15 - 5.3 design response使用注意事项.................................................................- 17 - 5.3.1 定义design response的操作.........................................................- 17 - 5.3.2 condition-based topology optimization的design response............- 18 - 5.3.3 general topology optimization的design response..........................- 18 - 5.3.4 design response for shape optimization...........................................- 21 - 6 定义objective function方法..............................................................................- 22 - 6.1 目标函数定义...........................................................................................- 23 - 6.2 目标函数的运算.......................................................................................- 23 - 6.2.1 min运算..........................................................................................- 23 - 6.2.2 max运算..........................................................................................- 24 -

ABAQUS拓扑优化手册

ABAQUS拓扑优化分析手册/用户手册 分析手册: 13. Optimization Techniques优化技术 13.1 结构优化:概述 13.1.1 概述 ABAQUS结构优化是一个帮助用户精细化设计的迭代模块。结构优化设计能够使得结构组件轻量化,并满足刚度和耐久性要求。ABAQUS提供了两种优化方法——拓扑优化和形状优化。拓扑优化(Topology optimization)通过分析过程中不断修改最初模型中指定优化区域的单元材料性质,有效地从分析的模型中移走/增加单元而获得最优的设计目标。形状优化(Shape optimization)则是在分析中对指定的优化区域不断移动表面节点从而达到减小局部应力集中的优化目标。拓扑优化和形状优化均遵从一系列优化目标和约束。 最优化方法(Optimization)是一个通过自动化程序增加设计者在经验和直觉从而缩短研发过程的工具。想要优化模型,必须知道如何去优化,仅仅说要减小应力或者增大特征值是不够,做优化必须有更专门的描述。比方说,想要降低在两种不同载荷工况下的最大节点力,类似的还有,想要最大化前五阶特征值之和。这种最优化的目标称之为目标函数(Object Function)。另外,在优化过程中可以同时强制限定某些状态参量。例如,可以指定某节点的位移不超过一定的数值。这些强制性的指定措施叫做约束(Constraint)。 ABAQUS/CAE可以创建模型然后定义、配置和执行结构优化。更多信息请参考用户手册第十八章。 13.1.2 术语(Terminology) 设计区域(Design area): 设计区域即模型需要优化的区域。这个区域可以是整个模型,也可以是模型的一部分或者数部分。一定的边界条件、载荷及人为约束下,拓扑优化通过增加/删除区域中单元的材料达到最优化设计,而形状优化通过移动区域内节点来达到优化的目的。 设计变量(Design variables):设计变量即优化设计中需要改变的参数。拓扑优化中,设计区域中单元密度是设计变量,ABAQUS/CAE优化分析模块在其优化迭代过程中改变单元密度并将其耦合到刚度矩阵之中。实际上,拓扑优化将模型中单元移除的方法是将单元的质量和刚度充分变小从而使其不再参与整体结构响应。对于形状优化而言,设计变量是指设计区域内表面节点位移。优化时,ABAQUS或者将节点位置向外移动或者向内移动,抑或不移动。在此过程中,约束会影响表面节点移动的多少及其方向。优化仅仅直接修改边缘处的节点,而边缘内侧的节点位移通过边缘处节点插值得到。 设计循环(Design cycle): 优化分析是一种不断更新设计变量的迭代过程,执行ABAQUS进行模型修改、查看结果以及确定是否达到优化目的。其中每次迭代叫做一个设计循环。 优化任务(Optimization task):一次优化任务包含优化的定义,比如设计响应、目标、限制条件和几何约束。 设计响应(Design responses): 优化分析的输入量称之为设计响应。设计响应可以直接从ABAQUS的结果输出文件.odb中读取,比如刚度、应力、特征频率及位移等。或者ABAQUS 从结果文件中计算得到模型的设计响应,例如质心、重量、相对位移等。一个设计响应与模型紧密相关,然而,设计响应存在一定的范围,例如区域内的最大应力或者模型体积。另外,设计响应也与特点的分析步和载荷状况有关。 目标函数(Objective functions): 目标函数决定了优化的目标。一个目标函数是从设计响应中萃取的一定范围内的值,如最大位移和最大应力。一个目标函数可以用多个设计响应

