文档库 最新最全的文档下载
当前位置:文档库 › 气相色谱法重点

气相色谱法重点

气相色谱法重点
气相色谱法重点

上届气相色谱法重点

气相色谱法:是以气体作为流动相的柱色谱分析方法。

分类:一、按两相聚集状态

(1) 按流动相的状态:液相色谱、气相色谱、超临界流体色谱

(2) 按固定相的状态:液固、液液:气固、气液

二、按操作方式

(1)柱色谱:填充柱、毛细柱

(2)平面色谱:薄层色谱、纸色谱法

三、按分离原理分

吸附色谱,分配色谱,离子交换色谱,尺寸排阻色谱,亲和色谱 气相色谱分离法的特点:先分离,后检测

气相色谱应用范围:(1)易挥发有机物

(2)可衍生化成易挥发物

(3)无机气体

气相色谱仪的结构及其作用:

1、气路系统:包括载气气源,气体减压,稳压,稳流和净化装置

2、进样系统:包括进样阀,气化室和控温部分

3、分离系统:包括色谱柱,柱室和控温部分,分离系统是气相色谱仪的核心部件

4、检测系统:包括检测器和控温部分,

5、记录系统:包括放大器,色谱工作站等

色谱图:在气相色谱分析中,柱后流出物流经检测器时,载气中各组分的量所产生的信号及时间的曲线称为色谱图流出曲线,又称为色谱图。

色谱峰:色谱图中突出部分,是检测器对组分含量变化所输出信号的微分曲线。

基线:仅有基线通过检测器时,仪器记录的响应信号曲线称为基线。基线的波动程度反映仪器检测系统噪声大小。

保留值:是定性分析的指标

保留时间:是组分从进样到出现信号最大值时的时间,tR 。

死时间:是不被固定相滞留组分的保留时间,tM ,反映流动相通过色谱柱所需要的时间。 调整保留时间:t ’R ,指组分的保留时间与死时间之差。

相对保留值:在相同的操作条件下,组分i 的调整保留值与组分s 的调整保留值之比,称为组分i 对组分s 的相对保留值,用ris 表示。Ris 只随柱温和固定相的改变而变化,ris 的大小,反映色谱柱对不同组分的选择性。Ris 不等于1,说明色谱柱对两个组分有选择性。 分离度(分辨率)(Resolution ,R ):相邻两色谱峰保留值之差与两峰底宽平均值之比。 如果R=1, 称为4σ分离,峰分离达98%

如果R=1.5 称为6σ分离,峰分离达99.7%,R=1.5是两个相邻色谱峰完全分离的标志。 定量分析的依据:峰高,峰面积

衡量色谱柱的效能:用峰宽Wb ,半峰宽W1/2,标准偏差ó(0.067峰高处的峰宽的一半)来衡量。ó值的大小表示色谱柱后流出组分的分散程度,ó越小,表明流出组分越集中,柱效越高。

从流出曲线的形状我们可以得到以下信息:1、应用峰数:判断样品中的最少组分数量。2、保留值:进行定性分析。3、峰高或者峰面积:定量分析。4、结合保留值和区域宽度指标:σ421=≈W W σ

421=?=-R R R t t t σ

621=?=-R R R t t t

可以评价色谱柱对组分的分离效能。5、根据峰间距离:可以评价所选择的固定相,流动相是否合理。

分配系数:一定温度、压力条件下,组分在两相间达到分配平衡时,固定相中组分的浓度与流动相中组分的浓度之比。K(分配系数的大小由组分和固定相的热力学性质决定,与两相体积无关。

分配比:又称容量因子,表示在一定温度和压力下,两相平衡时,固定相中组分的质量与流动相中组分的质量之比。K(容量因子越大,固定相对组分的滞留作用越大)

气相色谱的基本理论:塔板理论,速率理论

塔板理论的四个基本假设:

1、色谱柱由若干小段组成,每一段称为一个理论塔板,塔板的段长称为理论塔板高度,用H表示。

2、塔板中,下层是固定相,上层空间充满流动相,该空间称为板体积,载气脉冲式进入色谱柱,每次进气一个板体积。

3、组分在各塔板内的两相间迅速达到分配平衡,分配系数恒定不变,与组分浓度无关。

4、开始时,试样组分全部加在第1块塔板上,试样沿色谱柱方向的纵向扩散忽略不计。

当n=5时,即第一个塔板进了5个体积的气后,组分A开始流出柱出口,进入检测器产生信号,但此时组分A含量很小,信号很弱。

当n=8,9时,柱出口流出量达最大值,之后又逐渐减小,相应产生的电信号由小到大,再由大到小。当n值趋向无穷大时,形成的峰形呈正态分布。

柱效能指标:理论塔板数n,理论塔板高度H,有效塔板数neff。反映色谱柱对组分的分离效能。

理论塔板数n:主要由操作系数决定,组分流过色谱柱时在两相是进行平衡分配的总次数。n=16(tR/Wb)^2

塔板理论高度H:H=L/n(L为色谱柱的长度)

计算题:比较薄的那本复印本上的186页

色谱柱长L一定时,组分的H或Heff越小,n或者neff越大,表明色谱柱对该组分的作用越大,柱效能直高。

塔板理论的贡献与不足:

贡献:(1)较好地解释了色谱峰形的正态分布规律

(2)提出了评价柱效能指标:n和H

不足:(1)没有考虑动力学因素对色谱过程的影响,不能解释载气流速u对理论塔板数n 的影响

(2)不能回答色谱峰为什么发生变形

(3)不能说明塔板高度受什么因素影响

速率理论(Van Deemter 方程)

H=A+B/u+Cu

H有效塔板高度

A涡流扩散项

B/u分子扩散项

Cu传质阻力项

一、涡流扩散项A

产生原因:随载气一起流动的组分由于固定相的阻碍而改变运动方向,形成“涡流”,导致不同的组分分子在柱中走过的路程长短不一致,引起峰形的扩张。

意义:填充柱填充越均匀规则,载体平均颗粒直径越小,则涡流扩散越小,色谱峰扩张变

形小

二、分子扩散项B/u(纵向扩散项)

产生原因:组分被载气带入色谱柱后,以“塞子”的形式存在于柱内很小一段空间中,在“塞子”的前后(纵向)存在着浓度差而形成浓度梯度,使运动着的分子产生纵向扩散

意义:选择分子量大的组分和载气,降低色谱柱温,分子扩散项小:气气压越高,分子扩散程度越小,

结论:减小涡流扩散、分子扩散、传质阻力,能够降低塔板高度,有利于提高柱效。

气相色谱中固定液要满足以下要求:1、操作温度下呈液态2、热稳定性好,有较宽的工作温度范围,适应宽沸程样品分析3、选择性好,对不同组分有不同的溶解能力4、黏度小5、挥发性小,不易流失。

固定液的选择:

1、选用非极性固定液分离非极性物质

2、选用极性固定液分离极性物质

3、选用极性固定液,分离含有极性组分和非极性组分的混合试样

4、选择氢键型或极性固定液,分离含有能形成氢键组分的试样

5、选择两种或两种以上的混合固定液,分离复杂的,难分离的试样

检测器分类:

浓度敏感型检测器:热导检测器TCD、电子捕获检测器ECD

质量敏感型检测器:氢火焰原子检测器FID、火焰光度检测器FPD

灵敏度:又称为响应或应答值,是用来评价检测器质量,或比较不同类型检测器性能的要指标。

检测限:或称敏感度,指某组分的峰高恰为基线噪声的2倍时,单位体积载气中所含该组分的量。在相同灵敏度条件下,仪器噪声越小,检测限越小,检测器的性能越好。

线性范围:线性范围虎宽越好。

FID:(利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分)一般只能测定含碳有机化合物。多用氮气作载气,氢气作燃气,空气作助燃气。

