文档库 最新最全的文档下载
当前位置:文档库 › 射频前端系统结构

射频前端系统结构

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

雷达射频集成电路的发展及应用

龙源期刊网 https://www.wendangku.net/doc/095281024.html, 雷达射频集成电路的发展及应用 作者:黄林锋 来源:《山东工业技术》2017年第24期 摘要:本文概述了雷达射频集成电路技术的特点,是一种以半导体和射频电路技术为基础,一种集信号放大、数据传输和转化功能为一体的技术,并从其发展与演变切入进行研究,探讨了目前常用的几种雷达射频集成电路的发展成果及其应用状况。 关键词:雷达射频集成电路;发展;应用 DOI:10.16640/https://www.wendangku.net/doc/095281024.html,ki.37-1222/t.2017.24.099 现代的雷达系统越来越注重高精度的距离探测与跟踪,还要求较强的抗干扰性、目标识别作用和气象探测功能。由此,要求完整一套的现代雷达系统包含近万个信号接收器和信号发射装置,这也极大提高了系统的复杂性和设备的成本造价。雷达系统的现代化除保留上述基本功能,还应减少设备的造价,这推进了射频集成电路在现代雷达领域的研发 [1]。由无线天线、电磁信号处理器、显示屏幕、控制面板、信号的发射和接收器所组成的现代雷达系统。目前,射频集成系统已经应用于信号的发射和接收器,下文从射频集成电路在雷达系统的研发入手,通过深入研究,介绍雷达系统目前的几种应用现状。 1 雷达射频集成电路的发展概述 随射频集成技术和信息化在雷达系统中的深入发展,射频集成电路已经演变了好几个架构形态[2]。以信号接收系统为例,在三十年内演化出三种不同的形态。在此过程,雷达系统的 数字化不断提高,实现某些频段的完全数字化,使射频集成电路向混合集成电路的方向不断发展。 2 雷达系统射频集成电路的发展及应用研究 2.1 射频集成SOC 以单片作为射频电路的集成基板,SiGe和CMOS作为集成射频与数字化特点的技术平台。技术的快速发展极大提高了射频电路的集成化程度,上部集混合频率、放大频率和合成信号功能为一体,下部集增频、分贝放大功能的器件。雷声公司(美国)研发的最新设备——X 波段应用了上述技术 [3],其在实际中具有高性能、减小雷达体积和节约造价的应用优势。 2.2 射频多通道集成电路 在一个集成芯片上集多通道于一体,这种集成电路没有射频集成电路那么多的器件,应用系统的封装工艺,以高度集成化的多通道芯片,实现射频混合电路的性能优化和结构简化。采

集成电路与系统

集成电路与系统 集成电路设计与集成系统专业工资待遇 截止到 2013年12月24日,57740位集成电路设计与集成系统专业毕业生的平均薪资为4639元,其中应届毕业生工资3701元,0-2年工资4104元,10年以上工资5104元,3-5年工资6069元,8-10年工资10494元,6-7年工资11198元。 集成电路设计与集成系统专业就业方向 集成电路设计与集成系统专业学生毕业后可到国内外各通信、雷达、电子对抗等电子系统设计单位和微电子产品的单位从事微电子系统的研发设计。。 集成电路设计与集成系统专业就业岗位 硬件工程师、电气工程师、模拟集成电路设计工程师、研发工程师、射频集成电路设计工程师、设计工程师、等。 集成电路设计与集成系统专业就业地区排名 集成电路设计与集成系统专业就业岗位最多的地区是上海。薪酬最高的地区是肇庆。 就业岗位比较多的城市有:上海[36个]、北京[30个]、深圳[28个]、苏州[11个]、西安[10个]、武汉[9个]、广州[7个]、成都[6个]、无锡[6个]、济南[6个]等。 就业薪酬比较高的城市有:肇庆[8065元]、信阳[6999元]、北京[6279元]、上海[6194元]、佛山[5265元]、厦门[5231元]、杭州[5024元]、南京[5013元]、惠州[4999元]、沈阳[4867元]、大连[4799元]等。 集成电路设计与集成系统专业在同类专业排名

集成电路设计与集成系统专业在专业学科中属于工学类中的电气信息类,其中电气信息类共34个专业,集成电路设计与集成系统专业在电气信息类专业中排名第28,在整个工学大类中排名第95位。 在电气信息类专业中,就业前景比较好的专业有:计算机科学与技术,自动化,软件工程,信息工程,电气工程及其自动化,网络工程,计算机软件,电子信息工程,通信工程等。

