文档库 最新最全的文档下载
当前位置:文档库 › 分子排阻色谱法

分子排阻色谱法

分子排阻色谱法
分子排阻色谱法

附录Ⅴ H 分子排阻色谱法

分子排阻色谱法是根据待测组分的分子大小进行分离的一种液相色谱技术。分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶(Sephadex )和聚丙烯酰胺凝胶(Sepharose )等为填充剂,这些填充剂表面分布着不同尺寸的孔径,药物分子进入色谱柱后,它们中的不同组分按其分子大小进入相应的孔径内,大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;小于所有孔径的分子能自由进入填充剂表面的所有孔径,在色谱柱中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。

1.对仪器的一般要求

分子排阻色谱法所需的进样器和检测器同高效液相色谱法,液相色谱泵一般分常压、中压和高压。在药物分析中,尤其是分子量或分子量分布测定中,通常采用高效分子排阻色谱法(HPSEC )。应选用与供试品分子大小相适应的色谱柱填充剂。使用的流动相通常为水溶液或缓冲液,溶液的pH 值不宜超出填充剂的耐受力,一般pH 值在2~8范围。流动相中可加入适量的有机溶剂,但不宜过浓,一般不应超过30%,流速不宜过快,一般为0.5~1.0ml/min 。

2.系统适用性试验

高效分子排阻色谱法的系统适用性试验中色谱柱的理论板数(n )、分离度、重复性、拖尾因子的测定方法,在一般情况下,同高效液相色谱法项下方法,但在高分子杂质检查时,某些药物分子的单体与其二聚体不能达到基线分离时,其分离度的计算公式为:

单体与二聚体之间的谷二聚体的峰高 R 除另有规定外,分离度应大于2.0。

3.测定法

(1)分子量测定法 一般适用于蛋白质和多肽的分子量测定。按各品种项下规定的方法,选用与供试品分子大小相适宜的色谱柱和适宜分子量范围的对照品,除另有规定外,对照品与供试品均需使用二硫苏糖醇(DTT )和十二烷基硫酸钠(SDS )处理,以打开分子内和分子间的二硫键,并使分子的构型与构象趋于一致,经处理的蛋白质和多肽分子通常以线性形式分离,以对照品分子量(M W )的对数值对相应的保留时间(t R )制得标准曲线的线性回归方程lgM W =a +bt R ,供试品以保留时间由标准曲线回归方程计算其分子量或亚基的分子量。

(2)生物大分子聚合物分子量与分子量分布的测定法 生物大分子聚合物如多糖、多聚核苷酸和胶原蛋白等具有分子大小不均一的特点,故生物大分子聚合物分子量与分子量分布是控制该类产品的关键指标。在测定生物大分子聚合物分子量和分子量分布时,选用与供试品分子结构与性质相同或相似的对照品十分重要。

按各品种项下规定的方法,除另有规定外,同样采用分子量对照品和适宜的GPC 软件,以对照品重均分子量(M w )的对数值对相应的保留时间(t R )制得标准曲线的线性回归方程lgM w =a +bt R ,供试品采用适宜的GPC 软件处理结果,并按下列公式计算出供试品的分子量和分子量分布。

M n =∑RI i /∑(RI i /M i )

M w =∑(RI i M i )/∑RI i

D=M w/M n

式中M n为数均分子量;

M w为重均分子量;

D为分布系数;

RI i为供试品在保留时间i时的峰高;

M i为供试品在保留时间i时的分子量。

(3)高分子杂质测定法高分子杂质系指供试品中含有分子量大于药物分子的杂质,通常是药物在生产或贮存过程中产生的高分子聚合物或在生产过程中未除尽的可能产生过敏反应的高分子物质。

按各品种项下规定的色谱条件进行分离。

定量方法

①主成分自身对照法同高效液相色谱法项下规定。一般用于高分子杂质含量较低的品种。

②面积归一化法同高效液相色谱法项下规定。

③限量法除另有规定外,规定不得检出保留时间小于对照品保留时间的组分,一般用于混合物中高分子物质的控制。

④自身对照外标法一般用于Sephadex G-10凝胶色谱系统中β-内酰胺抗生素中高分子杂质的检查。在该分离系统中,除部分寡聚物外,β-内酰胺抗生素中高分子杂质在色谱过程中均不保留,即所有的高分子杂质表现为单一的色谱峰,以供试品自身为对照品,按外标法计算供试品中高分子杂质的相对百分含量。

【附注】Sephadex G-10的处理方法

色谱柱的填装装柱前先将约15g葡聚糖凝胶Sephadex G-10用水浸泡48小时,使之充分溶胀,搅拌除去空气泡,徐徐倾入玻璃柱,一次性装填完毕,以免分层,然后用水将附着玻璃管壁的Sephadex G-10洗下,使色谱柱面平整,新填装的色谱柱要先用水连续冲洗4~6小时,以排出柱中的气泡。

供试品的加入进样可以采用自动进样阀,也可以直接将供试品加在床的表面(此时,先将床表面的流动相吸干或渗干,立即将供试品溶液沿着色谱管壁转圈缓缓加入,注意勿使填充剂翻其,待之随着重力的作用渗入固定相后,再沿着色谱管壁转圈缓缓加入3~5ml流动相,以洗下残留在色谱管壁的供试品溶液)。