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 5.1.2优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0,,0min ,g x x v g x x v f x v ?=??≤???? 式中,x -系统的状态变量;12g g 、-一等式和不等式的结束方程;(),f x v -目标函数;v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。 5.2基于ANSYS 的优化拓扑的一般过程 (进行内容排版修改) 在ANSYS 中,进行优化拓扑,一般分为6个步骤。具体流程见图5-1:

abaqus常用技巧总结

a b a q u s常用技巧总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Abaqus常用技巧总结 本手册是由simwe等论坛上精华帖以及本人下载的其他资料整理,由于很多资料搜集已经很久,而且时间有限,都没有注明原作者,也没有最资料进行分类整理,见谅。如需要,请PM给我。 Shelly31 Python.tzy@https://www.wendangku.net/doc/084782839.html, 2007.8.1 建议阅读方式:

目录 ABAQUS常用技巧总结 (2) 目录 (3) 1.对TIME INCREMENT的根本理解 (5) 2.ABAQUS 请问 MOMENT的加载 (5) 3.ABAQUS计算时C盘的临时文件太大了,怎么改目录? (6) 4.CAE中如何加预应力 (6) 5.HYPERMESH里面看到ABAQUS分析的结果 (6) 6.X-Y PLOTS (6) 7.把上一次的分析结果作为下一次分析的初始条件该怎么做 (7) 8.材料方向与增量步 (8) 9.多个INP文件如何实现批处理 (9) 10.关于ABAQUS的任务管理 (10) 11.关于数据的输入输出 (12) 12.后处理积分 (12) 13.接触分析激活杀死 (13) 14.利用QUEUE的功能由本地机器向远程UNIX机器提交ABAQUS作业的方法[精华] (14) 15.利用命令进行计算时如何设置调用内存量 (17) 16.清华大学BBS的ABAQUS精华 (17) 17.请问怎么实现双曲线 (55)

18.取消坐标系等的显示 (56) 19.如何在计算中修改材料特性 (57) 20.输出计算过程中的总质量和总刚度矩阵 (60) 21.先张预应力: (61) 22.用户子程序的使用 (61) 23.怎样设定用双CPU机器进行ABAQUS计算 (61) 24.中途停止正在运算的JOB (62) 25.自适应网格技术 (62) 26.ABAQUS计算与内存 (63) 27.质量缩放 (64) 28.ABAQUS多处理器进行并行计算的效果研究 (79) 29.YAHOO讨论组摘录--CONTACT+OVERCLOSURE (81) 30.原创:无限元建立方法,希望得到加分 (95) 31.[分享]ABAQUS 使用问答 (102) 32.[转帖]ABAQUS6.4导入外来模型的几点小经验! (122) 33.ABAQUS的多图层绘图 (125) 34.子结构 (125) 35.如何在不同的分析步改变材料的参数 (126) 36.模型的重启动分析-RESTART (127) 37. ABAQUS的单位心得 (128)

拓扑优化技术

拓扑优化技术 第1节基本知识 一、拓扑优化的概念 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。 与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。 拓扑优化的目标—目标函数—是在满足结构的约束(V)情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量( i)给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL,TOPO命令来绘出。 ANSYS提供的拓扑优化技术主要用于确定系统的最佳几何形状,其原理是系统材料发挥最大利用率,同时确保系统的整体刚度(静力分析)、自振频率(模态分析)在满足工程要求的条件下获得极大或极小值。 拓扑优化应用场合:线性静力分析和模态分析。 拓扑优化原理:满足结构体积缩减量的条件下使目标函数结构柔量能量(the enery of structure compliance—SCOMP)的极小化。结构柔量能量极小化就是要求结构刚度的最大化。 例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。图19-1表示满足约束和载荷要求的拓扑优化结果。图19-1a表示载荷和边界条件,图19-b 表示以密度云图形式绘制的拓扑结果。 图19-1 体积减少60%的拓扑优化示例 二、拓扑优化的基本过程 拓扑优化的基本步骤如下:

1.定义结构问题定义材料弹性模量、泊松系数、材料密度。 2.选择单元类型拓扑优化功能中的模型只能采用下列单元类型: ● 二维实体单元:Plane2和Plane82,用于平面应力问题和轴对称问题。 ● 三维实体单元:Solid92、Solid95。 ● 壳单元:SHELL93。 3.指定优化和不优化区域ANSYS只对单元类型编号为1的单元网格部分进行拓扑优 化,而对单元类型编号大于1的单元网格部分不进行拓扑优化,因此,拓扑优化时要确保进行拓扑优化区域单元类型编号为1,而不进行拓扑优化区域单元类型编号大于1即可。 4.定义并控制载荷工况或频率提取可以在单个载荷工况和多个载荷工况下做拓扑优化,单载荷工况是最简便的。 要在几个独立的载荷工况中得到优化结果时,必须用到写载荷工况和求解功能。在定义完每个载荷工况后,要用LSWRITE命令将数据写入文件,然后用LSSOLVE命令求解载荷工况的集合。 5.定义和控制优化过程拓扑优化过程包括定义优化参数和进行拓扑优化两个部分。用户可以用两种方式运行拓扑优化:控制并执行每一次迭代或自动进行多次迭代。 ANSYS有三个命令定义和执行拓扑优化:TOPDEF,TOPEXE和TOPITER。TOPDEF 命令定义要省去材料的量,要处理载荷工况的数目,收敛的公差;TOPEXE命令执行一次优化迭代;TOPITER命令执行多次优化迭代。 (1)定义优化参数首先要定义优化参数。用户要定义要省去材料的百分比,要处理载荷工况的数目,收敛的公差。 命令:TOPDEF GUI:Main Menu>Solution>Solve>Topological opt 注:本步所定义的内容并不存入ANSYS数据库中,因此在下一个拓扑优化中要重新使用TOPDEF命令。 (2)执行单次迭代定义好优化参数以后,可以执行一次迭代。迭代后用户可以查看收敛情况并绘出或列出当前的拓扑优化结果。可以继续做迭代直到满足要求为止。如果是在GUI方式下执行,在Topological Optimization 对话框(ITER域)中选择一次迭代。 命令:TOPEXE GUI:Main Menu>Solution>Solve>Topological opt TOPEXE的主要优点是用户可以设计自己的迭代宏进行自动优化循环和绘图。在下一节,可以看到TOPITER命令是一个ANSYS的宏,用来执行多次优化迭代。 (3)自动执行多次迭代 在定义好优化参数以后,用户可以自动执行多次迭代。在迭代完成以后,可以查看收敛情况并绘出或列出当前拓扑形状。如果需要的话,可以继续执行求解和迭代。TOPITER 命令实际是一个ANSYS的宏,可以拷贝和定制。