射频前端国内主要企业市场情况梳理

Ii:] 核心观点-:射频前端市场由滤波器、PA、开关、LNA等组件构成射频前端市场2019年规模在170亿美元,2025年有望达到250亿美元。当前滤波器所占份额超过50°o/,P A超过30°o/,开关、LNA以及调谐器等真他组件所占份额在15°/o左右。 Ii:] 核心观点二:射频前端市场CR4超过90°/o,被日美广商垄断全球四大射频半导体巨头分别为Skyworks、Qor vo、Broadcom 以及Murata , 均为综合性器件以及模组生产厂商F 占据市场份额自守9 0°/o以上。全球射频前端市场为日本、美国厂商所基本垄断。 Ii:] 核心观点三:SG需求推动射频前端器件量价齐升 随着SG通信标准的使用p 频段数量的增加以及频率提升使得射频前端器件的数量和单价均有所提升,这使得分立器件市场快速发展。另一方面?由于终端轻薄化需求量模组化的趋势也愈发明显。

建议关注: ?卓胜微:国内射频开关、LNA龙头,国产替代+5G需求驱动模组化发展 ?立昂微:国内半导体硅片龙头,射频器件衬底空间巨大 ?经纬辉开(诺思微):BAW技术全球领先,有望突破日美厂商高端滤波技术垄断?信维通信:国内天线龙头,射频开关/SAW稳步发展 ?韦尔股份:全球领先CIS公司,积极布局射频前端业务 ?三安光电:国内化合物代工龙头,射频材料业务有望深度受益国产替代进程 ?麦捷科技:SAW滤波器已量产出货,有望打开国产滤波器市场

5.1、射频前端厂商产业链示意图 分立器件厂商 终端品牌厂商 模组化及制造、封装厂商 华为OPP O Vivo 小米苹果代工厂

5.2、射频前端产业链厂商

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

2020半导体射频行业竞争现状分析

2020半导体射频行业竞 争现状分析 2020年

从2011 年至2018 年全球射频前端市场规模以年复合增长率13.10%的速度增长,2018 年达149.10 亿美元。受到5G 网络商业化建设的影响,自2020 年起,全球射频前端市场将迎来快速增长。2018 年至2023 年全球射频前端市场规模预计将以年复合增长率16.00%持续高速增长。 2020 年初以来,全球范围内发生了新型冠状病毒(COVID-19)肺炎重大传染性疫情,在疫情的影响下,消费者对智能终端的需求减弱或有所延迟,从而为5G 手机的普及带来一定的不确定性。预计2020 年全球智能手机出货量预计为12 亿部,相较2019 年下滑11.9%,智能手机终端市场的萎缩将有可能带来射频前端市场规模的整体增速的放缓。

然而,随着包括中国在内的部分国家及地区疫情逐渐得到控制,上述不利因素影响将逐步减弱,多数手机厂商的5G 新品发布节奏未受到显著影响,且5G网络的建设速度有所恢复,因此,全球射频前端市场所受到的抑制程度相对可控。 行业内主要芯片设计厂商一般同时向市场提供射频开关、射频低噪声放大器、射频功率放大器等多种产品。行业内主要竞争厂商包括欧美传统大厂Broadcom、Skyworks、Qorvo、NXP、Infineon、Murata 等,及国内竞争厂商紫光展锐、飞骧科技、唯捷创芯、韦尔股份等。 现阶段,全球射频前端芯片市场主要被Broadcom、Skyworks、Qorvo 等国外企业占据。其中Broadcom、Skyworks、Qorvo、Murata、Infineon、NXP、韦尔股份为上市公司,根据其年报披露的公开信息,其基本信息、收入情况、技术水平如下。