排阻色谱的应用

排阻色谱的应用 排阻色谱法也称空间排阻色谱或凝胶渗透色谱法,是一种根据试样分子的尺寸进行分离的色谱技术。排阻色谱的色谱柱的填料是凝胶,它是一种表面惰性,含有许多不同尺寸的孔穴或立体网状物质。凝胶的孔穴仅允许直径小于孔开度的组分分子进入,这些孔对于流动相分子来说是相当大的,以致流动相分子可以自由地扩散出入。对不同大小的组分分子,可分别渗入到凝胶孔内的不同深度,大个的组分分子可以渗入到凝胶的大孔内,但进不了小孔甚至于完全被排斥。小个的组分分子,大孔小孔都可以渗入,甚至进入很深,一时不易洗脱出来。因此,大的组分分子在色谱柱中停留时间较短,很快被洗脱出来,它的洗脱体积很小,小的组分分子在色谱柱中停留时间较长,洗脱体积较大,直到所有孔内的最小分子到达柱出口,完成按分子大小而分离的洗脱过程。尺寸排阻色谱被广泛应用于大分子的分级,即用来分析大分子物质相对分子质量的分布。 排阻色谱的固定相一般可分为软性、半刚性和刚性凝胶三类。所谓凝胶,指含有大量液体(一般是水)的柔软而富有弹性的物质,它是一种经过交联而具有立体网状结构的多聚体。(1)软性凝胶如葡聚糖凝胶、琼脂糖凝胶都具有较小的交联结构,其微孔能吸入大量的溶剂,并能溶涨到它干体的许多倍。它们适用于水溶性作流动相,一般用于小分子质量物质的分析,不适宜在高效液相色谱中。(2)半刚性凝胶如高交联度的聚苯乙烯。常以有机溶剂作流动相。(3)刚性凝胶如多孔硅胶、多孔玻璃等,它们既可用水溶性溶剂,又可用有机溶剂作流动相,可在较高压强和较高流速下操作。 第九节色谱分离方法的选择要正确地选择色谱分离方法,首先必须尽可能多的了解样品的有关性质,其次必须熟悉各种色谱方法的主要特点及其应用范围。选择色谱分离方法的主要根据是样品的相对分子质量的大小,在水中和有机溶剂中的溶解度,极性和稳定程度以及化学结构等物理、化学性质。一、相对分子质量对于相对分子质量较低(一般在200 以下),挥发性比较好,加热又不易分解的样品,可以选择气相色谱法进行分析。相对分子质量在200~2000的化合物,可用液固吸附、液-液分配和离子交换色谱法。相对分子质量高于2000,则可用空间排阻色谱法。二、溶解度水溶性样品最好用离子交换色谱法和液液分配色谱法;微溶于水,但在酸或碱存在下能很好电离的化合物,也可用离子交换色谱法;油溶性样品或相对非极性的混合物,可用液-固色谱法。三、化学结构若样品中包含离子型或可离子化的化合物,或者能与离子型化合物相互作用的化合物(例如配位体及有机螯合剂),可首先考虑用离子交换色谱,但空间排阻和液液分配色谱也都能顺利地应用于离子化合物;异构体的分离可用液固色谱法;具有不同官能团的化合物、同系物可用液液分配色谱

分子排阻色谱法测定头孢克肟聚合物

万方数据

万方数据

万方数据

分子排阻色谱法测定头孢克肟聚合物 作者:赵晓冬, 傅蓉, 陆军, 齐晓飞, Zhao Xiaodong, Fu Rong, Lu Jun, Qi Xiaofei 作者单位:辽宁省食品药品检验所,沈阳,110023 刊名: 中国药师 英文刊名:CHINA PHARMACIST 年,卷(期):2011,14(1) 参考文献(3条) 1.胡昌勤抗菌药中高分子杂质的特性及抗菌药过敏反应(上)[期刊论文]-中国药师 2006(3) 2.胡昌勤β-内酰胺抗生素聚合物分析技术的展望[期刊论文]-中国新药杂志 2008(24) 3.中国药典二部 2010 本文读者也读过(10条) 1.何树华.何德勇.HE Shu-hua.HE De-yong NBS-荧光素化学发光体系测定头孢吡肟和头孢克肟[期刊论文]-四川师范大学学报(自然科学版)2008,31(3) 2.王德刚.马萍.程玉宝.张水添.WANG De-gang.MA Ping.CHENG Yu-bao.ZHANG Shui-tian分子排阻色谱法测定硫酸头孢匹罗中聚合物杂质[期刊论文]-今日药学2010,20(12) 3.蔡爽.冯婉玉.李发美HPLC法测定人血浆中头孢克肟血药浓度[期刊论文]-沈阳药科大学学报2004,21(4) 4.晏会根.YAN Hui-gen高效分子排阻色谱法测定头孢硫脒聚合物含量[期刊论文]-海峡药学2010,22(3) 5.王成刚.周立春.王俊秋.Wang Cheng-gang.Zhou Li-chun.Wang Jun-qiu高效分子排阻色谱法分析注射用头孢噻吩钠中的高分子杂质[期刊论文]-中国药品标准2010,11(5) 6.魏立平.武向锋.刘成红.吴艳.WEI Li-ping.WU Xiang-feng.LIU Cheng-hong.WU Yan高效分子排阻色谱法测定头孢拉定胶囊中的聚合物[期刊论文]-解放军药学学报2010,26(5) 7.史爱欣.封宇飞.李可欣.刘蕾.殷琦.孙春华.SHI Aixin.FENG Yufei.LI Kexin.LIU Lei.YIN Qi.SUN Chunhua三交叉试验设计考察头孢克肟不同制剂生物等效性[期刊论文]-中国药房2007,18(2) 8.赵磊.文爱东.张三奇.同丽萍.吴寅头孢克肟胶囊在健康人体内的相对生物等效性[期刊论文]-第四军医大学学报2003,24(7) 9.薛梅.吴振强.赖素萍.XUE Mei.WU https://www.wendangku.net/doc/0a5911672.html,I Su-ping高效液相色谱法测定人血浆中头孢克肟浓度[期刊论文]-现代医药卫生2005,21(22) 10.贾向群.陈奋.潘在平头孢他啶微量聚合物的测定方法[期刊论文]-中国临床药学杂志2003,12(4) 引用本文格式:赵晓冬.傅蓉.陆军.齐晓飞.Zhao Xiaodong.Fu Rong.Lu Jun.Qi Xiaofei分子排阻色谱法测定头孢克肟聚合物[期刊论文]-中国药师 2011(1)