ECD:原理:(1)放射源的β射线将载气(N2或Ar)电离,产生次级电子和正离子,在电场作用下,电子向正极移动,形成恒定基流。

(2)当载气带有电负性组分进入检测器时,电负性组分就能捕获这些低能量的自由电子,形成稳定的负离子,负离子再与载气正离子复合成中性化合物,

使基流降低而产生负信号——倒峰。信号的大小与组分的浓度成正比。

(常用氮气作载气)

分离度方程:分离度与柱效能、柱选择性及柱容量的关系

1、增加k影响峰位,使分离度增加,保留时间延长且峰明显变宽。

2、增加n,通过改变峰的宽度而改善分离度,

3、增加ris,改善分离度,影响峰间距,但峰的宽度不变。

分离效能主要受固定相的性质的影响

在气相色谱中,选择分离条件的基本原则是在较短的分析时间内,将试样中各组分彼此分离要求分离度足够大)。要以Van Deemter方程和分离度方程为指导来选择分离条件。一般分离条件主要指载气、色谱柱、温度以及进样操作。

载气:

在低流速时(0~u最佳)时,宜选用分子量较大的载气(氮气,氩气)

在高流速时(u>最佳)时,选用分子量较小的载气(氢气,氦气)

温度:

1、汽化室温度:一般控制在等于或稍高于试样组分沸点

2、 检测室温度:一般可高于柱温30~50度或等于汽化室温度

3、 柱室温度及控制方式:选择的基本原则是使难分离的组分在符合分离度要求的前提下,

尽可能采用较低柱温,但以保留时间适宜及不拖尾为宜。

柱温的控制方式有恒温与程序升温两种。恒温是指在某一恒定温度下操作,适合于组分少且沸点相近的试样,而对于组分较复杂、沸程宽试样需采取程序升温的方法。程序升温是指在某一初温维持一定时间,然后按一定速率升温,升至终温后再维持一定时间,每一次升温称为一阶。

进样:实际工作时在检测器灵敏度足够的前提下,尽量减小进样量,并进样速度要快。 定性分析

主要依据每个组分的保留值来定性(tR,ris )

定量分析

依据:在一定操作条件下,检测器产生的响应信号(峰面积或峰高)与被测组分的量呈正比。

1、 归一化法

前提:试样中所有组分都产生信号并能流出色谱柱,彼此分离

依据:组分含量与峰面积成正比

(对于同系物,f 可消去)即

2、 外标法

用组分的纯品为对照物质,以对照物质和试样中待测组分的响应信号相比较进行定量的方法。

外标法的优点:

简便,不用校正因子,不必加内标物只需待测组分出峰。

外标法的缺点:

结果的准确度与进样量的重复性和操作条件的稳定性有关。

3、 内标法

以一定量的纯物质(内标物),加入到准确称定的试样中再进样分析,根据试样和内标物的质量及峰面积和相对校正因子,求出某组分的百分含量。

(可以看看薄的那本复印本的206页的计算题帮助理解)

优点:1、只需内标物及目标组分出峰;

2、 操作条件变化而引起的误差小

3、适合于复杂样品和微量组分的定量分析

缺点: 1、 内标物选择难

2、 需要准确计量样品和内标的量

内标物的选择:

(1)试样中不存在的纯物质,与样品中的组分完全分离;

(2)内标物质与待测组分的结构和性质相近

(3)内标物质为纯物质或含量已知

(4)内标物与样品互溶,不发生不可逆化学反应

内标标准曲线法:先将待测组分的纯物质配成不同浓度的系列的系列标准试样,分别加入等%100%100%11?++++=?=∑n

n i i i i i i i i i f A f A f A f A f A f A X %100%100%1?++++=?=∑

n i i i i i A A A A A A X %100%100%??=?=?m

m f A f A m m X s s s i i i i

量的内标物,进样分析,测得Ai和As,以Ai/As对Xi作图得到一直线即内标标准曲线法。

液质联用

APCI(大气压化学电离)和ESI(电喷雾电离)的不同点

?离子产生的方式

?APCI利用电晕放电离子化,气相离子化。

?ESI利用离子蒸发,液相离子化。

?能被分析的化合物类型不同

?APCI 弱极性,小分子化合物,且具有一

定的挥发性

?ESI 极性化合物和生物大分子。

?流速

?ESI 0.001到0.25 ml/min。

?APCI 0.2到2 ml/min。

?多电荷

?APCI不能生成一系列多电荷离子,所以不适合分析大分子。

?ESI 能生成一系列多电荷离子,特别适用于蛋白,多肽类等生物分

子。

正相色谱法:流动相极性小于固定相极性的称为正相色谱法。用于分离在有机溶剂中有较高溶解度的化合物,如脂溶性维生素等。

反相色谱法:流动相极性大于固定相极性的称为反相色谱法。主要用于分离非极性至中等极性的各类分子型化合物。

高效液相色谱的组成

(一)高压输液系统

(二)进样系统

(三)分离系统

(四)检测系统

(五)数据记录和处理系统

质谱法

质谱图(大概了解一下,下面的三个概念应该不用记)

质荷比:质量和电荷的比值(m/z),

如:m/z=46,45,31

基峰:原始质谱图中最强的离子峰,其强度定为100%。

分子离子峰:组分分子失去或得到一个电子而形成的离子峰,一般在质谱图的最右侧,可用于确定分子的分子质量

碎片离子峰:分子在离子源中获得的能量超过了分子离子化所需要的能量时,分子中的某些化学键断裂而产生碎片离子形成的离子峰。

红外光线,原子荧光看幻灯为主。红光,紫外光区域等。电感耦合基本知识。

以上是根据师兄师姐给的资料整理出来的。(目前为止,样口前处理,原子吸收,原子荧光,电感耦合是完全没有任何资料的,自己看课件吧!主要是前处理,原子吸收,其他考得很少)

实验一气相色谱法测定混合醇

实验一 气相色谱法测定混合醇 一、实验目的 1.掌握气相色谱法的基本原理和定性、定量方法。 2.学习归一化法定量方法。 3.了解气相色谱仪的基本结构、性能和操作方法。 二、实验原理 色谱法具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 常用的定量方法有好多种,本实验采用归一法。 归一法就是分别求出样品中所有组分的峰面积和校正因子,然后依次求各组分的百分含量。10000?'?=∑ f A f Ai Wi i 归一法优点:简洁;进样量无需准确;条件变化时对结果影响不大。 缺点:混合物中所有组分必须全出峰;必须测出所有峰面积。 [仪器试剂] 三、实验仪器与试剂 气相色谱仪;微量注射器1μL 乙醇、正丙醇、正丁醇,均为色谱纯 四、实验步骤 1. 色谱条件 色谱柱 OV-101弹性石英毛细管柱 25m×0.32mm

柱温150℃;检测器200℃;汽化室200℃ 载气氮气,流速1.0cm/s。 2. 实验内容 开启气源(高压钢瓶或气体发生器),接通载气、燃气、助燃气。打开气相色谱仪主机电源,打开色谱工作站、计算机电源开关,联机。按上述色谱条件进行条件设置。温度升至一定数值后,进行自动或手动点火。待基线稳定后,用1μL 微量注射器取0.5μL含有混合醇的水样注入色谱仪,同时按下数据采集键。 五、数据处理 1. 面积归一化法定量 组分乙醇正丙醇正丁醇 峰高(mm) 半峰宽 (mm) 峰面积 (mm2) 含量(%) 将计算结果与计算机打印结果比较。 【思考题】 1. 本实验中是否需要准确进样?为什么? 2. FID检测器是否对任何物质都有响应?