2.4GHZ射频前端设计

2.4GHz ISM射频前端模块的设计及应用 2.4GHz工业科学医疗设备(ISM)是全世界公开通用使用的无线频段,蓝牙( Bluetooth)、 Wi-Fi、ZigBee等短距离无线数据通信均工作在2.4GHz ISM频段。 针对2.4GHz ISM频段无线应用,锐迪科微电子公司推出了RDA T212射频前端模块。T212芯片集成了功率放大器( PA)、低噪声放大器( LNA)、天线开关(Antenna Switch)和功率检测器(Power Detector),并特别增加PA带通及LNA带通的省电功能,内部还针对天线端做了 ESD保护设计。T212芯片采用标准的 QFN 3×3mm2超小型封装,输入和输出已集成隔直电容和匹配电路,外围元件仅需少量滤波电容,极大地简化了PCB设计。 高集成度、超小尺寸并提供省电功能的T212射频前端模块,在手机蓝牙以及802.11.b/g扩展应用中大有可为。同时,T212芯片还具有优异的线性度,支持Bluetooth 2.0的高速率应用。 T212模块的性能 T212射频前端模块内集成的功率放大器采用先进的砷化镓异质结双极晶体管( GaAs HBT)工艺制造,低噪声放大器和天线开关采用增强型高电子迁移率场效应晶体管( E-PHEMT)工艺制造。尽管没有采用差分PA的形式,但是T212依然为客户提供了差分输入管脚,从而使客户不需要再关心差分转单端的设计。 T212集成的功率放大器是一款高线性高效率PA,在2.4GHz~2.5GHz频段内有20dB增益,线性输出功率为18dBm时的三阶交调IM3小于-30dBc。PA的静态工作电流可低至10mA,饱和输出功率可达23dBm,功率附加效率高达45%,这么高的效率有助于延长供电时间。

《射频通信电路》习题及解答

习题1: 1.1本书使用的射频概念所指的频率范围是多少? 解: 本书采用的射频范围是30MHz~4GHz 1.2列举一些工作在射频范围内的电子系统,根据表1-1判断其工作波段,并估算相应射频 信号的波长。 解: 广播工作在甚高频(VHF )其波长在10~1m 等 1.3从成都到上海的距离约为1700km 。如果要把50Hz 的交流电从成都输送到上海,请问两 地交流电的相位差是多少? 解: 8 44 3100.6501700 0.28333 0.62102 v km f k k λθπ?===?10==?10?== 1.4射频通信系统的主要优势是什么? 解: 1.射频的频率更高,可以利用更宽的频带和更高的信息容量 2.射频电路中电容和电感的尺寸缩小,通信设备的体积进一步减小 3.射频通信可以提供更多的可用频谱,解决频率资源紧张的问题 4.通信信道的间隙增大,减小信道的相互干扰 等等 1.5 GSM 和CDMA 都是移动通信的标准,请写出GSM 和CDMA 的英文全称和中文含意。(提示:可以在互联网上搜索。) 解: GSM 是Global System for Mobile Communications 的缩写,意为全球移动通信系统。 CDMA 英文全称是Code Division Multiple Address,意为码分多址。 1.6有一个C=10pF 的电容器,引脚的分布电感为L=2nH 。请问当频率f 为多少时,电容器开始呈现感抗。 解: 11 1.1252wL f GHz wC π=?== 既当f=1.125GHz 时,电容器为0阻抗,f 继续增大时,电容器呈现感抗。 1.7 一个L=10nF 的电容器,引脚的分布电容为C=1pF 。请问当频率f 为多少时,电感器开始呈现容抗。 解: 思路同上,当频率f 小于1.59 GHz 时,电感器呈现感抗。 1.8 1)试证明(1.2)式。2)如果导体横截面为矩形,边长分别为a 和b ,请给出射频电阻R RF 与直流电阻R DC 的关系。 解: R l s =ρσ l ρ, ,s 对于同一个导体是一个常量

射频基础知识培训

射频基础知识培训 1、无线通信基本概念 利用电磁波的辐射和传播,经过空间传送信息的通信方式称之为无线电通信(Wireless Communication),也称之为无线通信。利用无线通信可以传送电报、电话、传真、数据、图像以及广播和电视节目等通信业务。 目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚毫米波以下),以至光波。无线通信使用的频率范围和波段见下表1-1 表1-1 无线通信使用的电磁波的频率范围和波段

由于种种原因,在一些欧、美、日等西方国家常常把部分微波波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体如表1 - 2所示 表1-2 无线通信使用的电磁波的频率范围和波段

无线通信中的电磁波按照其波长的不同具有不同的传播特点,下面按波长分述如下: 极长波(极低频ELF)传播 极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰耗极小。 1.2超长波(超低频SLF)传播 超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为m)对海水穿透能力很强,可深达100m以上。 甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全球。 长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地表面传播(地波)和靠电离层反射传播(天波)。 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有关。 短波(高频HF)传播 短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电离层反射传播(天波)。 超短波(甚高频VHF)传播