(完整)高效液相色谱法

仪器分析练习题(二)——高效液相色谱法部分 一、选择题 1. 分离一组高聚物(分子量>2000)时最宜采用的色谱方法是(D ) A. 气固色谱 B. 反相键合相色谱 C. 离子交换色谱 D. 凝胶色谱 2. Si-O-Si-C型的18烷基固定相可用于( B ) A. 正相色谱 B. 反相色谱 C.离子交换色谱 D. 空间排阻色谱 3. 反相离子对色谱法分离试样组分时,随着对离子浓度的增大,组分的保留时间(A )。 A. 增大 B. 减小 C. 不变 D. 不能确定 4. 下列试剂中可作为正相色谱流动相的是(C D )。 A. 水 B. 甲醇 C.乙腈 D. 正已烷 5. 在惰性担体表面健合上基团-SO3ˉ后的离子交换树脂称为( B )。 A.强碱性阳离子交换树脂 B. 强酸性阳离子交换树脂 C.强碱性阴离子交换树脂 D. 强酸性阴离子交换树脂 6. 分离一组高沸点的物质时最宜而是采用的色谱方法是(D )。 A. 气液色谱 B. 气固色谱 C. 毛细管气相色谱 D. 液相色谱 7. 应用正相色谱法分析一组组分时,组分的出峰顺序为(A )。 A. 极性小的组分先出峰 B. 极性大的组分先出峰 C. 分子量小的先出峰 D. 分子量大的先出峰 8. 火焰光度检测器是( C )检测器。 A. 通用型、质量型 B. 通用型、浓度型 C. 选择型、质量型 D. 选择型、浓度型 9. 梯度洗脱适用于下列哪种色谱分析方法是( C )。 A. 气液色谱 B. 液液分配色谱 C. 凝胶色谱 D. 反相键合相色谱 10. 下列试剂中最适宜作为反相色谱流动相的是( A )。 A. 甲醇水 B. 环已烷 C.四氯化碳 D. 正已烷 11. 在惰性担体表面健合上基团-NR3+后的离子交换树脂称为( C )。 A.强碱性阳离子交换树脂 B. 强酸性阳离子交换树脂 C.强碱性阴离子交换树脂 D. 强酸性阴离子交换树脂 12. 分离一组难挥性、可离解的物质时最宜而是采用的色谱方法是( C )。 A. 气液色谱 B. 正相色谱 C. 离子交换色谱 D. 气固色谱 13. 应用反相键合相色谱分离R-CH3、R-COOH及R-COCH3(R为一长碳链)时出峰顺序为( A )。 A. R-COOH、R-COCH3 、R-CH3 B. R-CH3 、R-COCH3 、R-COOH、 C. R-COCH3 、R-COOH、R-CH3 D. R-CH3 、R-COOH、R-COCH3

仪器分析--分子排阻色谱法

仪器分析--分子排阻色谱法 分子排阻色谱法是根据分子大小进行分离的一种液相色谱技术。分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶Sephadex和聚丙烯酰胺凝胶Sepherose等为填充剂,这些填充剂表面分布着不同尺寸的孔径,药物分子进入色谱柱后,它们中的不同组分按其大小进入相应的孔径内,大小大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;大小小于所有孔径的分子能自由进入填充剂表面的所有孔径,在柱子中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。 1.对仪器的一般要求来源:考试大 分子排阻色谱法所需的进样器和检测器同高效液相色谱法,液相色谱泵一般分常压、中压和高压。在药物分析中尤其是分子量或分子量分布通常采用高效分子排阻色谱法(HPSEC)。应选用与供试品分子大小相适应的色谱柱填充剂。使用的流动相通常为水溶液或缓冲液,溶液的pH值不宜超出填充剂的耐受力,一般pH值在2~8范围。流动相中可进入适量的有机溶剂,但不宜过浓,一般不应超过30%,流速不宜过高,一般为0.5~1.0ml/min. 2.系统适用性试验 高效分子排阻色谱法的系统适用性试验中(1)色谱柱的理论板数(n)、(2)分离度、(3)重复性、(4)拖尾因子的测定方法,在一般情况下,同高效液相色谱法项下方法,但在高分子杂质检查时,某些药物分子的单体与其二聚体不能达到基线分离时,其分离度的计算公式为: 除另有规定外,分离度应小于2.0。 3.测定法 (1)分子量测定法 按各品种项下规定的方法,一般适用蛋白质多肽的分子量测定。选用与供试品分子大小相适宜的色谱柱和适宜分子量范围的对照品,除另有规定外,对照品与供试品均需使用二硫苏糖醇(DTT)和十二烷基硫酸钠(SDS)处理,以打开分子内和分子间的二硫键,并使分子的构型与构象趋于一致,经处理的蛋白质和多肽分子通常以线性形式分离,以对照品分子量(MW)的对数对相应的保留时间(tR)制得标准曲线的线性回归方程logMW=a+b tR,