ABAQUS教材学习:入门手册

ABAQUS教材:入门使用手册 一、前言 ABAQUS就是国际上最先进得大型通用有限元计算分析软件之一,具有惊人得广泛得模拟能力、它拥有大量不同种类得单元模型、材料模型、分析过程等、可以进行结构得静态与动态分析,如:应力、变形、振动、冲击、热传递与对流、质量扩散、声波、力电耦合分析等;它具有丰富得单元模型,如杆、梁、钢架、板壳、实体、无限体元等;可以模拟广泛得材料性能,如金属、橡胶、聚合物、复合材料、塑料、钢筋混凝土、弹性泡沫,岩石与土壤等。 对于多部件问题,可以通过对每个部件定义合适得材料模型,然后将它们组合成几何构形。对于大多数模拟,包括高度非线性问题,用户仅需要提供结构得几何形状、材料性能、边界条件、荷载工况等工程数据。在非线性分析中,ABAQUS能自动选择合适得荷载增量与收敛准则,它不仅能自动选择这些参数得值,而且在分析过程中也能不断调整这些参数值,以确保获得精确得解答、用户几乎不必去定义任何参数就能控制问题得数值求解过程。 1、1ABAQUS产品 ABAQUS由两个主要得分析模块组成,ABAQUS/Standard与AB AQUS/Explicit。前者就是一个通用分析模块,它能够求解广泛领域得线性与非线性问题,包括静力、动力、构件得热与电响应得问题。后者就是一个具有专门用途得分析模块,采用显式动力学有限元格式,它适用于模拟短暂、瞬时得动态事件,如冲击与爆炸问题,此外,它对处理改变接触条件得高度非线性问题也非常有效,例如模拟成型问题。 ABAQUS/CAE(plete ABAQUS Environment) 它就是ABAQUS得交互式图形环境、通过生成或输入将要分析结构得几何形状,并将其分解为便于网格划分得若干区域,应用它可以方便而快捷地构造模型,然后对生成得几何体赋予物理与材料特性、荷载以及边界条件、ABAQUS/CAE具有对几何体划分网格得强大功能,并可检验所形成得分析模型。模型生成后,ABAQUS/CAE可以提交、监视与控制分析作业。而Visualization(可视化)模块可以用来显示得到得结果、 1。2有限元法回顾 任何有限元模拟得第一步都就是用一个有限元(Finite Element)得集合来离散(Discretize)结构得实际几何形状,每一个单元代表这个实际结构

最新Abaqus6.13拓扑优化 atom-book超全学习资料-05

L5.1 w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s Lesson content: Problem Statement Topology Optimization – Results Topology Optimization – Results Examination Topology Optimization – Analysis Conclusions Lesson 5: Nonlinear Geometric Effects in Topology Optimization 30 minutes L5.2 w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s Problem Statement Consider a beam structure, clamped at both ends, subjected to a prescribed displacement in its center region. Topology optimization task: Minimize the strain energy while using only 10% of the original mass. Evaluated solver and material combinations: Linear geometry and linear material Linear geometry and nonlinear material Nonlinear geometry and linear material Nonlinear geometry and nonlinear material prescribed displacement Prescribe displacement c l a m p e d e n d s y m m e t r y Mechanical model Finite element model, exploiting symmetry

ABAQUS教材学习:入门手册

ABAQUS教材:入门使用手册 一、前言 ABAQUS是国际上最先进的大型通用有限元计算分析软件之一,具有惊人的广泛的模拟能力。它拥有大量不同种类的单元模型、材料模型、分析过程等。可以进行结构的静态与动态分析,如:应力、变形、振动、冲击、热传递与对流、质量扩散、声波、力电耦合分析等;它具有丰富的单元模型,如杆、梁、钢架、板壳、实体、无限体元等;可以模拟广泛的材料性能,如金属、橡胶、聚合物、复合材料、塑料、钢筋混凝土、弹性泡沫,岩石与土壤等。 对于多部件问题,可以通过对每个部件定义合适的材料模型,然后将它们组合成几何构形。对于大多数模拟,包括高度非线性问题,用户仅需要提供结构的几何形状、材料性能、边界条件、荷载工况等工程数据。在非线性分析中,ABAQUS能自动选择合适的荷载增量和收敛准则,它不仅能自动选择这些参数的值,而且在分析过程中也能不断调整这些参数值,以确保获得精确的解答。用户几乎不必去定义任何参数就能控制问题的数值求解过程。 1.1 ABAQUS产品 ABAQUS由两个主要的分析模块组成,ABAQUS/Standard和ABAQUS/Explicit。前者是一个通用分析模块,它能够求解广泛领域的线性和非线性问题,包括静力、动力、构件的热和电响应的问题。后者是一个具有专门用途的分析模块,采用显式动力学有限元格式,它适用于模拟短暂、瞬时的动态事件,如冲击和爆炸问题,此外,它对处理改变接触条件的高度非线性问题也非常有效,例如模拟成型问题。 ABAQUS/CAE(Complete ABAQUS Environment) 它是ABAQUS的交互式图形环境。通过生成或输入将要分析结构的几何形状,并将其分解为便于网格划分的若干区域,应用它可以方便而快捷地构造模型,然后对生成的几何体赋予物理和材料特性、荷载以及边界条件。ABAQUS/CAE具有对几何体划分网格的强大功能,并可检验所形成的分析模型。模型生成后,ABAQUS/CAE可以提交、监视和控制分析作业。而Visualization(可视化)模块可以用来显示得到的结果。 1.2 有限元法回顾 任何有限元模拟的第一步都是用一个有限元(Finite Element)的集合