RF 设计与应用----射频集成电路封装

RF设计与应用----射频集成电路封装 关键词:射频,多层电路板,电路封装 摘要:针对无线通信产品业者所面临的课题,本文试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 在行动通讯质量要求的提高,通讯带宽的需求量大增,因应而生的各项新的通讯规范如GPRS、W-CDMA、CDMA-2000、Bluetooth、 802.11b纷纷出笼,其规格不外乎:更高的数据传输速率、更有效的调变方式、更严谨的噪声规格限定、通讯功能的增强及扩充,另外再加上消费者对终端产品“轻、薄、短、小、久(包括产品的使用寿命、维护保固,甚至是手机的待机时间)”的诉求成了必要条件;于是乎,为了达成这些目的,各家厂商无不使出混身解数,在产品射频(Radio Frequency)、中频(Intermediate Frequency)与基频(Base Band)电路的整合设计、主动组件的选择应用、被动组件数目的减少、多层电路板内线路善加运用等,投注相当的心血及努力,以求获得产品的小型化与轻量化。 针对这些无线通信产品业者所面临的课题,我们试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 射频集成电路封装技术的现况 就单芯片封装(Single Chip Package)的材质而言,使用塑料封装( P l a s t i c Pac kage)的方式,是一般市面上常见到的高频组件封装类型,低于3GHz工作频率的射频集成电路及组件,在不严格考虑封装金属导线架(Metal Lead Frame)和打线(Wire Bond)的寄生电感(Parasitic Inductance)效应下,是一种低成本且可薄型化的选择。由于陶瓷材料防水气的渗透性特佳及满足高可靠度的需求,故也有采用陶瓷封装技术;对于加强金属屏蔽作用及散热效果的金属封装,可常在大功率组件或子系统电路封装看到它的踪迹。

射频集成电路综述

射频集成电路低噪声放大器研究前景

摘要 近年来,随着无线通信技术在移动通信、全球互联接入以及物联网等领域越来越广泛的应用。对于现代通信系统往往要求提供两个甚至更多的无线服务,因此就要求射频电路前端中的关键部件低噪声放大器(Low Noise Amplifier,LNA)能在多个频带下具有放大能力。因此如何能够放大多个频带的宽带低噪声放大器成为研究热点。 低噪声放大器是现代无线通信、雷达、电子对抗系统等应用中的十分重要的部分,常用于接收系统的前端,在放大信号的同时降低噪声干扰,提高系统灵敏度。如果在接受系统的前端连接高性能的低噪声放大器,在低噪声放大器增益足够大的情况下,就能抑制后级电路的噪声,则整个接收机系统的噪声系数将主要取决于放大器的噪声。如果低噪声放大器的噪声系数降低,接收机系统的噪声系数也会变小,信噪比得到改善,灵敏度大大提高。由于可见噪声放大器的性能制约了整个接收系统的性能,对于整个接收系统技术水平的提高,也起了决定性的作用。 宽带低噪声放大器是一种需要有良好的输入匹配的部分。输入匹配是要求兼顾阻抗匹配和噪声系数的,对于这两个指标一般来说是耦合在一起的。现有的宽带匹配技术需要反复协调电路各部分参数,通过对阻抗匹配和噪声系数这两个指标的折中设定来达到输入匹配的要求,因此给设计增大了难度。 噪声抵消技术是一种可以有效的将上述两个重要参数进行分离的方法,对降低设计复杂度、缩短设计周期、降低设计成本具有重要意义。现有的噪声抵消电路结构基本上都是基于CMOS工艺的。近年来,随着SiGe 技术的发展,SiGe BiCMOS工艺逐渐成为射频集成电路工艺的主流。然而,基于 SiGe工艺的采用噪声抵消结构的设计方法还未见报道。因此,本文基于SiGe工艺,开展对工作于0.8-5.2GHz频段低噪声放大器的噪声抵消电路结构的设计研究。

射频通信电路课程设计报告

射频通信电路课程设计报告 引言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图象信号要变成38MHZ的中频图象信号。 常用的振幅检波电路有包络检波和同步检波两类。输出电压直接反映调幅包络变化规律的检波电路,称为包络检波电路,它适用于普通调幅波的检波。通常根据信号大小的不同,将检波器分为小信号平方律检波和大信号峰值包络检波两信号检波。 目前, 在应用较广泛的电路仿真软件中, Pspice是应用较多的一种。Psp ice 能够把仿真与电路原理图的设计紧密得结合在一起。广泛应用于各种电路分析,可以满足电路动态仿真的要求。其元件模型的特性与实际元件的特性十分相似,因而它的仿真波形与实验电路的测试结果相近,对电路设计有重要的指导意义。 由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 [3]