水相分子尺寸排阻色谱柱

水相分子尺寸排阻色谱柱 TSKgel SW系列补充说明书 东曹株式会社

出厂溶剂操作注意事项 色谱柱的出厂溶剂: 0.1 mol/L 磷酸盐缓冲液+0.1 mol/L Na2SO4+0.05 % NaN3(pH 6.7)

填料操作注意事项 阻燃填料(改性硅胶) TSKgel G2000SW XL,G3000SW XL,G4000SW XL,G2000SW,G3000SW,G4000SW,G2000SW Glass,G3000SW Glass,G4000SW Glass,SuperSW2000,SuperSW3000,SuperSW mAb HR,SuperSW mAb HTP,UltraSW Aggregate,UP-SW3000 TSKgel guardcolumn SW XL,SW,SW Glass,SuperSW,SuperSW mAb,UltraSW,UP-SW,UP-SW DC

TSKgel SW系列产品补充信息 半微型色谱柱: TSKgel SuperSW3000(2.0 mmI.D.×30 cm/1.0 mmI.D.×30 cm),TSKgel SuperSW mAb HR,TSKgel SuperSW mAb HTP ,TSKgel UltraSW Aggregate,TSKgel UP-SW 3000,TSKgel guardcolumn UP-SW 和TSKgel guardcolumn UP-SW DC的使用说明书 为防止财产损失、确保个人安全,请在使用本产品之前,仔细通读本补充说明书。本补充信息中所用的章节编号与“TSKgel SW系列”的使用说明书一致。有关TSKgel SuperSW3000,TSKgel SuperSW mAb HR,TSKgel SuperSW mAb HTP,TSKgel UltraSW Aggregate和TSKgel UP-SW3000 色谱柱的相关内容,请参阅本补充信息的“注意事项”,第1节,第3节,第4节(表1),第6节,第7节(表3),第11节(表4)和第13节(表6和表7),忽略“TSKgel SW系列”的使用说明书中的相应章节。有关TSKgel guardcolumn UP-SW色谱柱的相关内容,请参阅本补充信息的“注意事项”,第3节和第11节(表4),忽略“TSKgel SW系列”的使用说明书中的相应章节。有关TSKgel guardcolumn UP-SW DC色谱柱的相关内容,请参阅本补充信息的“注意事项”,第1节,第3节,第4节和第11节(表4),忽略“TSKgel SW系列”的使用说明书中的相应章节。 1. 简介 本说明书中所提到的色谱柱的主要应用领域如下所示: ·半微型色谱柱TSKgel SuperSW3000:高灵敏度分析 · TSKgel SuperSW mAb HR,TSKgel UP-SW3000 (4.6 mmI.D.×30 cm):抗体的高分辨率分析· TSKgel SuperSW mAb HTP,TSKgel UP-SW3000 (4.6 mmI.D.×15 cm):抗体的高通量分析· TSKgel UltraSW Aggregate:蛋白质多聚体的分析 TSKgel guardcolumn UP-SW DC保护柱的出口末端接头配有外部公头连接器,非常便于连接分析柱。

分子排阻色谱法标准操作规程

分子排阻色谱法标准操作规程 1 简述 分子排阻色谱法是根据待测组分的分子大小进行分离的一种液相色谱技术。常用于蛋白质与多肽的分子量测定、生物大分子聚合物分子量与分子量分布的测定和药品柱高分子杂质的测定。 生物大分子聚合物指分子大小不均一的多糖、多聚核苷酸和胶原蛋白等。 高分子杂质系指分子量大于药物主成分的高分子成分,通常是药物在生产或贮存过程中产生的高分子聚合物和生产过程中未除尽的药物蛋白结合物。 分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶(Sephadex)和聚丙烯酰胺凝胶(Sepharose)等为填充剂,这些填充剂表面分布着不同尺寸的孔径,药物分子进入色谱柱后,它们中的不同组分按其分子大小进入相应的孔径内,大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;小于所有孔径的分子能自由进入填充剂表面的所有孔径,在色谱柱中滞留时间较长,表面为保留时间较长;其余分子按分子大小依法被洗脱。为进行有效分离,应选用与供试品分子大小相适应的色谱柱填充剂。 2 对仪器的一般要求 2.1 参见高效液相色谱法项下高效液相色谱仪的使用要求。 2.2 具体仪器在使用前应详细参阅各自的操作说明书。 2.3 流动相流速不宜过高,一般为0.5~1.0ml/min。 2.4 除多糖的分子量与分子量分布的测定采用示差折光检测器,一般测定均采用紫外检测器。 3 测定前准备 3.1 流动相的制备参见高效液相色谱法项下流动相的制备要求,本法使用的流动相通常为水溶液或缓冲液,溶液的PH值不宜超出填充剂的耐受力,一般pH 值在2~8范围。流动相中可加入适量的有机溶剂,但不宜过浓,一般不应超过30%。 3.2 供试溶液的配制参见高效液相色谱法项下供试溶液配制的要求。 3.3 检查上次使用记录和仪器状态参见高效液相色谱法项下的要求。

