文档库 最新最全的文档下载
当前位置:文档库 › 基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别
基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别

冯 涛

(中国电子科技集团公司第54研究所,河北石家庄050081)

摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。

关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A

Classification and Identification of Communication Signal

Using Artificial Neural Networks

FE NG Tao

(T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China)

Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented.

Key words pattern recognition;features extraction;classifier;neural networks

收稿日期:2005-12-16

0 引言

在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。

1 通信信号分类识别的原理

通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1

所示。

图1 通信信号分类识别的一般过程

下面简单介绍这几部分的作用。

信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n);

以上2步是信号空间x (t)到观察空间x (n )的变换映射。

特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别;

分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。

2 通信信号特征参数的选择与特征提取

2 1 通信信号特征参数的选择

选择好的特征参数可以提高低信噪比下的正确

识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号

信号与信息处理

24

2006Radio Engineering Vo1 36No 6

样本来识别通信信号,所提取的信号特征必须具有以下特点:

它能反映该类通信信号所特有的技术特征;

反映某一类通信信号的特征参数应该有多个,而不是一个。也就是说,通信信号的类型属性应当由多个特征参数的集合进行描述,这一集合中提取的特征越多、越精细,对通信信号分类识别的概率就越高;

通信信号的特征应具有可检测性;

通信信号的特征应具有高稳定性,使这些特征不因时间的推移或环境条件的变化而发生显著改变,否则,这些特征就失去了可信度。

基于上述原则,可选择信号载频、带宽、调制样式、码速率、波形成形方式、同步码、帧结构、FH信号频率集及跳速、DS信号扩频码周期及扩频码等特征参数作为信号分类识别的依据。

2 2 通信信号的特征提取

通信信号的特征提取是信号识别中不可缺少的环节。通常,信号的常规技术参数可从信号的波形和频谱中直接测量。对于不能直接测量的特征参数,可采用各种信号处理技术进行特征提取。信号特征有些适于在中频提取,如信号载频、带宽、调制样式、码速率、FH信号频率集及跳速、DS信号扩频码周期等;有些适于在基带提取,如波形成形方式、同步码、帧结构、DS信号扩频码等。特征提取的具体方法均有成熟技术或相关文献报道,这里不再详细讨论。得到全部信号特征后,将它们组成一个特征向量,用于信号的分类识别。

3 通信信号的分类识别

分类器的设计是继特征提取后非常重要的一个部分,设计的优劣直接影响最终的正确识别率。分类器的基本任务是根据某一准则把一个给定的由特征向量表示的输入模式归入到一个适当的模式类别,即实现从特征空间到决策空间的转换,最终完成对该模式的分类识别。

分类器设计方法有判决树方法、基于概率分布的相关统计方法、基于信任函数设计的方法和人工神经网络方法等。其中人工神经网络分类器作为一种先进的自适应、非参数和非线性分类器,为进行信号模式识别开辟了一条新途径。神经网络是一种以自组织、自适应和大规模分布式并行计算为特征的非线性信号处理系统,具有强大的模式识别分类和泛函逼近能力,并具有良好的容错性。人工神经网络方法具有智能化水平高、识别速度快和正确识别率高等优点,近来获得了人们的充分重视,是分类器设计新的发展方向。

神经网络分类器的设计过程包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法的设计。

3 1 神经网络模型的选择

在通信信号类型识别中,一般能提供有关待识别通信信号类型的一些先验信息,如类型已知的观测数据,即样本。所以,通常选用基于有监督训练的神经网络作为分类器,尤其是各种有监督训练的前向型神经网络,如MLP网络。

3 2 分类器的输入输出表示

对于有监督训练的MLP神经网络分类器,训练集由类别标记已知的样本组成,测试集则由没有类别标记的待识别样本组成。在训练分类器之前,需要将训练集中的每一个样本分别用该样本提取的特征向量表示成分类器的输入,而将该样本所对应的类别标志用代表这种类型的一个已知数值向量来表示成分类器的输出,这个已知数值向量实际上就是分类器对于这种类别的期望输出,并构成一一对应的输入 输出对形式,这些输入 输出对便构成了训练分类器的监督信号。

在通信信号的类型识别中有一个突出的问题,即接收到的信号样本的信噪比变化范围很大,通常为20dB左右。这种情况的直接后果是从同一类信号的不同信噪比样本中提取的同一种特征有可能产生严重的畸变,即特征对信噪比变化很敏感,间接的后果是无形中增加了待识别信号的类别,使分类器的设计变得复杂,严重影响神经网络训练的收敛速度,也严重影响了神经网络的推广能力。针对这个问题,对分类器的输出表示做了改进,就是将同一类信号的高信噪比样本和低信噪比样本人为地作为2类或更多类不同的信号来看待,即用2个或更多个标记来分别表示不同信噪比的同一信号类别,但仍然采用0 1型的形式,称之为输出的多标记表示方法。