目录 引言 (2) 一.概述 (3) 二. 方案分析 (4) 三.单元电路的工作原理 (6) 1.LC正弦波振荡器 (6) 2.模拟乘法器电路 (8) 3.谐振电路 (9) 4.包络检波 (12) 四.电路性能指标的测试 (16) 五.课程设计体会..................................................................................................... 错误!未定义书签。参考文献..................................................................................................................... 错误!未定义书签。

2020年射频行业分析报告

2020年射频行业分析 报告 2020年2月

目录 一、射频领域两个核心矛盾 (4) 5 1、射频:国产替代深水区 .................................................................................... 2、射频龙头扩产陆续启动,中期供需预计紧张 (7) 3、射频前端:5G必争之地,量价齐升 (8) (1)射频前端模组化趋势驱动SiP/AiP (13) 4、5G时代来临,化合物前景广阔 (14) 二、射频相关公司 (16) 1、三安光电:全工艺平台布局,持续加码化合物半导体 (16) 2、卓胜微:进击的射频龙头,从LNA、Switch向SAW/分级模组拓展 (18) 3、天和防务/成都通量:环形器之外,射频芯片有望加速放量 (20) 4、麦捷科技:切入SAW滤波器赛道 (21) 5、和而泰/铖昌科技:布局毫米波已久,有望率先产业化 (23)

2020年,射频领域重点关注两个核心矛盾:1、5G基站建设、5G 手机、5G CPE设备等放量带来的需求大幅提升与目前有限产能的矛盾;2、中高端国产化迫切需求与现有国产厂家亟待提升的矛盾。 随着后续正常复工、换机潮开启,2020年起射频行业有望迎来量价齐升,部分产品不排除出现涨价。同时由于目前射频赛道是国产化深水区,以华为为代表的龙头企业产业转移需求迫切,有望孕育出一批快速发展的优质射频公司! 对行业代工龙头稳懋跟踪来看,受益于非A供应链崛起,去年8月份以来单月营收占比持续维持55%以上高速增长,同时率先开启新一轮资本开支,但是考虑A系射频代工产能从美国本土向亚洲地区外溢、同时考虑射频芯片核心材料RF-SOI硅片供需格局,我们预计射 频整体中期供给增加有限,2020年大概率会出现供需紧张情况。 5G射频前端用量大幅提升,RF-SOI产能预计紧张!射频前端芯片市场规模主要受移动终端需求的驱动。近年来,随着移动终端功能的逐渐完善,手机、平板电脑等移动终端的出货量保持稳定。而移动 数据传输量和传输速度的不断提高主要依赖于移动通讯技术的变革, 及其配套的射频前端芯片的性能的不断提高。 5G手机射频前端模组化趋势催生SiP、AiP等封装方式渗透率提升。随着频段增多及载波聚合的应用,分离式多模多频已无法满足要求,射频模组PAMiD渐成主流,即将PA和滤波器封装到一个模组里,这样可以降低频段之间的相互干扰。这要求PA供应商加深同滤波器供应商的合作,因此同时具备PA和滤波器产线厂商具备优势。

ISO15693非接触式IC卡射频前端电路的设计

1前言 ISO15693标准协议是国际上规定的用于非接 触式IC卡的一种高频通信协议。该标准协议的非接触式IC卡的读写距离长达100cm,比同是高频通信 协议的ISO14443规定的10cm读写距离更大,应用范围也会更加广泛。ISO15693标准协议规定:读卡器到卡所发送的信号为采用脉冲位置编码的10% ASK和100%ASK两种调制模式的频率都为 13.56MHz的载波。 卡片解调电路的任务是把两种深秦燕青,葛元庆 (清华大学微电子学研究所,北京100084) ISO15693非接触式 IC卡射频前端电路的设计 摘要:介绍了ISO15693非接触式IC卡射频前端电路,采用了一种巧妙的整流电路,提高了整流效率。同时使用了一种适用于ISO15693非接触式卡片的简单的稳压电路结构,有助于信号的解调,并且使卡片在接收到的信号为10%ASK和100%ASK两种调制模式时都能正常工作。芯片测试结果显示:电源产生电路能够产生2.2V-3.8V的直流电压,解调电路能够在2.0V-3.8V电压下可靠稳定的工作;在 ISO15693规定的最小场强0.15A/M处,整个芯片的电源电压为3.3V,且功耗小于60μW。 关键词:ISO15693;非接触式IC卡;整流电路;电源产生电路;解调电路 DesignofaRFfront-endcircuitofcontactlessICcardsforISO15693 QINYan-qing,GEYuan-qing (InstituteofMicroelectronics,TsinghuaUniversity,Beijing100084,P.R.China) Abstract:ARFfront-endcircuitisdesignedforcontactlessICcardscomplyingwithISO15693.Anovelrectifierisdesignedtoenhancetheefficiencyofrectification.Asimplelimiterstructureisintroduced,whichisapplicableincontactlessICcards,anditishelpfultothedemodulationofthesignal.Thislimitercanalsohelptheabovecardsworknormallywhenthereceivedsignalis10%ASKor100%ASKmodulatingmode.Testresultsshowthatthepowergen-erationcircuitcanprovideaDCsupplyvoltagefrom2.2Vto3.8V.Thedemodulationcircuitcanworkproperlyandsteadilyfrom2.0Vto3.8V.Powerconsumptionislessthan60uWat3.3V,whenthewholechipworksattheminimumoperatingfield0.15A/M,whichisprescribedinISO15693. Keywords:ISO15693;contactlessICcards;rectifier;powergenerationcircuit;demodulationcircuitEEACC:1205;1250