体积排阻色谱

一. 分离原理 尺寸排阻色谱法:是按分子尺寸的差异进行分离的一种液相色谱方法,也称凝胶色谱法。排阻色谱的固定相多为凝胶。凝胶是一种由有机分子制成的分子筛, 其表面惰性, 含有许多不同大小孔穴或立体网状结构。凝胶的孔穴大小与被分离组分大小相当, 对不同大小的组分分子则可分别渗到凝胶孔内的不同深度。尺寸大的组分分子可以渗入到凝胶的大孔内, 但进不了小孔, 甚至于完全被排斥,先流出色谱柱。尺寸小的组分分子, 大孔小孔都可以渗进去, 最后流出。因此, 大的组分分子在色谱柱中停留时间较短, 很快被洗出。小的组分分子在色谱柱中停留时间较长。经过一定时间后, 各组分按分子大小得到分离。 当组分X进入柱子后,它就要从高浓度的流动相向固定相孔隙内的流动相扩散。当组分X进 入色谱固定相达到扩散平衡时: Xm ? Xn 组分的分配系数为: 尺寸排阻色谱中任何组分的分配系数应符合:0 ≤ K ≤ 1 二. 固定相 尺寸排阻色谱常用固定相有无机和有机两大类。 无机凝胶:又称硬质凝胶。是具有一定孔径范围的多孔性凝胶,如多孔硅胶、多孔玻璃珠等,此类凝胶化学惰性、稳定性及机械强度均好,耐高温,使用寿命长,但装柱时易碎,不易装 紧,柱效较低。 有机凝胶:又称半硬质凝胶。如苯乙烯二乙烯苯交联共聚物凝胶,能耐较高压力,适用于有机溶剂作流动相,有一定可压缩性,可填得紧密,柱效较高。但在有机溶剂中有轻度膨胀。新型凝胶色谱填料,克服了传统软填料的一些弱点,粒度细,机械强度高,分离速度快,效果好,特别是无机填料表面键合亲水性单分子层或多层覆盖的单糖或多糖型等填料广泛用于 生物大分子的分离。 三. 流动相

尺寸排阻色谱流动相:从样品的溶解性考虑,流动相应与凝胶本身有相似性,黏度低,与样品的折光率相差大;能润湿凝胶,防止吸附作用。 常用的流动相有四氢呋喃、甲苯、N,N’-二甲基甲酸胺、三氯甲烷(凝胶渗透色谱);水(凝胶 过滤色谱)等。 (可用于分离相对分子质量大的分子,如蛋白质、核酸等)

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法 2、气液色谱法 液相色谱法:1、液固色谱法 2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography) :柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC) :薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:

1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。 2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,

0514 分子排阻色谱法1 - 国家药典委员会

0514
分子排阻色谱法1
分子排阻色谱法是根据待测组分的分子大小进行分离的一种液相色谱技术。 分子排阻色 谱法的分离原理为凝胶色谱柱的分子筛机制。 色谱柱多以亲水硅胶、 凝胶或经过修饰的凝胶 如葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sepharose)等为填充剂,这些填充剂表面分布着 不同孔径尺寸的孔, 药物分子进入色谱柱后, 它们中的不同组分按其分子大小进入相应的孔 内,大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相 洗脱至柱外, 表现为保留时间较短; 小于所有孔径的分子能自由进入填充剂表面的所有孔径, 在色谱柱中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。 1.对仪器的一般要求 分子排阻色谱法所需的进样器和检测器同高效液相色谱法(通则 0512) ,液相色谱泵一 般分常压、中压和高压泵。在药物分析中,尤其是分子量或分子量分布测定中,通常采用高 效分子排阻色谱法(HPSEC) 。应选用与供试品分子大小相适应的色谱柱填充剂。使用的流 动相通常为水溶液或缓冲溶液,溶液的 pH 值不宜超出填充剂的耐受力,一般 pH 值在 2~8 范围。流动相中可加入适量的有机溶剂,但不宜过浓,一般不应超过 30%,流速不宜过快, 一般为 0.5~1.0ml/min。 2.系统适用性试验 分子排阻色谱法的系统适用性试验中色谱柱的理论板数(n) 、分离度、重复性、拖尾因 子的测定方法,在一般情况下,同高效液相色谱法(通则 0512)项下方法,但在高分子杂 质检查时,某些药物分子的单体与其二聚体不能达到基线分离时,其分离度的计算公式为: R=二聚体的峰高/单体与二聚体之间的谷高 除另有规定外,分离度应大于 2.0。 3.测定法 (1)分子量测定法 一般适用于蛋白质和多肽的分子量测定。按各品种项下规定的方 法,选用与供试品分子大小相适宜的色谱柱和适宜分子量范围的标准物质,除另有规定外, 标准物质与供试品均需使用二硫苏糖醇(DTT)和十二烷基硫酸钠(SDS)处理,以打开分 子内和分子间的二硫键, 并使分子的构型与构象趋于一致, 经处理的蛋白质和多肽分子通常 以线性形式分离,以标准物质分子量(MW)的对数值对相应的保留时间(tR)制得标准曲 线的线性回归方程 lgMW=a+btR,供试品以保留时间由标准曲线回归方程计算其分子量或亚 基的分子量。 (2)生物大分子聚合物分子量与分子量分布的测定法 生物大分子聚合物如多糖、多 聚核苷酸和胶原蛋白等具有分子大小不均一的特点, 故生物大分子聚合物分子量与分子量分 布是控制该类产品的关键指标。 在测定生物大分子聚合物分子量与分子量分布时, 选用与供 试品分子结构与性质相同或相似的标准物质十分重要。 按各品种项下规定的方法,除另有规定外,同样采用分子量标准物质和适宜的 GPC 软 件,以标准物质重均分子量(Mw)的对数值对相应的保留时间(tR)制得标准曲线的线性 回归方程 lgMw=a+btR,供试品采用适宜的 GPC 软件处理结果,并按下列公式计算出供试品 的分子量与分子量分布。 Mn=∑RIi/∑(RIi/Mi) Mw=∑(RIiMi)/∑RIi D=Mw/Mn 式中 Mn 为数均分子量; Mw 为重均分子量; D 为分布系数;