3 3 神经网络的拓扑结构

多层感知器(MLP)是最主要的前向型神经网络模型之一。一个典型的MLP神经网络由一个输入层、一个输出层和至少一个隐含层组成,如图2所示。隐含层起抽象的作用,即它能从输入提取特征。增加隐含层,可增加人工神经网络的处理能力,但是

信号与信息处理2006年无线电工程第36卷第6期25

必将使训练复杂化、训练样本数目增加和训练时间的增加。一般来说,开始设定一个隐含层,然后按需要再增加隐含层数。输入信号由输入层经过隐含层到达输出层,形成MLP 的输出,因此,MLP 属于前向网络,

也称为静态图2 多层感知器(MLP)神经网络

的拓扑结构

网络。MLP 神经网络的计算能力集中体现在3个方面,即逻辑表达功能、复杂的模式

分类能力和通用的泛函逼近能力。3 4 训练算法的设计

MLP 神经网络的训练算法是著名的反向传播(B P)算法,这是一种典型的有监督训练算法。BP 算法的基本思想是把一组样本的输入输出问题变为一个非线性优化问题,用优化中普遍使用的梯度下降算法来实现网络的实际输出与期望输出之间的均方差(MSE)最小,完成MLP 神经网络的训练任务。

BP 算法的步骤可归纳如下:

初始化,选择和合理的拓扑结构,置所有可调参数(权和阀值)为均匀分布的较小数值;

对每个输入样本做如下计算: 前向计算

对第l 层的j 单元,有

v (l)j (n)= p

i =0w (l)ji (n)y (l -1)i

(n)。式中,y (l -1)

i (n)为前一层(l -1层)的单元i 送来的

工作信号;w (l )

ji (n )是连接对第l 层的j 单元和第

l -1层i 单元的权值,若j 单元的传递函数是Sigmoid 函数,则

y (l)j (n)=1

1+exp (-v (l)

j (n))

, y (l)j (n) v (l)j (n)

=y (l)j (n)(1-y (l)j (n))。

若神经元j 属于输入层(即l =1),则

y (1)j (n)=x j (n)。

若神经元j 属于输出层(即l =L ),则

y (L )

j (n)=y j (n),且e j (n)=d j (n)-y j (n)。

式中,d j (n)是目标值,即期望输出值。 反向计算对输出单元,有

(L)j (n)=e (L )j

(n)y j (n)(1-y j (n))。对隐单元,有

(l)

j (

n)=

y (l)

j

(n)(1-

y (l)

j (

n))

k

(l +1)

k

(n)

w (l +1)

kj

(n)。

修正权值

w (l)ji (n +1)=w (l)ji (n)+ (l)j y (l -1)

i

(n)。式中, 是学习步长。

输入新的样本,转至步骤 ,循环往复,直至

均方误差最小,即min E{ i e 2i (n)}。BP 算法是MLP 网络的标准训练算法。为了加

快训练速度,可以采用改进的BP 算法,比较常用的有动量因子BP 算法和学习速率自适应的BP 算法。3 5 分层结构的神经网络分类器

基于人工神经网络的分类器经过充分训练后能自动地设定门限,而且适合参数在较大范围内变化的识别问题。但直接采用单个神经网络进行通信信号识别,识别速度低于分层结构神经网络分类器,所以采用基于分层结构的神经网络分类器。

信号识别可以按2个层次进行。第1层先对信号的载频、带宽、调制样式、FH 信号的频率集、跳速和DS 信号扩频码周期等参数进行匹配,属于信号的粗匹配。如果待识别信号与训练集中的某一个样本相匹配,则转入第2层匹配,对信号的码元速率、波形成形方式、同步码、帧结构和DS 信号扩频码等参数进行匹配,属于信号的精匹配。如果找到相匹配的样本,并且2次匹配的样本属于训练集中的同一个样本,则确认待识别信号就是训练集中的某一个样本,从而实现了对该信号的识别。

4 结束语

通信信号的分类识别是一种典型的统计模式识别问题。本文系统地设计了基于人工神经网络的通信信号分类识别方法。实际的信号环境非常复杂,为有效地实现通信信号的分类识别,提取新的高品质特征以及设计高性能的分类器等问题还有待于进一步研究。

参考文献

[1]王铭三.通信对抗原理[M].北京:解放军出版社,1999.[2]张立明.人工神经网络的模型及其应用[M ].上海:复旦

大学出版社,1993.