2017年射频前端芯片市场分析报告

2017年射频前端芯片市场分析报告

目录 第一节射频前端芯片是移动通信发展过程中最受益领域 (6) 一、手机射频前端模块简介 (6) 二、从“五模十七频”说起,回溯2G 到4G 手机频段发展 (7) 三、2G 到4G,射频前端芯片数量和价值均明显增长 (8) 第二节射频前端模块市场分析:3 年内突破200 亿美元规模 (12) 一、市场整体规模和变化趋势 (12) 二、市场占有率分析,巨头企业优势难以撼动 (13) 三、深入财务数据分析,揭秘寡头企业核心竞争力 (14) 四、只待捅破窗户纸,国内射频前端企业竞争力分析 (17) 五、射频前端芯片企业竞争新趋势 (20) 第三节商用倒计时—5G 的脚步声近了 (22) 一、性能全面提升,5G 通信网络概述 (22) 二、5G 标准演进路线图 (23) 三、5G 射频空口关键技术分析 (25) 第四节5G 技术推动射频前端芯片的发展 (30) 一、Sub-6GHz 先行,更多频谱资源将投入使用 (30) 二、载波聚合数量成倍增长给射频前端芯片设计带来了新的挑战 (30) 三、推动高频滤波器向BAW 方向技术升级 (32) 四、基站射频前端芯片市场,三大技术营造氮化镓PA 风口 (34) 五、IoT 市场将成为驱动增长新引擎 (37) 第五节射频前端芯片产业链分析 (39) 一、全球终端功率放大器产业链概貌 (39) 二、全球终端功率放大器产业链分析——晶圆制造企业 (41) 三、全球终端功率放大器产业链分析——芯片封装企业 (42) 四、全球终端功率放大器产业链分析——芯片测试企业 (44) 五、全球终端功率放大器产业链分析——外延片企业 (45) 六、全球射频开关产业链分析 (46) 七、全球射频滤波器产业链分析 (48)