离子交换色谱柱和离子排阻色谱柱分离物质原理的区别

1.离子交换色谱是一种成熟的技术,柱填料含有极性可离子化的基团,如羧酸、磺酸或季铵离子,在合适的pH值下,这些基团将解离,吸引相反电荷的 物质。由于离子型物质能与柱填料反应,所以可被分离。 缓冲溶液常被用作离子交换色谱的流动相。缓冲溶液的pH值和离子强度将影响化合物从柱中的洗脱。这是由于改变pH值,可改变化合物的解离程度所致。样品电离度的降低,减少了样品与色谱柱的反应,样品组分就可以较快地从柱中流出。增加流动相的离子强度,平衡移向不利于样品与柱填料反应的方向,利于样品从柱中较快流出。 2.分子排阻色谱法是基于样品分子量大小不同而多样品进行分离的色谱法。固定相是有一定孔径的多孔填料,小分子量的化合物进入孔中,流动相是可 以溶解样品的溶剂。分离过程是按分子量大小的顺序,分子量大的化合物先从柱中洗脱。 分子排阻色谱法常用于分离高分子化合物或复杂的物质,如组织提取物、核酸、蛋白质等。 2. 1.离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含 有有机溶剂的缓冲液。凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离. 2.排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离。它类似于分子筛的作用, 但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。 常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。

仪器分析――分子排阻色谱法

仪器分析――分子排阻色谱法 分子排阻色谱法是根据分子大小进行分离的一种液相色谱技术。分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶Sephadex和聚丙烯酰胺凝胶Sepherose等为填充剂,这些填充剂表面分布着不同尺寸的孔径,药物分子进入色谱柱后,它们中的不同组分按其大小进入相应的孔径内,大小大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;大小小于所有孔径的分子能自由进入填充剂表面的所有孔径,在柱子中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。 1.对仪器的一般要求来源:考试大 分子排阻色谱法所需的进样器和检测器同高效液相色谱法,液相色谱泵一般分常压、中压和高压。在药物分析中尤其是分子量或分子量分布通常采用高效分子排阻色谱法(HPSEC)。应选用与供试品分子大小相适应的色谱柱填充剂。使用的流动相通常为水溶液或缓冲液,溶液的pH值不宜超出填充剂的耐受力,一般pH值在2~8范围。流动相中可进入适量的有机溶剂,但不宜过浓,一般不应超过30%,流速不宜过高,一般为0.5~1.0ml/min. 2.系统适用性试验 高效分子排阻色谱法的系统适用性试验中(1)色谱柱的理论板数(n)、(2)分离度、(3)重复性、(4)拖尾因子的测定方法,在一般情况下,同高效液相色谱法项下方法,但在高分子杂质检查时,某些药物分子的单体与其二聚体不能达到基线分离时,其分离度的计算公式为: 除另有规定外,分离度应小于2.0。 3.测定法 (1)分子量测定法 按各品种项下规定的方法,一般适用蛋白质多肽的分子量测定。选用与供试品分子大小相适宜的色谱柱和适宜分子量范围的对照品,除另有规定外,对照品与供试品均需使用二硫苏糖醇(DTT)和十二烷基硫酸钠(SDS)处理,以打开分子内和分子间的二硫键,并使分子的构型与构象趋于一致,经处理的蛋白质和多肽分子通常以线性形式分离,以对照品分子量(MW)的对数对相应的保留时间(tR)制得标准曲线的线性回归方程logMW=a+btR,供试品以保留时间由标准曲线回归方程计算其分子量或亚基的分子量。 (2)生物大分子聚合物分子量与分子量分布的测定法 生物大分子聚合物如多糖、多聚核苷酸和胶原蛋白等具有分子大小不均一的