谈气相色谱方法原理与应用现状以及发展前景

谈气相色谱方法原理与应用现状以及发展前景 摘要 气相色谱技术是现代仪器分析的重要研究领域之一,由于其独特、高效、快速的分离特性,已成为物理、化学分析不可缺少的重要工具。进入2l世纪以来,气相色谱技术的发展已渐趋成熟,基础性的创新成果十分有限,但技术性的进步一直在进行着,尤其是与行业相关的应用性研究仍然十分活跃,以微柱阀切换、专用色谱柱和自控技术为基础发展起来的各类试样预处理系统和专用分析系统的标准化与商品化结果,使得这些新技术和新方法的应用变得越来越便利。目前,气相色谱技术已在石油、化工、环保、药物等方面有广泛应用。 关键词:气相色谱(GC)仪器分析应用现状发展前景 正文 近年来由于分析仪器的迅速发展以及食品科学本身的发展,仪器分析在食品研究上应用日趋广泛。仪器分析法即是用精密分析仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,大致包括:色谱分析法、电化学分析法、光学分析法、质谱分析法和核磁共振波谱法。其中,色谱分析法以其具有高分离效能、高检测性能、分析快速而成为现代仪器分析方法中应用最广泛的一种方法。它的分离原理是,使混合物中各组分在两相间进行分配,其中一相是不动的,为固定相,另一相是携带混合物流过此固定相的流体,为流动相。当流动相中所含混合物经过固定相时,就会与固定相发生作用。由于各组分在性质和结构上的差异,与固定相发生作用的大小、强弱也有差异,因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后不同的次序从固定相中流出。而气相色谱法是采用气体作为流动相的一种色谱法。 1.气相色谱法基本原理 (1)分离:当试样由载气携带进入色谱柱与固定相接触时,被固定相溶解或吸附;随着载气的不断通入,被溶解或吸附的组分又从固定相中挥发或脱附;挥发或脱附下的组分随着载气向前移动时又再次被固定相溶解或吸附,于是,随着载气的流动,溶解、挥发,或吸附、脱附的过程反复地进行,较难被吸附的组分随载气较快地向前移动,较易被吸附的组分则随载气较慢地移动,经过一定时间后,各组分就彼此分离。 (2)检测:质量型检测——氢火焰离子化检测(FID)、火焰光度检测(FPD),浓度型检测——热导检测(TCD)、电子捕获检测(ECD)。 2.气相色谱技术的发展历史 古代罗马人曾采用一块布或一片纸来分析染料与色素,大约在100多年前,德国的化学家Runge 对此方法作了重要的改进,使其具有更好的重现性与定量能力,这项技术后来发展成了今天的纸色谱技术。 1901年俄国植物学家Mikhail Tswett 采用碳酸钙作吸附剂,石油醚为洗脱剂,分离了植物色素,1903 年他发表了题为“一种新型吸附现象及在生化分析上的应用”的研究论文,文中第一次提出了应用吸附原理分离植物色素的新方法,1906 年,他命名这种方法为色谱法,但由于分离速度慢,分离效率低,长时间内未引起重视。 1931年德国的Kuhn 和Lederer 采用类似方法分离了胡萝卜素等60 多种色素,色谱方法才被广泛应用。 1940年Martin 和Synge 提出了液液分配色谱法,1941 年他们提出了用气体作流动相的可能性。 1952年James 和Martin 发明了气相色谱法,因而获得1952 年的诺贝尔化学奖。 1957年Golay 开创了毛细管气相色谱法。

气相色谱法讲义

气相色谱法 用气体作为流动相的色谱法称为气相色谱法。根据固定相的状态不同,又可将其分为气固色谱和气液色谱。气固色谱是用多孔性固体为固定相,分离的主要对象是一些永久性的气体和低沸点的化合物。但由于气固色谱可供选择的固定相种类甚少,分离的对象不多,且色谱峰容易产生拖尾,因此实际应用较少。气相色谱多用高沸点的有机化合物涂渍在惰性载体上作为固定相,一般只要在450℃以下有1.5KPa-10KPa的蒸汽压且热稳定性好的有机及无机化合物都可用气液色谱分离。由于在气液色谱中可供选择的固定液种类很多,容易得到好的选择性,所以气液色谱有广泛的实用价值。 第一节气相色谱仪 (一)气相色谱流程 气相色谱法用于分离分析样品的基本过程如下图: 气相色谱过程示意图 由高压钢瓶1供给的流动相载气。经减压阀2、净化器3、流量调节器4和转子流速计5后,以稳定的压力恒定的流速连续流过气化室6、色谱柱7、检测器8,最后放空。 气化室与进样口相接,它的作用是把从进样口注入的液体试样瞬间气化为蒸汽,以便随载气带入色谱柱中进行分离,分离后的样品随载气依次带入检测器,检测器将组分的浓度(或质量)变化转化为电信号,电信号经放大后,由记录仪记录下来,即得色谱图。 (二)气相色谱仪的结构 气相色谱仪由五大系统组成:气路系统、进样系统、分离系统、控温系统以及检测和记录系统。 1. 气路系统 气相色谱仪具有一个让载气连续运行、管路密闭的气 路系统。通过该系统,可以获得纯净的、流速稳定的载气。它的气密性、载气流速的稳定性以及测量流量的准确性,对色谱结果均有很大的影响,因此必须注意控制。 常用的载气有氮气和氢气,也有用氦气、氩气和空气。载气的净化,需经过装有活性炭或分子筛的净化器,以除去载气中的水、氧等不利的杂质。流速的调节和稳定是通过减压阀、稳压阀和针形阀串联使用后达到。一般载气的变化程度<1%。 2. 进样系统 进样系统包括进样器和气化室两部分。 路系统。通过该系统,可以获得纯净的、流速稳定的载气。它的气密性、载气流速的稳定性以及测量流量的准确性,对色谱结果均有很大的影响,因此必须注意控制。 常用的载气有氮气和氢气,也有用氦气、氩气和空气。载气的净化,需经过装有活性炭

气相色谱定量分析方法

归一化法 归一化法有时候也被称为百分法(percent),不需要标准物质帮助来进行定量。它直接通过峰面积或者峰高进行归一化计算从而得到待测组分的含量。其特点是不需要标准物,只需要一次进样即可完成分析。 归一化法兼具内标和外标两种方法的优点,不需要精确控制进样量,也不需要样品的前处理;缺点在于要求样品中所有组分都出峰,并且在检测器的响应程度相同,即各组分的绝对校正因子都相等。归一化法的计算公式如下: 当各个组分的绝对校正因子不同时,可以采用带校正因子的面积归一化法来计算。事实上,很多时候样品中各组分的绝对校正因子并不相同。为了消除检测器对不同组分响应程度的差异,通过用校正因子对不同组分峰面积进行修正后,再进行归一化计算。其计算公式如下: 与面积归一化法的区别在于用绝对校正因子修正了每一个组分的面积,然后再进行归一化。注意,由于分子分母同时都有校正因子,因此这里也可以使用统一标准下的相对校正因子,这些数据很容易从文献得到。 当样品中不出峰的部分的总量X通过其他方法已经被测定时,可以采用部分归一化来测定剩余组分。计算公式如下: 内标法 选择适宜的物质作为预测组分的参比物,定量加到样品中去,依据欲测定组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入量进行定量分析的方法叫内标法。特点是标准物质和未知样品同时进样,一次进样。内标法的优点在于不需要精确控制进样量,由进样量不同造成的误差不会带到结果中。缺陷在于内标物很难寻找,而且分析操作前需要较多的处理过程,操作复杂,并可能带来误差。 一个合适的内标物应该满足以下要求:能够和待测样品互溶;出峰位置不和样品中的组分