[3]包国平.数字通信信号识别研究与参数提取[D].南京:

南京理工大学,2004:27-36.

[4]吕铁军.通信信号调制识别研究[D].成都:电子科技大学,2000:53-69.

[5]张珏亚.神经网络在调制识别的应用[J].无线电工程,

2005,35(1):59-62.

作者简介

冯 涛 女,(1971-),中国电子科技集团公司第54研究所工

程师。主要研究方向:通信对抗技术。

信号与信息处理

26 2006Radio Engineering Vo1 36No 6

基于特征提取的通信信号识别研究

硕士学位论文 目录 摘要..................................................................................................................... I Abstract ................................................................................................................. I I 插图索引 .............................................................................................................. IV 附表索引 ................................................................................................................ V 第1章绪论 (1) 1.1研究背景与意义 (1) 1.2 通信信号识别方法的研究现状 (2) 1.2.1基于似然比判决理论的识别方法 (2) 1.2.2基于特征提取的统计模式识别方法 (5) 1.3论文的主要研究内容 (7) 1.4 论文结构安排 (7) 第2章通信信号识别特征的提取方法 (9) 2.1瞬时幅度、频率和相位特征 (9) 2.2星座图几何特征 (11) 2.3时频分布特征 (11) 2.4高阶累积量特征 (12) 2.4.1基于四阶、六阶等高阶累积量特征的方法 (12) 2.4.2基于高阶累积量派生特征的方法 (13) 2.4.3基于高阶循环累积量特征的方法 (13) 2.4.4基于高阶累积量联合特征的方法 (13) 2.5循环平稳特征 (14) 2.5.1基于循环谱直观特征的方法 (14) 2.5.2基于循环谱包络特征的方法 (16) 2.5.3基于循环谱统计特征的方法 (17) 2.6分形特征和混沌特征 (18) 2.6.1分形特征 (18) 2.6.2混沌特征 (18) 2.7本章小结 (18) 第3章高阶累积量通信信号识别 (20) 3.1引言 (20) 3.2高阶累积量的基本理论 (21) 3.2.1高阶矩和高阶累积量的定义 (21) 3.2.2高阶矩和高阶累积量的性质 (22)

微弱信号相关检测

微弱信号相关检测 前言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。 目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.概述 微弱信号是测量技术中的一个综合性技术分支,它利用电子学,信息论和物理论的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检测并恢复被背景噪声所掩盖的微弱信号,微弱信号的检测重点是如何从强噪声中提取有用信号,探测运用新技术和新方法来提高检测系统中的信噪比。 在检测淹没在背景噪声中的微弱信号时,必须对信号进行放大,然而由于微弱信号本身的涨落,背景和放大器噪声的影响,测量灵敏度会受到限制。因此,微弱信号的检测有以下三个特点:(1)需要噪声系数尽量小的前置放大器,并根据源阻抗与工作频率设计最佳匹配(2)需要研制适合微弱信号检测原理并能满

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

人工神经网络概论

人工神经网络概论 梁飞 (中国矿业大学计算机科学与技术学院信科09-1班,江苏,徐州,221116) 摘要:进入21世纪以来,神经网络近来越来越受到人们的关注,因为神经网络可以很容易的解决具有上百个参数的问题,它为大复杂度问题提供了解决一种相对来说比较有效的简单方法。人工神经网络是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。本文简要介绍了人工神经网络的工作原理、属性、特点和优缺点、网络模型、发展历史及它的应用和发展前景等。 关键词:人工神经网络;人工智能;神经网络;神经系统 1.人工神经网络的简介 人工神经网络(Artificial Neural Networks,简写为 ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。 2.人工神经网络的工作原理 人脑的处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高,但它通过超并行处理使得整个系统实现处理的高速性和表现的多样性。 因此,从处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能处理方法,一直是人工智能追求的目标。 人脑神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