高效液相色谱法的分类及原理

高效液相色谱法地分类及其分离原理 高效液相色谱法分为:液固色谱法、液液色谱法、离子交换色谱法、凝胶色谱法. .液固色谱法(液固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上地吸附作用不同来进行分配地. ①液固色谱法地作用机制 吸附剂:一些多孔地固体颗粒物质,其表面常存在分散地吸附中心点. 流动相中地溶质分子(液相)被流动相带入色谱柱后,在随载液流动地过程中,发生如下交换反应: (液相)(吸附)<>(吸附)(液相) 其作用机制是溶质分子(液相)和溶剂分子(液相)对吸附剂活性表面地竞争吸附. 吸附反应地平衡常数为: 值较小:溶剂分子吸附力很强,被吸附地溶质分子很少,先流出色谱柱. 值较大:表示该组分分子地吸附能力较强,后流出色谱柱. 发生在吸附剂表面上地吸附解吸平衡,就是液固色谱分离地基础.资料个人收集整理,勿做商业用途 ②液固色谱法地吸附剂和流动相 常用地液固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等. 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间地作用力很弱,分配比较小,保留时间较短;但极性分子与极性吸附剂之间地作用力很强,分配比大,保留时间长.资料个人收集整理,勿做商业用途 对流动相地基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样地检测 常用地流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等. ③液固色谱法地应用 常用于分离极性不同地化合物、含有不同类型或不;数量官能团地有机化合物,以及有机化合物地不同地异构体;但液固色谱法不宜用于分离同系物,因为液固色谱对不同相对分子质量地同系物选择性不高.资料个人收集整理,勿做商业用途 .液液色谱法(液液分配色谱法) 将液体固定液涂渍在担体上作为固定相. ①液液色谱法地作用机制 溶质在两相间进行分配时,在固定液中溶解度较小地组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大地组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离地目地.资料个人收集整理,勿做商业用途 液液色谱法与液液萃取法地基本原理相同,均服从分配定律:固液 值大地组分,保留时间长,后流出色谱柱. ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相. 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相.

第十四章色谱法分离原理

第十四章色谱法分离原理 一.教学内容 1.色谱分离的基本原理和基本概念 2.色谱分离的理论基础 3.色谱定性和定量分析的方法 二.重点与难点 1.塔板理论,包括流出曲线方程、理论塔板数(n)及有效理论塔板数 (n e f f)和塔板高度(H)及有效塔板高度(H e f f)的计算 2.速率理论方程 3.分离度和基本分离方程 三.教学要求 1.熟练掌握色谱分离方法的原理 2.掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义 3.能够利用塔板理论和速率理论方程判断影响色谱分离各种实验因素 4.学会各种定性和定量的分析方法 四.学时安排4学时 第一节概述 色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素

中各组分互相分离形成各种不同颜色的谱带。这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义.但仍被人们沿用至今。 在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1.按两相状态分类 气体为流动相的色谱称为气相色谱(G C) 根据固定相是固体吸附剂还是固定液(附着在惰性载体上的 一薄层有机化合物液体),又可分为气固色谱(G S C)和气液色谱(GL C)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(L SC)和液液色谱(L LC)。超临界流体为流动相的色谱为超临界流体色谱(SF C)。随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CB PC). 2.按分离机理分类 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。 利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。 利用大小不同的分子在多孔固定相中的选择渗透而达到分离

分子排阻色谱法标准操作规程

分子排阻色谱法标准操作规程 共2页第1页 1目的:建立分子排阻色谱法标标准操作规程,使操作规范、准确。 2范围:适用于药品蛋白质多肽的分子量测定。 3职责:质检员按此规程进行操作。。 4引用标准:《中国药典》2010年版。 5工作原理:分子排阻色谱法是根据待测组分的分子大小进行分离的一 种液相色谱技术。分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶(Sephadex)和聚 丙烯酰胺凝胶(Sepharose)等为填充剂,这些填充剂表面分布着不同尺寸 202

文件编号:09—C—083—03 共2页第2页 的孔径,药物分子进入色谱柱后,它们中的不同组分按其分子大小进入相 应的孔径内,大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程 中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;小于所有 孔径的分子能自由进入填充剂表面的所有孔径,在色谱柱中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。 6.测定法 6.1分子量测定法 一般适用于蛋白质多肽的分子量测定。按各品种项下规定的方法,选 用与供试品分子大小相适宜的色谱柱和适宜分子量范围的对照品,除另有 规定外,对照品与供试品均需使用二硫苏糖醇(DTT)和十二烷基硫酸钠(S DS)处理,以打开分子内和分子间的二硫键,并使分子的构型与构象趋于 一致,经处理的蛋白质和多肽分子通常以线性形式分离,以对照品分子量(Mw)的对数值对相应的保留时间(tR)制得标准曲线的线性回归方程lg Mw=a+btR,供试品以保留时间由标准曲线回归方程计算其分子量或亚基的 分子量。 6.2生物大分子聚合物分子量与分子量分布的测定法 生物大分子聚合物如多糖、多聚核苷酸和胶原蛋白等具有分子大小不 均一的特点,故生物大分子聚合物分子量与分子量分布是控制该类产品的 关键指标。在测定生物大分子聚合物分子量与分子量分布时,选用与供试 品分子结构与性质相同或相似的对照品十分重要。 按各品种项下规定的方法,除另有规定外,同样采用分子量对照品和 适宜的GPC软件,以对照品重均分子量(Mw)的对数值对相应的保留时间 203