重叠;易于做到加入浓度与待测组分浓度接近;谱图上内标物的峰和待测组分的峰接近。内标法的计算公式推导如下: 式中,Ai,As分别为待测组分和内标物的峰面积;Ws,W分别为内标物和样品的质量;Gwi/s是待测组分对于内标物的相对质量校正因子(此值可自行测定,测定要求不高时也可以由文献中待测组分和内标物组分对苯的相对质量校正因子换算求出)。 内加法 在无法找到样品中没有的合适的组分作为内标物时,可以采用内加法;在分析溶液类型的样品时,如果无法找到空白溶剂,也可以采用内加法。内加法也经常被称为标准加入法。 内加法需要除了和内标法一样进行一份添加样品的处理和分析外,还需要对原始样品进行分析,并根据两次分析结果计算得到待测组分含量。和内标法一样,内加法对进样量并不敏感,不同之处在于至少需要两次分析。下面我们用一个实际应用的例子来说明内加法是如何工作的: 题:在分析某混合芳烃样品时,测得样品中苯的面积为1100,甲苯的面积为2000,(其它组分面积略)。精确称取40.00g该样品,加入0.40g甲苯后混合均匀,在同一色谱仪上进混合后样品测到苯的面积为1200,甲苯的面积为2400,试计算甲苯的含量。 分析:本题的分析过程是一个典型的内加法操作,其中内加物为甲苯,待测组分为甲苯和苯。 解:1. 由于进样量并不准确,因此两次分析的谱图很难直接进行对比。为了取得可以对比的一致性,我们通过数字计算调整两次分析苯的峰面积相等。此时由于两次分析苯峰面积相等,因此可以断定两次分析待测样品的进样量是相等的。需要注意的是:此时两次分析的总的进样量并不相等,添加后样品比原始样品调整后的进样量中,多了添加的内标物的量。调整可以用原始样品谱图为依据,也可以用添加后样品谱图为依据。但是通常采用原始样品作为依据以便计算最终结果时比较简单。注意:选用的依据不同,中间计算结果会产生差异,但不会影响最终结果。依据的谱图一旦选定,计算就应该围绕此依据进行。 在以原始样品谱图为依据的情况下,调整添加后样品谱图中甲苯的峰面积如下: 对比两次分析,甲苯的面积增加为2200-2000=200。在两次分析待测样品量相同的情况下,内加物面积的增加来自于内加量。也就是说,由于内加物的加入,导致了内加物峰面积的增

气相色谱法测定环氧乙烷.doc

气相色谱法测定 明胶空心胶囊中环氧乙烷 摘要: 目的:对生产的明胶空心胶囊中环氧乙烷测定气相色谱法进行方法验证;方法:定性除了采用传统的对照品保留时间定性又采用了供试品加标定性和双柱定性,定量采用加标回收率验证方法准确性,方法精密度采用RSD%验证;结论:定性采用保留时间定性、DB-624色谱柱和PLOT/Q色谱柱双柱定性和加标定性,方法定性互相验证正确。定量加标回收率为98.44~99.98%,方法准确。方法精密度RSD%为3.6~4.1,方精密度好可靠。 引言: 依据《中国药典》(2010版)正文第二部分1204页明胶空心胶囊中环氧乙烷的测定气相色谱法,实验人员照残留溶剂测定法(附录ⅧP第二法附录61页)实验。采用了HP-5、DB-W AX、DB-624和PLOT/Q色谱柱实验(都是方法规定的色谱柱)。其中HP-5和DB-W AX均难以有效分离广生生产的供试品中的干扰峰,改用固定液为(6%)氰丙基苯基(94%)二甲基聚硅氧烷DB-624毛细管柱实现了基线分离,试验了供试品加标定性,加标回收率,加标RSD%。之后,依照残留溶剂测定法“附注(3)干扰峰的排除”又在另一根截然不同的气-固色谱柱做了实验。PLOT/Q色谱柱固定相为聚苯乙烯—二乙烯基苯型的高分子多孔小球。两者检验结果一致,排除了测定中有共出峰的干扰。 1 实验部分 1.1仪器与试剂 Agilent 7890A GC/FID ; GC Chemstation (B.04.01) 工作站;Agilent 7694E顶空进样 器。对照品:环氧乙烷(浓度5mg/ml,美国Accustandard);溶剂:水(实验室超纯水);供试品:明胶空心胶囊(广生胶囊提供)。 1.2色谱条件 ①色谱条件 色谱柱:DB-624毛细管柱(30m*0.53mm*3.0um),固定相:(6%)氰丙基苯基(94%)二甲基聚硅氧烷;柱温:40℃保持5min,升温速率25℃/min,上升到150℃终止程序升温,后运行温度230℃,后运行时间3 min;载气流速:5mL/min。 汽化室:汽化室110℃,分流比1:1。 检测器:260℃,氢气40mL/min,空气400mL/min,尾吹33 mL/min。

GC7890气相色谱仪培训讲义

气相色谱仪工作原理: 气相色谱仪以气体作为流动相(载气)。当样品由微量注射器注入进样器汽化后,被载气携带进入填充柱或毛细管色谱柱。由于样品中的流动相(气相)和固定相(液相或气相)间分配或吸咐系数的差异,在载气的冲洗下各组分在两相间作反复多次分配,使各组份在柱中得分离,依次从柱后流出。然后用接在柱后的检测器,根据组份的物理、化学特性,将各组分按顺序检测出来。 气相色谱仪应用范围: 环境保护:大气水源等污染地的痕量毒物分析、监测和研究 生物化学:临床应用,病理和毒物研究 食品发酵:微生物饮料中微量组分的分析研究 中西药物:原料中间体及成品分析 石油加工:石油化工,石油地质,油品组成等分析控制和控矿研究 有机化学:有机合成领域内的成份研究和生产控制 卫生检查:劳动保护公害检测的分析和研究 尖端科学:军事检测控制和研究

GC7890气相色谱仪操作规程(一) 1.检查仪器电源线连接是否正常、气路管线连接是否正常。 2.打开载气(N2)钢瓶总阀,并调节减压阀开关,使得输出的载气压力在0.3~0.5Mpa之间,要求0.4Mpa。 3.调节仪器上的载气调压阀,使得柱前压处在分析工作所需要的压力(一般来说,柱前压在0.05~0.1Mpa之间)。本机N2 0.142Mpa; H2 0.11Mpa ; AIR 0.158Mpa. 4.打开电源开关,根据分析要求设置柱温、汽化温度、检测温度等参数,按确定键后仪器升温。同时打开色谱工作站电源。柱温150℃、汽化温度250℃、检测温度250℃ 5.仪器升温到设置温度后,打开空气发生器电源;同时扭开氢气钢瓶阀门,调节氢气减压阀压力在0.3Mpa左右。 6.调节仪器侧面右下侧的针形阀,使空气压力在0.158MPa左右,氢气压力在0.15~0.2MPa 之间,按点火键3秒以上,点着FID的火焰,用玻璃片或铁片等冷的物体靠近检测器的盖帽,有水珠凝结表明点火成功(也可以通过观察工作站所显示的基线是否在点火瞬间开始上升来确定是否点火成功)。 7.仪器点火后,打开工作站。点击数据采集菜单,查看基线。当工作站左下方出现电压及时间指示后,调节色谱仪面板上零点调节旋钮查看基线是否变化。如有变化,则色谱仪和工作站已处于联机状态,观察基线是否平稳。 8.当仪器稳定,基线零点指示灯处于正常状态时,工作站零点校正后,开始进样分析。分析结束后,将仪器柱箱、检测器、进样温度设置到50度以下,关机再关气。(载气开关最后关掉,让分析柱中有余留载气通过,起保护作用。) 9.调低各路设定温度,使柱温箱、汽化室、检测器温度下降,待柱箱温度低于70℃即可关闭仪器电源。关闭电脑。 10.关闭载气钢瓶上的总阀。清理仪器室的进样针、样品等物品,结束GC7890的操作。 如果色谱死机,关闭色谱左侧电源(红色按钮),休息2分钟后,再重新启动色谱电源,输入温度:柱温(OVEN)150℃;进样器温度(INJ)250℃;检测器温度(DET)250℃。