浅析通信信号调制识别方法

浅析通信信号调制识别方法 通信信号调制方式的识别涉及到很多复杂的因素,是一种典型的模式识别。由于通信技术的迅猛发展,信号的调制样式也变得复杂多样,常规的识别方法已无法满足实际需要,新的通信信号识别研究面临着巨大的挑战。文章着重介绍了统计模式识别方法和决策模式识别方法并提出了它们的优缺点。简要介绍了非理想信道和共信道多信号的调制方式识别。 标签:调制方式;统计模式;识别;决策模式识别方法 信息通过信道快速、安全、准确地传输,极大地方便了人们的日常沟通。信号作为信息的媒介,可以在有线信道传输,却几乎无法直接通过无线信道进行传输。要使通信信号顺利在无线信道中传输,必须采用调制解调技术调制后才可以进行传输,而且调制方式是由简到繁,由虚拟到数字等多样的。调制识别存在于检测与调解之间,接受方面需要根据信号的调制进行解调才可以被进入到下一步的操作中。 如果想要解调相应地信息内容需要截获信号,同时还需要分析信号调制方式及参数,干扰信号,准确识别发出方的调制方式。调制方式是一种信号区别于另一种信号的重要特性指标。调制识别的基本任务存在与多信号及噪声干扰的复杂环境中,能够对信号的鉴别方式进行调制,并且对信号参数进行调节,能够在一定程度上对信号信息进行处理。当今,通信技术急速发展下,无线通信环境在不断的发展中变得愈来愈复杂。如何快速、高效的监视并识别那些采用了不同的调制参数和不同的调制样式的通信信号,无论是在军事还是民用领域都一直是人们关注的焦点。 1 数字调制识别方法 人工识别已无法满足在存在着大量未知信号的电磁环境中进行信号实时性识别的要求。后来,人们根据信号频谱的差异研究出了自动调制识别技术。它的出现解决了一直以来依赖人工识别的重要难题。通信信号也早已不是之前的模拟信号,已经成为具有较强抗失真和抗干扰的数字信号,而且数字调制识别方法的成本较低。高速数字信号处理技术、计算机技术和微型芯片技术的蓬勃发展下能够促使自动调制识别技术能够大规模的运用。归纳总结这些年国内外的研究成果,自动调制识别方法可归纳为统计模式识别、决策模式识别两种方法。 1.1 统计模式识别方法 统计模式识别方法主要由三个部分组成,分别为:信号预处理、特征提取和分类识别,从模式的识别理论中衍生而来,三者互为补充,不可或缺。信号的预处理主要是为了提供精确的数据,目的是为例特征的提取做相应地准备。信号的预处理在数字调制或中频上计算接收信号的瞬时幅度、相位和频率。在多信道多发射源的情况下,可以分离不同信号,确保信号在调制识别过程中保持唯一性。

人工神经网络综述

人工神经网络综述 摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。 关键词:神经网络、分类、应用 0引言 多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。 1人工神经网络概述 1.1人工神经网络的发展 人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。 1.1.1人工神经网络发展初期 1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,这是人类最早对于人脑功能的模仿。他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。1960年Bernard Widrow等提出自适应线形元件ADACINE网络模型,用于信号处理中的自适应滤波、预测和模型识别。 1.1.2人工神经网络低谷时期

信号检测计算题

第三章 1、 设在某二元通信系统中,有通信信号和无通信信号的先验概率分别为:P(H 1)=0.8, P(H 0)=0.2。若对某观测值x 有条件概率分布f(x|H 1)=0.25和f(x|H 0)=0.45,试用最大后验概率准则对该观测样本x 进行分类。 2、在存在加性噪声的情况下,测量只能为2v 或0v 的直流电压,设噪声服从均值为0、方差为 2σ的正态分布,设似然比门限值为0l ,试对测量结果进行分类(10分) 3、设二元假设检验的观测信号模型为: H0:x=-1+n H1:x=1+n 其中n 是均值为零、方差为1/2的高斯观测噪声。若两种检验都是等先验概率的,而代价因子为: C 00=1 ,C 10=4, C 11=2 C 01=8。试求Bayes 判决表示式,并画出bayes 接收机形式。 4、设x1,x2,…xn 是统计独立的方差为2σ的高斯随机变量,在H 1假设下均值为a1,H0假设下均值为a0,似然比门限为0l ,试对其进行判决,并求两种错误概率。(20分) 5、在二元数字通信系统中,时间间隔T 秒内,发送一个幅度为d 的脉冲信号,即s 1=d,代表1;或者不发送信号,即s 0=0,代表0。加性噪声服从均值为0,方差为1的高斯分布,当先验概率未知,正确判决不花代价,错误判决的代价相等且等于1时,采用极大极小准则计算其极大极小风险为多大,相应的q 0为多少? 6、在加性噪声背景下,测量0V 和1v 的直流电压在P(D1|H0)=0.1的条件下,采用Neyman-Pearson 准则,对一次测量数据进行判决。假定加性噪声服从均值为0,方差为2的正态分布。(已知erf(0.9)=0.7969) 第四章 1、已知发送端发送的信号分别为???≤≤-=≤≤=T t t A t s T t t A t 0,sin )(0,sin )(s 10ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=) ()()(:H )()()(:H 1100t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 2、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t A t 0,2sin )(0,sin )(s 10ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 3、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t 0,sin )(0,0)(s 1 0ω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。

人工神经网络文献综述.