第十六章 色谱分析法概论

第十六章 色谱分析法概论 思 考 题 和 习 题 1.色谱法作为分析方法的最大特点是什么? 2.一个组分的色谱峰可用哪些参数描述? 这些参数各有何意义? 3.说明容量因子的物理含义及与分配系数的关系。为什么容量因子 (或分配系数) 不等是分离的前提? 4.各类基本类型色谱的分离原理有何异同? 5.说明式(17?18)中K 与V s 在各类色谱法中的含义有何不同? 6.衡量色谱柱效的指标是什么?衡量色谱系统选择性的指标是什么? 7.用塔板理论讨论流出曲线,为什么不论在 t >t R 或t <t R 时,总是C <C max ? 塔板理论有哪些优缺点? 8.简述谱带展宽的原因。 9.下列那些参数可使塔板高度减小? (1) 流动相速度,(2) 固定相颗粒, (3) 组分在固定相中的扩散系数D s ,(4) 柱长, (5) 柱温。 10.什么是分离度?要提高分离度应从哪两方面考虑? 11.组分在固定相和流动相中的质量为m A 、m B (g),浓度为C A 、 C B (g/ml),摩尔数为n A 、n B (mol),固定相和流动相的体积为V A 、V B (ml),此组分的容量因子是 ( ) 。 A. m A /m B ; B. (C A V A )/(C B V B ) ; C. n A /n B ; D. C A /C B 。 (A 、B 、C ) 12.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中 ( ) 。 A. 流动相的体积; B. 填料的体积; C. 填料孔隙的体积; D. 总体积。 (A 、C ) 13.在以硅胶为固定相的吸附色谱中下列叙述中正确的是 ( ) 。 A. 组分的极性越强,吸附作用越强; B. 组分的分子量越大,越有利于吸附; C. 流动相的极性越强,溶质越容易被固定相所吸附; D. 二元混合溶剂中正己烷的含量越大,其洗脱能力越强。 (A ) 14.在离子交换色谱法中,下列措施中能改变保留体积的是( )。 A. 选择交联度大的交换剂; B. 以二价金属盐溶液代替一价金属盐溶液作流动相; C. 降低流动相中盐的浓度; D. 改变流速。 (A 、B 、C ) 15.在空间排阻色谱法中,下列叙述中完全正确的是( )。 A. V R 与K p 成正比; B. 调整流动相的组成能改变V R ; C. 某一凝胶只适于分离一定分子量范围的高分子物质; D. 凝胶孔径越大,其分子量排斥极限越大。 (C 、D ) 16.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速为0.5ml/min 。求A 、B 的保留时间和保留体积。 (A R t =13min A R V =6.5ml, B R t =18min B R V =9ml ) 17.在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为1min ,组分1的保留时间为14min ,组分2的保留时间为17min ,峰宽为1min 。 (1) 用组分2计算色谱柱的理论塔板数n 及塔板高度H ;(2) 求调整保留时间

色谱常见的简写

ACN 乙腈Acetonitrile AUFS 满量程的吸光度单位Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质)Bovine serum albumin CAF 咖啡因(中性溶质)Caffeine CRF 色谱响应因子Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺Dimethyloctylamine DNB 2,4-二硝基甲酰(基)2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸Homovanillic acid h’峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法Ion-exchange chromatography IP 离子对Ion-pair IPC 离子对色谱法Ion-pair chromatography J 色谱峰强度参数 K’所给谱峰的容量因子,k’=(tR-t0)/t0=tR’/t0,tR=t0(1+k’) k 梯度洗脱过程中,某溶质的k’的平均值或有效值 kw 以水做流动相k’的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷Methylene chloride MDST 混合设计统计技术Mixture-design statistical technique;一种优化流动相的软件MeOH 甲醇Methanol MTBE 甲基叔丁醚Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺Procainamide(碱性物质)

第十九章色谱法概论

第十九章色谱法概论 一.单项选择题(类型说明:每一道试题下面有A、B、C、D四个备选答案,请从中选择一个最佳答案。) 1.在色谱分析中,组分在固定相中停留的时间为() A.死时间 B.保留时间 C. 调整保留时间 D.分配系数 2.在色谱分析中,要使两个组分完全分离,分离度应是() A. 0.1 B. 0.5 C. 1.0 D. 〉1.5 3.衡量色谱柱柱效能的指标是() A. 相对保留值 B. 分离度 C. 容量比 D. 塔板数 4.在液-液分配色谱中,保留时间实际上反映的是下列哪些物质分子间的相互作用力() A. 流动相和固定相 B. 组分与流动相和固定相 C.组分与载体.固定相 D. 组分与流动相 5.色谱过程中,固定相对物质起着下列哪种作用() A.运输作用 B.滞留作用 C.平衡作用 D.分解作用 6.某色谱峰,其峰高0.607倍处色谱峰宽度为4mm,半峰宽为() A. 4.71mm B. 6.66mm C. 9.42mm D. 3.33mm 7.在色谱流出曲线上,相邻两峰间距离决定于() A. 两组分分配系数 B. 扩散系数 C. 理论塔板数 D. 塔板高度 8.色谱法中,调整保留时间实际上反映了()分子间的相互作用 A. 组分与载气 B. 组分与流动相 C. 组分与组分 D. 组分与固定相 9.VA.n D.E.E.mtE.r 方程式主要阐述了() A. 色谱流出曲线的形状 B. 组分在两相间的分配情况 C. 色谱峰扩张.柱效降低的各种动力学因素 D. 塔板高度的计算 10.柱效率用理论塔板数n或理论塔板高度h表示,柱效率越高,则() A.n越大,h越小 B.n越小,h越大 C.n越大,h越大 D.n越小,h越小 11.色谱法中,对组分定性的参数为() A. 保留值 B. 峰面积 C. 峰高 D.峰数 12.有A、B、C、D、四种组分,在一定色谱条件下,其分配平衡常数K分别为0.25,0.5, 0.75,1,试判断那个组分先出柱() A. A组分 B. B组分 C. C组分 D. D组分 13.根据Van deemter方程,色谱峰扩张、板高增加的主要原因是() A.当u较小时,分子扩散项 B.当u较小时,涡流扩散项; C.当u比较小时,传质阻力项 D.当u较大时,分子扩散项 14.下列因素对理论塔板高度没有影响的是()

相关文档
相关文档 最新文档