24GHz射频前端频率合成器设计

第48卷第1期(总第187期) 2019年3月 火控雷达技术 Fire Control Radar Technology Vol.48No.1(Series 187) Mar.2019 收稿日期:2018-10-24作者简介:饶睿楠(1977-),男,高级工程师。研究方向为频率综合器及微波电路技术。 24GHz 射频前端频率合成器设计 饶睿楠 王 栋 余铁军 唐 尧 (西安电子工程研究所西安710100) 摘要:随着微波射频集成电路集成度越来越高, 24GHz 频段的高集成雷达收发芯片逐渐大规模使用。其中英飞凌科技公司的24GHz 锗硅工艺高集成单片雷达解决方案就是其中具有代表性的一种,被大量应用在液位或物料检测、照明控制、汽车防撞、安防系统。FMCW 为此种应用最多采用的信号调制方式。本文采用锁相环频率合成方案,产生系统所需的FMCW 调制信号。关键词:24GHz 射频前端;FMCW ;频率综合器BGT24AT2ADF4159中图分类号:TN95文献标志码:A 文章编号:1008-8652(2019)01-066-04 引用格式:饶睿楠,王栋,余铁军,唐尧.24GHz 射频前端频率合成器设计[ J ].火控雷达技术,2019,48(1):66-69. DOI :10.19472/j.cnki.1008-8652.2019.01.014 Design of a Frequency Synthesizer for 24GHz RF Front Ends Rao Ruinan ,Wang Dong ,Yu Tiejun ,Tang Yao (Xi'an Electronic Engineering Research Institute ,Xi'an 710100) Abstract :With the increasing integration of microwave and radio-frequency integrated circuits ,highly integrated radar transceiver chips in 24GHz band have gradually found large-scale applications.Among those chips ,Infineon's 24GHz SiGe monolithic radar solution is a typical one.It has found wide applications in liquid (or material )detec-tion ,lighting control ,automotive collision avoidance ,and security systems.FMCW is the most widely used signal modulation method in these applications.This paper uses PLL frequency synthesis scheme to generate FMCW mod-ulation signals required by the system. Keywords :24GHz RF front end ;FMCW ;frequency synthesizer ;BGT24AT2;ADF4159 0引言 24GHz 频段雷达大量用于液位检测、照明控制、汽车防撞、安防等领域。近年来由于微波集成电路的高速发展,单芯片电路集成度越来越高,出现了一大批高集成、多功能的射频微波集成电路,以前需要几片或十几片芯片的电路被集成在一片集成电路之中。英飞凌公司推出的基于锗硅工艺的高集成单片雷达解决方案就是其中对具代表性的产品之一。FMCW 信号调制方式被广泛的应用于此类产品。本文采用英飞凌公司BGT24AT2单片信号源芯片与ADI 公司ADF4159锁相环芯片构成24GHz 射频前端频率合成器部分,产生了24GHz 24.2GHz FM-CW 发射信号。 1BGT24AT2锗硅24GHz MMIC 信号源芯片基本指标 BGT24AT2是一款低噪声24GHz ISM 波段多功能信号源。内部集成24GHzVCO 和分频器。3路独立的RF 输出可分别输出+10dBm 的信号,通过SPI 可对输出信号功率进行控制。发射信号的快速脉冲和相位反向可通过单独的输入引脚或通用的SPI 控制接口进行控制。片内集成输出功率及温度传感器,可对芯片工作情况进行监控。芯片工作的环境温度为-40? 125?,满足汽车级环境应用要求。封装为32脚VQFN 封装,单3.3V 电源供电,节省了大量板上空间。其原理框图如图1所示。

射频通信电路 第六章

(a )NF M =4dB=2.51,L M =5dB →G M =0.316 ?????===10 dB 101 dB 0A NF ①当NF A =0dB 时,dB 451.21 151.2121==-+=-+ =M M G G F F F ②当NF A =10dB 时,91.1499.30316 .01 1051.2==-+ =F dB (b )NF M =8dB=6.31,G M =3dB=1.995 ① 当NF A =0dB 时,dB 831.61 13.6==-+=M G F ②当NF A =10dB 时,dB 34.1082.10995 .11 1031.6==-+=F 6-5 求放大器增益G 1 因为对应1dB 压缩点时P i =–10dBm ,P 0=1dBm ,则基波增益为: dB 12)10(11101=--+=+-=i P P G ∵ OIP 3=15dBm ,∴IIP 3=OIP 3–G 1=15–12=3dBm , 求放大器的三阶互调分量增益G 3: ∵ OIP 3=G 3·(IIP 3)3 化为dB 时有OIP 3=G 3+3×(IIP 3 由于 15=G 3+3×3 ∴G 3 =15–9=6dB 由干扰信号引起的三阶互调分量 3 3M IM P G P ?= M IM P G P 33+=,现 P IM =–62dBm 7.223)662(-=÷--=M P dBm 6-6 画出三极管混频器的BE C v i ~,BE m v g ~曲线如图,则g(t)波形如图示。 ???? ?≤>==00 2BE BE BE BE c m v v av dv di g ∴)(cos 2)(0100t S t aV t g L L L ωω?= t aV t g L L 001cos )(ω=且 021 L fc aV g = i (dB) v BE

GPS接收机射频前端电路原理与设计

GPS接收机射频前端电路原理与设计 摘要:在天线单元设计中采用了高频、低噪声放大器,以减弱天线热噪声及前面几级单元电路对接收机性能的影响;基于超外差式电路结构、镜频抑制和信道选择原理,选用GP2010芯片实现了射频单元的三级变频方案,并介绍了高稳定度本振荡信号的合成和采样量化器的工作原理,得到了导航电文相关提取所需要的二进制数字中频卫星信号。 关键词:GPS接收机灵敏度超外差锁相环频率合成 利用GPS卫星实现导航定位时,用户接收机的主要任务是提取卫星信号中的伪随机噪声码和数据码,以进一步解算得到接收机载体的位置、速度和时间(PVT)等导航信息。因此,GPS接收机是至关重要的用户设备。目前实际应用的GPS接收机电路一般由天线单元、射频单元、通信单元和解算单元等四部分组成,如图1所示。本文在分析GPS卫星信号组成的基础上,给出了射频前端GP2010的原理及应用。 1 GPS卫星信号的组成