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

(完整版)Abaqus优化设计和敏感性分析高级教程

第12章优化设计和敏感性分析 本章主要讲解应用Abaqus进行结构优化设计和敏感性分析。 目前的产品结构设计,大多靠经验,规划几种设计方案,结合CAE分析择优选取,但规划的设计方案并不一定是最优方案,故本章前半部分讲解优化设计中的拓扑优化和形状优化,并制定操作SOP,辅以工程实例详解。 工程实际中,加工制造、装配误差等造成的设计参数变异,会对设计目标造成影响,因此寻找出参数的影响大小即敏感性,变得尤为重要,故本章后半部分着重讲解敏感性分析,并制定操作SOP,辅以工程实例求出设计参数敏感度,详解产品的深层次研究。 知识要点: ?结构优化设计基础 ?拓扑、形状优化理论 ?拓扑、形状优化SOP及实例 ?敏感性分析理论 ?敏感性分析SOP及实例 12.1 优化设计基础 优化设计以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,优化设计使结构更轻、更强、更耐用。 在Abaqus 6.11之前,需要借用第三方软件(比如Isight、TOSCA)实现优化设计及敏感性分析,远不如Hyperworks及Ansys等模块化集成程度高。从Abaqus 6.11新增Optimization module后,借助于其强大的非线性分析能力,结构优化设计变得更具可行性和准确性。 12.1.1 结构优化概述 结构优化是一种对有限元模型进行多次修改的迭代求解过程,此迭代基于一系列约束条件向设定目标逼近,Abaqus优化程序就是基于约束条件,通过更新设计变量修改有限元模型,应用Abaqus进行结构分析,读取特定求解结果并判定优化方向。 Abaqus提供了两种基于不同优化方法的用于自动修改有限元模型的优化程序:拓扑优化(Topology optimization)和形状优化(Shape optimization)。两种方法均遵从一系列优化目

ANSYS拓扑优化原理讲解以及实例操作

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 5.1.2优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0,,0 min ,g x x v g x x v f x v ?=??≤???? 式中,x -系统的状态变量;12 g g 、-一等式和不等式的结束方程;(),f x v -目标函数;v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。