色谱技术发展现状

色谱技术发展现状 小组成员:陈景杨、王梓吉 一、概述 色谱法是一种高效能的物理分离技术,它利用混合物中的各组分在互不相容的两相(固定相和流动相)之间的分配的差异而使混合物得到分离的一种方法。利用色谱分离技术再加上检测技术、定量分析的仪器就是色谱仪。近年来多种高新技术的引入,各类色谱仪器在性能、结构和技术参数等各方面都有了极大提高。 色谱分析技术就是根据被测样品(混合物)的性质,选择适当的流动相、固定相和其他操作条件,利用色谱仪的分离系统将样品中的各个组分分离开来,然后利用检测系统对各组分进行定性、定量分析。它具有高分辨率、高灵敏度、样品量少且速度较快、结果准确等优点,是分析混合物 的有效方法。 目前比较成熟的色谱仪器主要是气相色谱仪与高效液相色谱仪两大类。两者最显著差异就是在流动相的选择上,气相色谱仅能用于氢气、氦气等少数几种性质相近的气体,而高效液相色谱可供选择的溶剂多种多 样,可通过改变其极性、黏性、pH值、浓度等调节两相之间的分配差异,进而有效地改善分离条件;另一方面,正是由于流动相的差异,导致气相色谱仪只能用于被气化物质的分离和检测,而液相色谱的样品无需气化而直接导入色谱柱进行分离、检测,特别适用于气化时易分解的物质的分离、分析。 二、气相色谱 三、高效液相色谱 高效液相色谱(HPLC)是目前应用最多的色谱分析方法,它是在经典色谱法的基础上,引用了气相色谱的理论,使用粒径更细的固定相填充 色谱柱,提高色谱柱的塔板数,并以高压驱动流动相,同时柱后连有高 灵敏度的检测器,可对流出物进行连续检测。 现代高效液相色谱仪由高压输液泵、进样系统、温度控制系统、色谱柱、检测器、数据处理与记录系统等部分组成。它的工作流程是高压 泵将流动相以稳定的流速(或压力)输送至分离系统,样品溶液经进样 器进入流动相,被流动相载入色谱柱内,由于样品溶液中的各组分在两 相中分配系数或吸附力大小的不同而被分离成单个组分依次从柱内流 出,通过检测器时样品浓度被转换成电信号传送到数据处理与记录系统 进行数据分析。与经典液相柱色谱装置比较,它具有高效、快速、灵敏 等特点。 四、发展现状及趋势

浅析气相色谱仪的应用现状及发展趋势

浅析气相色谱仪的应用现状及发展趋势 【摘要】从1903年气相色谱仪被发现至今,用气相色谱法对物质进行测量分析已被广泛的应用于人类生产生活的各个领域当中。气相色谱仪技术由于其分离质量不断提高、检测速度普遍加快、机器微型化、成本降低的特点逐步赢得了市场的认可。本文在我国气相色谱仪市场状况调研的基础上,对气相色谱仪的应用现状进行简要分析、并按照现有的气相色谱仪的实际应用对气相色谱仪的发展趋势做出估计。 【关键词】气相色谱仪应用现状发展趋势 1 气相色谱技术的发展历程 1906年茨维特创设色谱法以来,关于气相色谱的研究就从未间断。虽然色谱理论和技术上的创新引起了学术界的广泛关注,但直到1952年气相色谱的发明(GC ),才使气相色谱技术得到了广泛的使用,并且该发明使气相色谱实验技术和仪器设备等不断发展成熟,而毛细管气相色谱的出现使气相色谱的应用可以向石化以外的多行业延伸。 气相色谱强大的分离能力,加之近年来气相色谱技术逐渐向快速检测、高度分离、高准确性、微型化、便携式的方向发展,使其走出实验室向广大的社会生产生活领域迈进,我国也走过了机械式、光电转盘式、数字分频电子式、现代计算机式的发展过程,当权威的国际离子色谱会议(International Ion Chromatography Symposium )把微型化色谱柱的研究作为其重要的议题之一时,微型气相色谱仪的研发就成为了当前气相色谱技术的流行发展趋势和学术界主流研究方向。 从1952年气液相色谱技术进行实际应用,气相色谱技术得到了突飞猛进的发展。其中气相色谱仪已经成为了物质分析检测类仪器领域中的佼佼者,目前在世界范围内已经发展为一个庞大的产业,形成了一门独立的应用技术学科。通过对气相色谱仪技术的研究可以发现,这一科技成就甚至一定程度可以代表色谱技术对人类的贡献值。其从诞生到成熟的经历也可以代表气相色谱的应用历史和现状。 2 我国气相色谱仪的应用现状分析 我国气相色谱仪的市场广泛,中国市场是世界气相色谱仪竞争的重点区域,国外厂商纷纷进入中国市场,其知名品牌有安捷伦科技、赛默飞世尔、戴安等,这些企业一方面活跃了中国气相色谱仪市场,另一方面为我国学习和自主研发气相色谱仪提供了契机,并且使我国气相色谱仪市场呈现出独特特征。 2.1 国产气相色谱仪技术水平分析

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

气相色谱之气路载气篇解读

气体种类及优劣分析 现代的气相色谱操作需要多种不同的气体。进样口、色谱柱和检测器的类型决定了所需气体的性质和纯度。载气数量和类型的选取主要取决于系统所使用的检测器。 在前面已经讨论过, 载气的选择对气相色谱柱效的影响是很重要。我们已经了解到, 不同类型的载气对填充柱和毛细管柱都适用,这是因为色谱柱内径大小不同(例如典型的0.32mm毛细管柱和4mm的填充柱)载气通过时的线速度会发生改变。 载气通过色谱柱的体积流速受色谱柱炉温度和程序升温控制,如果压力补偿不够,载气流速会明显下降。选择一种在较大流速和温度范围内使用且能维持较高柱效率的载气是很重要的。从这点上来说,氢气是毛细管色谱法最合适的载气,其次分别是氦气和氮气。因为在较大的气体线速度范围内,氢气的范第姆特曲线最平坦,塔板高度(H)最低,柱效(N)最高。线速度较低时,氮气的柱效率最高,但是范第姆特曲线上最小线速度的取值范围很窄。 气源 气体供应和调控对气相色谱至关重要,因为高纯度和持续不断的载气补充才能维持气相色谱的分析功能。 从气瓶或气体发生器出来的气体依次通过减压阀、管道系统(包括挠性管或猪尾管)、稳压阀和调节阀。(在第2、3节查看更多内容) 操作使用高压气瓶时必须十分小心,为了防止气瓶跌倒,应该用锁链或安全绳捆绑并靠墙存放。为避免气体流速的干扰建议在气瓶与备用气瓶之间安装调节阀,尤其对载气来说安装调节阀是非常重要的,例如当色谱柱正在升温时载气供应不足将严重损坏气相色谱柱。使用二级减压阀将从气瓶出来的气体压力调节到所需的工作压力。在更换气瓶和安装减压阀时应尽量远离。新安装完成的气瓶减压阀尤其是在刚开始使用的24小时内应完全打开,目的是防止减压阀内部的压力降造成压力不稳。 一般来说气瓶总压力下降到200-300 psi(或初始压力的10%)时需要更换气瓶,因为随着气瓶压力下降,杂质如水分、碳氢化合物和小颗粒会集中在气体中大大降低了气体纯度。