GPS卫星信号采用典型的码分多址(CDMA)调制技术进行合成(如图2所示),其完整信号主要包括载波、伪随机码和数据码等三种分量。信号载波处于L波段,两载波的中心频率分别记作L1和L2。卫星信号参考时钟频率f0为10.23MHz,信号载波L1的中心频率为f0的154倍频,即: fL1=154×f0=1575.42MHz (1) 其波长λ1=19.03cm;信号载波L2的中心频率为f0的120倍频,即: fL2=120×f0=1227.60MHz (2) 其波长λ2=24.42cm。两载波的频率差为347.82MHz,大约是L2的 28.3%,这样选择载波频率便于测得或消除导航信号从GPS卫星传播至接收机时由于电离层效应而引起的传播延迟误差。伪随机噪声码(PRN)即测距码主要有精测距码(P码)和粗测距码(C/A码)两种。其中P 码的码率为10.23MHz、C/A码的码率为1.023MHz。数据码是GPS卫星以二进制形式发送给用户接收机的导航定位数据,又叫导航电文或D 码,它主要包括卫星历、卫星钟校正、电离层延迟校正、工作状态信息、C/A码转换到捕获P码的信息和全部卫星的概略星历;总电文由1500位组成,分为5个子帧,每个子帧在6s内发射10个字,每个字30位,共计300位,因此数据码的波特率为50bps。

射频电路和射频集成电路线路设计

射频电路和射频集成电路线路设计(9天) 培训时间为9天 课程特色 1)本讲座总结了讲演者20多年的工作,报告包括 o设计技术和技巧的经验, o获得的美国专利, o实际工程设计的例子, o讲演者的理论演译。 o 【主办单位】中国电子标准协会 【协办单位】智通培训资讯网 【协办单位】深圳市威硕企业管理咨询有限公司 o 2)本讲座分为三个部分: A. 第一部分讨论和強调在射频电路设计中的设计技术和技巧, 着重论述设计中关鍵性 的技术和技巧,譬如,阻抗匹配,射频接地, 单端线路和差分线路之間的主要差別,射频集成电路设计中的难题……可以把它归类为橫向论述. 到目前为止,这种着重于设计技巧的論述是前所未有的,也是很独特的。讲演者认为,作为一位合格的射频电路设计的设计者,不论是工程师,还是教授,应当掌握这一部分所论述的基本的设计技术和技巧,包括: ?阻抗匹配; ?接地; ?射频集成电路设计; ?测试 ?画制版图; ? 6 Sigma 设计。 B. 第二部分: 描述射频系统的基本参数和系统设计的基本原理。

C. 第三部分: 提供个别射频线路设计的基本知识。这一部份和现有的有关射频电路和 射频集成电路设计的书中的论述相似, 其內容是讨论一个个射频方块,譬如,低噪声放大器,混频器,功率放大器,壓控振蕩器,頻率综合器……可以把它归类为纵向论述,其中的大多数内容来自本讲座的讲演者的设计 ?在十几年前就已经找到了最佳的低噪声放大器的设计方法但不曾经发表过。在低噪声放大器的设计中可以同时达到最大的增益和最小的噪 声; ?获得了可调谐濾波器的美国专利; ?本讲座的讲演者所建立的用单端线路的设计方法来进行差分对线路的设计大大简化了设计并缩短了线路仿真的时间; ?获得了双线巴伦的美国专利。 学习目标在本讲座结束之后,学员可以了解到 o比照数码电路,射頻电路设计的主要差別是什麼? o什么是射频设计中的基本概念? o在射频电路设计中如何做好窄带的阻抗匹配? o在射频电路设计中如何做好宽带的阻抗匹配? o在射频线路板上如何做好射频接地的工作? o为什么在射频和射频集成电路设计中有从单端至双差分的趋势? o为什么在射频电路设计中容许误差分析如此重要? o什么是射频和射频集成电路设计中的主要难题?射频和射频集成电路设计师如何克服这些障碍?

相关文档