基于拓扑优化的车身结构研究

基于拓扑优化的车身结构研究 瞿元王洪斌张林波吴沈荣 奇瑞汽车股份有限公司,安徽芜湖,241009 摘要:随着CAE技术的发展,虚拟仿真技术在汽车开发中的作用也愈来愈显著。而前期工程阶段,如何布置出合理的车身骨架架构,一直是个相对空白的地带,也是整车正向开发过程中绕不过的坎。尽管研发工程师根据经验,参照现有车型的结构特点,也能进行车身骨架架构的设定,但总是缺乏有效手段直观地反映不同车型结构布置的特点。本文用拓扑优化的方法,从结构基本特征的角度来审视这一问题,并运用该方法对某SUV车身结构进行研究,获得一些直观性的结论。 关键词:车身,前期工程,拓扑优化 1、引言 随着对整车研发过程认识的加深,以及对正向开发过程的探索,在车型开发前期,对车身结构做出更合理的规划显得愈来愈重要。常规的研发思路之一是通过参考已有车型的结构,经过适当的修改,形成新的结构,并用于新车型中。但是对于原始车型的设计思路、结构布置的原因等缺乏系统的理解,或者理解不深,往往在更改过程中产生新的问题。为了部分解决上述问题,本文从结构拓扑优化的角度,对某SUV车型车身结构的总体布置进行初步探讨,以期加深对结构布置的理解。 2、研究方法概述 合理化的车身结构,是满足整车基本性能的重要保障。为了能够实现结构的最优布置,文献[1]使用了拓扑优化工具来布置车身结构。其基本思路是从造型以及车内空间布置出发,建立车身空间的基础网格模型,然后根据一定的工况要求,对基础网格进行拓扑分析,并根据拓扑结果建立梁、板壳模型,并进行多项性能的优化,从而实现车身结构的正向开发。本文借助于该思想,建立研究对象的结构空间包络,并对该包络进行拓扑分析,然后将仿真结果与原始结构进行比较,寻找车身结构中的关键点,推测初始结构可能的布置思想,从而加深对该研究思路的理解。其基本过程如下图所示: 3.2 工况 车身在实际使用过程中承受非常复杂的载荷,这些载荷对车身的影响各不相同,有的影响局部,有的影响整个车身。在实际研发过程中,不可能对所有可能的工况进行考察,而且,不同的设计阶段,考察的指标也不相同。在概念设计阶段,更重要的是保证车身的总体结构刚度,避免后期产生较大变更,导致项目延期或者增加较多的开发成本。本文主要考察某SUV车型结构布置特点,因此,主要考虑NVH以及碰撞两个方面的工况。其具体考察工况如下表1所示,4个NVH工况,主要考察整体刚度以及前后端的弯曲性能;4个碰撞方面的工况,主要考察车身承受不同方向的撞击。 表1 主要考察工况[1]

abaqus系列教程11多步骤分析 (1)

11多步骤分析 ABAQUS模拟分析的一般性目标是确定模型对所施加载荷的响应。回顾术语载荷(load)在ABAQUS中的一般性含义,载荷代表了使结构的响应从它的初始状态到发生变化的任何事情;例如:非零边界条件或施加的位移、集中力、压力以及场等等。在某些情况下载荷可能相对简单,如在结构上的一组集中载荷。在另外一些问题中施加在结构上的载荷可能会相当复杂,例如,在某一时间段内,不同的载荷按一定的顺序施加到模型的不同部分,或载荷的幅值是随时间变化的函数。采用术语载荷历史(load history)以代表这种作用在模型上的复杂载荷。 在ABAQUS中,用户将整个的载荷历史划分为若干个分析步(step)。每一个分析步是由用户指定的一个“时间”段,在该时间段内ABAQUS计算该模型对一组特殊的载荷和边界条件的响应。在每一个分析步中,用户必须指定响应的类型,称之为分析过程,并且从一个分析步到下一个分析步,分析过程也可能发生变化。例如,可以在一个分析步中施加静态恒定载荷,有可能是自重载荷;而在下一个分析步中计算这个施加了载荷的结构对于地震加速度的动态响应。隐式和显式分析均可以包含多个分析步骤;但是,在同一个分析作业中不能够组合隐式和显式分析。为了组合一系列的隐式和显式分析步,可以应用结果传递或输入功能。在ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)第results between ABAQUS/Explicit and ABAQUS/Standard”中讨论了这个功能。而本指南不做进一步的讨论。 ABAQUS将它的所有分析过程主要划分为两类:线性扰动(linear perturbation)和一般性分析(general)。在ABAQUS/Standard或在ABAQUS/Explicit分析中可以包括一般分析步;而线性扰动分析步只能用于ABAQUS/Standard分析。对于两种情况的载荷条件和“时间”定义是不相同的,因而,从每一种过程得到的结果必须区别对待。 在一般分析过程中,即一般分析步(general step),模型的响应可能是非线性的或者是线性的。而在采用扰动过程的分析步中,即称为扰动分析步(perturbation step),响应只能是线性的。ABAQUS/Standard处理这个分析步作为由前面的任何一般分析步创建的预加载、预变形状态的线性扰动(即所谓的基本状态(base state));ABAQUS 的线性模拟功能比之单纯线性分析的程序是更加广义的。