色谱法的产生和发展

1906年,俄国植物学家Tswett发表了他的实验结果,他为了分离植物色素,将植物绿叶的石油醚提取液倒入装有碳酸钙粉末的玻璃管中,并用石油醚自上而下淋洗,由于不同的色素在碳酸钙颗粒表面的吸附力不同,随着淋洗的进行,不同色素向下移动的速度不同,形成一圈圈不同颜色的色带,使各色素成分得到了分离。他将这种分离方法命名为色谱法(chromatography)。在此后的20多年里,几乎无人问津这一技术。到了1931年,Kuhn等用同样的方法成功地分离了胡萝卜素和叶黄素,从此,色谱法开始为人们所重视,此后,相继出现了各种色谱方法。 色谱法的发展历史 在分析化学领域,色谱法是一个相对年轻的分支学科。早期的色谱技术只是一种分离技术而已,与萃取、蒸馏等分离技术不同的是其分离效率高得多。当这种高效的分离技术与各种灵敏的检测技术结合在一起后,才使得色谱技术成为最重要的一种分析方法,几乎可以分析所有已知物质,在所有学科领域都得到了广泛的应用。

1. 色谱法的优点 分离效率高。几十种甚至上百种性质类似的化合物可在同一根色谱柱上得到分离,能解决许多其他分析方法无能为力的复杂样品分析。 分析速度快。一般而言,色谱法可在几分钟至几十分钟的时间内完成一个复杂样品的分析。 检测灵敏度高。随着信号处理和检测器制作技术的进步,不经过预浓缩可以直接检测 10-9g 级的微量物质。如采用预浓缩技术,检测下限可以达到 10-12g 数量级。 样品用量少。一次分析通常只需数纳升至数微升的溶液样品。 选择性好。通过选择合适的分离模式和检测方法,可以只分离或检测感兴趣的部分物质。 多组分同时分析。在很短的时间内(20min左右),可以实现几十种成分的同时分离与定量。 易于自动化。现在的色谱仪器已经可以实现从进样到数据处理的全自动化操作。 2. 色谱法的缺点 定性能力较差。为克服这一缺点,已经发展起来了色谱法与其他多种具有定性能力的分析技术的联用。 色谱法的定义与分类 固定相(stationary phase):在色谱分离中固定不动、对样品产生保留的一相。 流动相(mobile phase):与固定相处于平衡状态、带动样品向前移动的另一相。

气相色谱分析实例

永久性气体色谱分析 1.方法原理 以13X或5A分子筛为固定相,用气固色谱法分析混合气中的氧、氮、甲烷、一氧化碳,用纯物质对照进行定性,再用峰面积归一化法计算各个组分的含量。 2.仪器和试剂 ①仪器气相色谱仪,备有热导池检测器;皂膜流量计;秒表。 ②试剂13X或5A分子筛(60~80目);使用前预先在高温炉内,于350℃活化4h后备用。纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中。氢气装在高压钢瓶内。3.色谱分析条件 固定相:13X或5A分子筛(60~80目);不锈钢填充柱管φ4mm×2m;柱温:室温。 载气:氢气,流量30mL/min 检测器:热导池检测器,桥流200mA;衰减1/2~1/8,检测室温度:室温。 气化室:室温,进样量用六通阀进样,定量管0.5mL。 4.定性分析 记录各组分从色谱柱流出的保留时间,用纯物质进行对照。 5.定量分析 由谱图中测得各个组分的峰高和半峰宽计算各组分的峰面积。已知氧、氮、甲烷、一氧化碳的相对摩尔校正因子分别为2.50、2.38、2.80、2.38。再用峰面积归一法就可计算出各个组分的体积百分数(%)。

白酒中主要成分的色谱分析 1.方法原理 白酒的主要成分为醇、酯和羟基化合物,由于所含组分较多,且沸点范围较宽,适合用程序升温气相色谱法进行分离,并用氢火焰离子化检测器进行检测。 为分离白酒中的主要成分可使用填充柱或毛细管柱,常用的填充柱固定相为GDX-102;16%邻苯二甲酸二壬酯+7%吐温-60/硅烷化101白色载体(60~80目);10%聚乙二醇20M/有机载体402(80~100目);15%吐温-60+15%司班-60/6201红色载体(60~80目)等。也可使用以聚乙二醇20M或FFAP交联制备的石英弹性毛细管柱。 2.仪器和试剂 ①仪器带有分流进样器和氢火焰离子化检测器的气相色谱仪、皂膜流量计、微处理机。 ②试剂氮气、氢气、压缩空气,与白酒中主要成分对应的醛、醇、酯的色谱纯标样。 3.色谱分析条件 色谱柱:冠醚+FFAP交联石英弹性毛细管柱φ0.25mm×30m,固定液液膜厚度df=0.5um。程序升温:50℃(6min)以40℃/min升温至220℃(1min)。 载气:氮气,流量1mL/min。燃气:氢气,流量50mL/min。助燃气:压缩空气,流量500mL/min。 检测器:氢火焰离子化检测器,高阻1010Ω,衰减1/4~1/16,检测室温度200℃。 气化室:250℃,分流进样分流比1:100,进样量0.2uL。 4.定性分析 记录各组分的保留时间和保留温度,用标准样品对照。 5.定量分析 以乙酸正丁酯作内标,用内标法定量。

气相色谱法测定苯系物..

093858 张亚辉 气相色谱法测定苯系物 一. 实验目的 1、掌握气相色谱保留值定性及归一化法定量的方法和特点; 2、熟悉气相色谱仪的使用,掌握微量注射器进样技术。 二. 实验仪器与试剂 1. GC-2000型气相色谱仪,4台 2. 医用注射器,1支 3. 苯、甲苯、二甲苯混合物 三.实验原理 气相色谱法是以气体(载气)作为流动相的柱色谱分离技术,它主要是利用物质的极性或吸附性质的差异来实现混合物的分离,它分析的对象是气体和可挥发的物质。 顶空气相色谱法是通过测定样品上方气体成分来测定该组分在样品中的含量,常用于分析聚合物中的残留溶剂或单体、废水中的挥发性有机物、食品的气味性物质等等,其理论依据是在一定条件下气相和液相(固相)之间存在着分配平衡。顶空气相色谱分析过程包括三个过程:取样,进样,分析。根据取样方式的不同,可以把顶空气相色谱分为静态顶空气相色谱和动态顶空气相色谱。本实验采用静态顶空气相色谱法。 色谱定量分析,常用的方法有峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法。本实验采用归一化法。归一化法要求所有组分均出峰,同时还要有所有组分的标准样品才能定量,公式如下: (1) 式中x i 代表待测样品中组分i 的含量,Ai 代表组分i 的峰面积,fi 代表组分i 的校正因子。 因为所测样品为同系物,我们可以简单地认为各组分校正因子相同,则(1)式可化简为 %100??= ∑i i i i i A f A f x % 100?=∑i i i A A x

载气携带被分析的气态混合物通过色谱柱时,各组分在气液两相间反复分配,由于各组分的K值不同,先后流出色谱柱得到分离。 气相色谱的结构如下所述: (1)气路系统(Carrier gas supply) 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体净化装置。 载气:要求化学惰性,不与有关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂质。(2)进样系统:进样器+气化室 液体进样器:不同规格的专用注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。 气体进样器:推拉式、旋转式(六通阀)。 气化室:将液体试样瞬间气化的装置。无催化作用。 (3)柱分离系统 填充柱:内径2~4 mm,长1~3m,内填固定相; 毛细管柱:内径0.1~0.5mm,长达几十至100m,涂壁固定液毛细管柱因渗透性好、传质快,因而分离效率高(n可106)、分析速度快、样品用量小。 柱温:是影响分离的最重要的因素。(选择柱温主要是考虑样品待测物沸点和对分离的要求。)柱温通常要等于或略低于样品的平均沸点(分析时间20-30min);对宽沸程的样品,应使用程序升温方法。 (4)检测系统 检测器是气相色谱仪的关键部件。实际应用中,通常采用热导检测器(TCD)、氢火焰离子化检测器(FID)、电子捕获检测器(ECD)等,本实验选用热导检测器的结构,主要根据不同的气体有不同的热导系数,对待侧物进行检测。热导检测器包括:池体(一般用不锈钢制成);热敏元件:电阻率高、电阻温度系数大、且价廉易加工的钨丝制成;参考臂:仅允许纯载气通过,通常连接在进样装置之前;测量臂:需要携带被分离组分的载气流过,则连接在紧靠近分离柱出口处。四、实验条件 色谱柱:长2m,102白色担体60~80目,涂渍角鲨烷或PEG为固定液,液担比为5﹕100 柱温:80,气化室温度:100,检测器温度120,载气:氢气 五、实验内容 (1)配制苯、甲苯、二甲苯标准混合液(各取1,5,5)取1μL,测谱图,归一

浅析气相色谱仪的应用现状及发展趋势

32 https://www.wendangku.net/doc/006044503.html,/ 1 气相色谱技术的发展历程 1906年茨维特创设色谱法以来,关于气相色谱的研究就从未间断。虽然色谱理论和技术上的创新引起了学术界的广泛关注,但直到1952年气相色谱的发明(GC ),才使气相色谱技术得到了广泛的使用,并且该发明使气相色谱实验技术和仪器设备等不断发展成熟,而毛细管气相色谱的出现使气相色谱的应用可以向石化以外的多行业延伸。 气相色谱强大的分离能力,加之近年来气相色谱技术逐渐向快速检测、高度分离、高准确性、微型化、便携式的方向发展,使其走出实验室向广大的社会生产生活领域迈进,我国也走过了机械式、光电转盘式、数字分频电子式、现代计算机式的发展过程,当权威的国际离子色谱会议(International Ion Chromatography Symposium )把微型化色谱柱的研究作为其重要的议题之一时,微型气相色谱仪的研发就成为了当前气相色谱技术的流行发展趋势和学术界主流研究方向。 从1952年气液相色谱技术进行实际应用,气相色谱技术得到了突飞猛进的发展。其中气相色谱仪已经成为了物质分析检测类仪器领域中的佼佼者,目前在世界范围内已经发展为一个庞大的产业,形成了一门独立的应用技术学科。通过对气相色谱仪技术的研究可以发现,这一科技成就甚至一定程度可以代表色谱技术对人类的贡献值。其从诞生到成熟的经历也可以代表气相色谱的应用历史和现状。 2 我国气相色谱仪的应用现状分析 我国气相色谱仪的市场广泛,中国市场是世界气相色谱仪竞争的重点区域,国外厂商纷纷进入中国市场,其知名品牌有安捷伦科技、赛默飞世尔、戴安等,这些企业一方面活跃了中国气相色谱仪市场,另一方面为我国学习和自主研发气相色谱仪提供了契机,并且使我国气相色谱仪市场呈现出独特特征。 2.1 国产气相色谱仪技术水平分析 由于气相色谱仪在不同的行业中有着不同的技术要求,在石油加工、化工、生物化学、环保等方面应用很广,因此我国气相色谱仪生产商基本上围绕行业的需求进行专业化的色谱仪生产,但近年来我国仪器企业也不乏有技术突破的新产品推向市场。例如2005年国产的带有电子程序压力流量控制系 统的全自动气相色谱仪,该产品实现了从样品导入至形成报告的全微机控制管理。2012年3月,天瑞仪器生产的气相色相质谱联用仪GC-M6800的测试质量、分辨率、重复性等指标均以达到JJF1164-2006国家标准,此产品的问世摆脱了我国同类产品完全依赖进口的局面。而北京普析通用、港资天美通用等为代表的国产气相色谱仪生产企业生产的数字化、全中文操作界面、可安装大型毛细管柱系统、全自动化的气相色谱仪已经完全能满足国内用户的需求,并日益占据更多的市场份额。 2.2 中外气相色谱仪技术差距分析 2011年末,我国注册仪器仪表装备制造企业数量达到历史最高值1830家,企业利润增长水平、企业规模等均居世界前列。但是也应当看到,与我国仪器仪表企业数量形成鲜明对比的是欧美等国只有少数几家大型仪器仪表制造企业,其产品世界市场占有率却占到了58.94%。而我国企业在国内工业气相色谱仪领域的市场占有率却达不到5%。巨大的差异说明我国气相色谱仪产品质量、关键技术水平、产品可靠性等还与国际先进水平有一定差距,而随着新技术的不断应用、气相色谱仪的智能化发展趋势的到来,我国气相色谱仪器的生产企业和产品市场占有率情况将受到更大冲击。 3 气相色谱仪的发展趋势 随着气相色谱仪技术应用领域的不断拓展和新产品的开发,加之电子信息技术的普遍应用,使气相色谱仪朝向灵敏度更高、选择性更强、更加方便快捷的方向发展,具体来说主要表现出以下几个方面的趋势。3.1 智能化 智能化气相色谱仪是以数字化、智能化、网络化技术等为标志气相色谱仪技术,智能化的发展方向有效解决了传统气相色谱仪可靠性较差,功能单一,无法进行技术升级等问题,其技术攻关的主要难点在于如何把微处理器植入测试系统当中。智能化的操作方向可以实现气相色谱仪的人机对话功能,提供更好的操控使用界面,更有助于推动我国气相色谱仪的产业化能力,不断扩大我国气相色谱仪的市场占有率。例如当前较国产较为流行的GC2002系列彩色触摸屏智能化气相色谱仪,其全微机控制系统、自我诊断功能、价格适中等优势得到了市场普遍认可。 3.2 微型化 气相色谱仪使用程度越来越广。使气相色谱仪的生产已经从技术驱动转为市场驱动,以往那种一味追求高、精、尖的气相色谱仪设计装备理念已不符合实际。而满足用户有明确的需求,能用最短的时间开发出新产品投放市场,从而达到集中优势、降低成本、专业化的气相色谱仪制造更加能促进企业的生存与发展需要。当前市场普遍要求气相色谱仪能现场作业、实时分析、即时提供有效精准的数据,因此对气相色谱的设计提出了微型化、便携式的设计要求。北京普析GC190型微型便携式气相色谱仪可现场打印色谱分离图、实时解析测量结果、更加适合于现场作业和野外使用,虽然技术上还有不完善之处,但其便携式的优点加之同类产品中较低的价格还是满足了很多顾客的实际需求。 3.3 新技术普遍应用 气相色谱仪的应用范围越来越广泛,但是用户对气相色谱仪的电子设计自动化、计算机辅助测试、数字信号处理、实时数据分析等要求是一致的,广大用户都希望气相色谱仪能与生产领域的其它仪器设备共同发挥作用,从而达到快速分析、处理数据、有效传输、确保安全的目的,因此在气相色谱仪领域不断有新技术应用到其中,例如细内径毛细管柱的应用以便提高分离速度、色谱仪模块化技术的应用、GC*GC 二维色柱等新技术都被应用到气相色谱仪当中。 气相色谱仪器经过多年的发展,其技术水平在总体上已经进入了一个相对稳定和成熟的阶段,在可预见的今后一段时期内其革命性的新技术不会出现太多,但在气相色谱仪细节和智能化研发上将会持续进行。对于我国气相色谱仪器生产企业来说,如何研发出具有自主知识产权、不断持续提高改进现有技术水平,则成为其发展的主要方向。 参考文献 [1] 张晓燕.气相色谱仪的发展轨迹与趋势[J].工业计量,2007,S1:156[2] 罗伟东.便携式气相色谱仪的模块化设计[J]. 分析仪器,2011,05:36[3] 王海坤 气相色谱仪的改进及应用研究与发展[J].化学通报,2011,01:265[4] 邵红艳.浅谈气相色谱仪的应用与日常维护[J].环境技术,2012,04:128 浅析气相色谱仪的应用现状及发展趋势 周雪彬 石家庄白龙化工股份有限公司质监处 河北 石家庄 050031 【摘要】从1903年气相色谱仪被发现至今,用气相色谱法对物质进行测量分析已被广泛的应用于人类生产生活的各个领域当中。气相色谱仪技术由于 其分离质量不断提高、检测速度普遍加快、机器微型化、成本降低的特点逐步赢得了市场的认可。本文在我国气相色谱仪市场状况调研的基础上,对气相色谱仪的应用现状进行简要分析、并按照现有的气相色谱仪的实际应用对气相色谱仪的发展趋势做出估计。 【关键词】气相色谱仪 应用现状 发展趋势