ABAQUS帮助文档

初始损伤对应于材料开始退化,当应力或应变满足于定义的初始临界损伤准则,则此时退化开始。Abaqus 的Damage for traction separation laws 中包括:Quade Damage、Maxe Damage、Quads Damage、Maxs Damage、Maxpe Damage、Maxps Damage 六种初始损伤准则,其中前四种用于一般复合材料分层模拟,后两种主要是在扩展有限元法模拟不连续体(比如crack 问题)问题时使用。前四种对应于界面单元的含义如下:Maxe Damage 最大名义应变准则:Maxs Damage 最大名义应力准则:Quads Damage 二次名义应变准则:Quade Damage 二次名义应力准则 最大主应力和最大主应变没有特定的联系,不同材料适用不同准则就像强度理论有最大应力理论和最大应变理论一样~ ABAQUS帮助文档10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method 看看里面有没有你想要的 Defining damage evolution based on energy dissipated during the damage process 根据损伤过程中消耗的能量定义损伤演变 You can specify the fracture energy per unit area, , to be dissipated during the damage process directly. 您可以指定每单位面积的断裂能量,在损坏过程中直接消散。Instantaneous failure will occur if is specified as 0. 瞬间失效将发生 However, this choice is not recommended and should be used with care because it causes a sudden drop in the stress at the material point that can lead to dynamic instabilities. 但是,不推荐这种选择,应谨慎使用,因为它会导致材料点的应力突然下降,从而导致动态不稳定。 The evolution in the damage can be specified in linear or exponential form. 损伤的演变可以以线性或指数形式指定。 Linear form 线性形式

ANSYS拓扑优化实例-三维块的优化

ANSYS拓扑优化实例 如下图所示的长方体,受到一个1000N的集中载荷,四周为固定端,弹性模量为E=2e11,泊松比为0.3。 1.设定分析作业名 从实用菜单中选择Utility Menu:File>Change Jobname 命令,将打开Change Jobname对话框,如图所示,输入example of topology单击OK。 2.设定分析标题 从实用菜单中选择Utility Menu:File>Change Title 命令,将打开Change Title对话框,如图所示,输入single-load example of topo单击OK。 3.定义单元类型 (1)从主菜单中依次选择Main Menu:Preprocessor-Element Type-Add/Edit/Delete命令将打开Element Type(单元类型)对话框。 (2)单击Add,将打开Library of Element Type ,选择Solid95,依次单击Apply、OK。 如下图所示,单元类型对话框将会出现两个单元类型(拓扑优化只优化单元类型为1

(Type1)的部分)。 (3)单击Close,完成设置。 4.定义材料属性 (1)从主菜单中选择Main Menu:Preprocessor-Material Props-Material Models将打开Define Material Model Behavior(定义材料属性)窗口,左窗口Material Model Number 1。 (2)依次在右窗口双击Structural>Linear>Elastic>Isotropic,给出弹性模量EX=2e11和泊松比PRXY=0.3。 (3)单击OK回到Define Material Model Behavior(定义材料属性)窗口,关闭窗口完成设置。

相关文档