色谱分析实验讲义2014.3.12

色谱分析实验讲义 2014.03.12

实验一气相色谱的基本操作及进样练习 一、实验目的 (1) 了解气相色谱仪的主要结构组成和应用。 (2) 掌握仪器基本操作和调试程序,熟悉气路运行过程。 (3) 明确热导池检测器的操作注意事项。 (4) 掌握气相色谱进样操作要领,练习微量注射器的使用方法。 二、实验原理 通过实验了解气相色谱仪的结构与原理。气相色谱仪是实现气相色谱过程的仪器,按其使用目的可分为分析型、制备型和工艺过程控制型。但无论气相色谱仪的类型如何变化,构成色谱仪的5个基本组成部分皆是相同的,它们是载气系统、进样系统、分离系统(色谱柱)、检测系统及数据处理系统。 载气系统:载气是构成气相色谱过程中的重要一相——流动相,一般由高压钢瓶供气。 进样系统:汽化室是进样系统中不可缺少的组成部分,它的作用是把液体样品瞬间加热变成蒸汽,然后由载气带人色谱柱。 分离系统:色谱柱比作气相色谱仪的“心脏”,样品就是在此根据其性质的不同进行分离的。检测系统:检测器是气相色谱仪的关键部件。它的作用是将经色谱柱分离后顺序流出的化学组分的信息转变为便于记录的电信号,然后对被分离物质的组成和含量进行鉴定 和测量。 数据处理系统:数据处理系统目前多采用微机型色谱数据处理机和配备操作软件包的工作站,既可对色谱数据进行自动处理,又可对色谱系统的参数进行自动控制。三、仪器与试剂 1.仪器 气相色谱仪(GC9790型);检测器(热导池TCD);色谱柱(邻苯二甲酸二壬酯DNP);微量进样器(1 μL)。 2.试剂 环己烷(AR);载气(氮气或氢气,含量99.99%以上)。 四、实验内容 1.开机操作步骤 (1)通气:首先连接好色谱柱,在检查气路密封良好的情况下,先逆时针旋转钢瓶总阀,调整减压阀输出压力0.4 ~ 0.5 Mpa,调节气相色谱仪上的载气稳压阀(总压),使其输出压力为0.3Mpa,调节柱前压1和2的稳流阀2~3圈,载气流量氮气约为30mL·min-1,氢气约为40 mL·min-1。

气相色谱仪的简单介绍

气相色谱仪的发展历程 自廿世纪五十年代以来,由于气相色谱技术突飞猛进的发展和推广应用,促使国际上众多分析仪器专家关注这种新颖的分析测试手段,热衷于这种技术的各种零部件的研究和开发,力图制造出能应用于各部门研究实验室和工厂控制分析实验室的、易为一般分析测试人员掌握的气相色谱分析仪器。在这种情况下,这类仪器很快在廿世纪五十年代的后期便以商品的面貌出现在市场上,并被称作为“气相色谱仪”。 到目前为止,由专业的分析仪器厂商制造、经市场进入各种实验室运行的商品气相色谱仪至少已有上百万台,并且其中至少有半数以上已是不同时期推出的新型气相色谱仪所更新过的。 气相色谱仪的发展与电子技术的发展密切相关。早期实验室研究期间的气相色谱仪几乎与电子技术毫不相干:其色谱柱的加热依赖于某些溶剂的恒定沸点,柱被安置在溶剂的蒸气浴中以保持恒定温度;当时检出柱中样品流出物(分离后的组分)的器件是精密的天平(被称作质量检测器)、气体定量管(称作体积检测器)或微量自动滴定装置(称作滴定检测器)。 第二代气相色谱仪是随着热导检测器、气体密度天平检测器和火焰热电偶检测器的出现和继电器控制的柱恒温箱的应用而推出的,这些仪器开始采用了电子管元件电路,色谱柱可以在约 50 ~℃之间的一个任意需要的温度下恒温。热导检测器的出现是在 1956 年,初期的热导检测器被称作为“卡它计”(Katharometer),这个名称是用希腊神话中的纯洁女神卡沙茹斯(Katharo s)命名的,所以会这样命名,当然是以载气的纯度是否由于样品组分的掺杂而发生了变化来看待的。热导检测器所转换的讯号电压可以被精确地记录成色谱图,因此比第一代气相色谱仪的分析灵敏度要高得多。由于它的通用性,直到目前仍然是一种最受气相色谱人员欢迎的检测器。 气体密度天平检测器是气相色谱法的开发者之一马丁(Martin)本人发明的,这种检测器对永久性气体的测定相当灵敏,但由于不能在高温下应用,因此出现后不久即被淘汰。 1957 年斯考特(Scott)发明了火焰热电偶检测器,这种检测器的原理是让载气带出的组分在氢火焰中燃烧,如果柱中流出的是纯载气,热电偶会给出一个恒定的讯号电压;如果载气中出现了组分,热电偶将改变温度,于是就改变了讯号电压。它的优点是讯号电压的变化与组分的燃烧热有关,因此省却了日常分析中的校正工作;但是一些在燃烧中发生吸热反应的组分常常会给出负峰,而且用来助燃的空气的稍稍波动即会引起基线的不稳定。这种检测器在六十年代中期便完全被新出现的火焰电离检测器所取代。 随着电子技术的进展,用于直流讯号电压的负反馈放大电路为开发新一代的气相色谱检测器奠定了基础。1958 年澳大利亚的电子学家麦克?威廉姆斯(McWilliams)和迪华尔(Dewar)以斯考特的火焰热电偶检测器为基础,发明了火焰电离检测器,它使检测组分的最小检出量从热导检测器的 1000 ppm 降到了 1 ppm,灵敏度提高了几乎上千倍。也几乎在同时,劳乌洛克(Lovelock)发明了氩电离检测器,也达到了这样高的灵敏度。以后出现的各种各样的高灵敏度检测器的种类,多得简直不可胜计,例如氦电离检测器、微截面积电离检测器、火焰光度检测器、电子捕获检测器、微波等离子体检测器、碱盐火焰热电离检测器、光电子检测器、微库仑检测器、电导检测器,等等,均应运而生。 在气相色谱法开始应用的阶段,人们喜欢用直径 6 ~ 8 mm 的色谱柱,因为这种柱管比较容易填充固定相;然而,随着时间的推移,人们逐渐认识到较细的柱有更好的分离效率。1957 年戈莱(Golay)首次用直

相关文档