WIND 一、人工神经网络理论概述 (一人工神经网络基本原理 神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。 人工神经元模型的基本结构如图 1所示。图中X=(x 1, x 2, … x n T ∈ R n 表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示 神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。其表达式为 y i =f( n j =i Σw ij x j +θi 式中, f (

·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。 图 1 (二人工神经网络的发展 人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。在这 50多年的历史中,它的发展大体上可分为以下几个阶段。 60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。 80年代中期人工神经网络得到了飞速的发展。这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。 90年代以后,人工神经网络系统理论进入了稳健发展时期。现在人工神经网络系统理论的应用研究主要是在模式识别、经济管理、优化控制等方面:与数学、统计中的多个学科分支发生联系。 (三人工神经网络分类 人工神经网络模型发展到今天已有百余种模型,建造的方法也是多种多样,有出自热力学的、数学方法的、模糊以及混沌方法的。其中 BP 网络(BackPropagationNN 是当前应用最为广泛的一种人工神经网络。在人工神经网络的实际应用中, 80%~90%的人工神经网络模型是采用 BP 网络或它的变化形式,它也

通信信号检测识别方法简析

Journal of Image and Signal Processing 图像与信号处理, 2018, 7(4), 220-226 Published Online October 2018 in Hans. https://www.wendangku.net/doc/0a6093784.html,/journal/jisp https://https://www.wendangku.net/doc/0a6093784.html,/10.12677/jisp.2018.74025 A Brief Analysis of Detection and Recognition Technology for Communication Signals Jing Yang, Naiping Cheng Department of Electronic and Optical Engineering, Space Engineering University, Beijing Received: Sep. 28th, 2018; accepted: Oct. 13th, 2018; published: Oct. 20th, 2018 Abstract The detection and recognition technology of communication signals plays an important role in the vigorous development of wireless communications. This paper summarizes the development of communication signal detection and modulation recognition technology, analyzes and summariz-es the selection of the realization chip of the digital signal processing module in the detection and modulation recognition, the signal detection especially the weak signal detection method, the fea-ture extraction and the selection of the classification device in the signal recognition, and com-pares their respective advantages and disadvantages. Finally, the future research direction of de-tection and recognition technology is prospected. Keywords Signal Detection, Modulation Recognition, DSP, FPGA, Feature Parameter Extraction, Classifier 通信信号检测识别方法简析 杨婧,程乃平 航天工程大学电子与光学工程系,北京 收稿日期:2018年9月28日;录用日期:2018年10月13日;发布日期:2018年10月20日 摘要 通信信号的检测识别技术在无线通信蓬勃发展的今天发挥着重要的作用。文章综述了通信信号的检测、

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

人工神经网络与其发展和应用的介绍

人工神经网络与其发展和应用的介绍 发表时间:2018-05-02T11:39:29.337Z 来源:《科技中国》2017年11期作者:卓一凡 [导读] 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。关键词:人工神经网络,应用,优缺点,发展 1:人工神经网络的发展 纵观整个人工神经网络发展,大体经历了四个时期:启蒙,低潮,振兴,发展。 1.1:启蒙时期 人工神经网络和数学模型于1943年由W.S.McCulloch和W.Pitts建立,称为MP模型,证明了单个神经元能执行逻辑功能,人工神经网络的研究由此开始。1951年,心理学家 Donala O. Hebb提出了Hebb 法则:在神经网络中,信息在连接权中进行储存,突触之间的联系强度是可以变化的,而这种变化建立起了神经元间的连接。Hebb法则成为了构造具有学习功能的神经网络模型的基础。1954 年,生物学家Eccles提出了真实突触的分流模型,为神经网络模拟突触的功能提供了原理和生理学的依据。1956 年,Uttley 发明了一种由处理单元组成的推理机,用于模拟行为及条件反射。1958年,Rosenblatt将学习机制增加到了原有的MP模型上,首次把神经网络理论付诸实现。正是由于他的成功,引起了学者们对人工神经网络的研究兴趣。 1.2:低潮时期 当许多学者抱着极大的热忱去研究人工神经网络的时候,Minsky 和Papert 从数学角度对以感知器为代表的网络系统功能及其局限性进行了深入的研究,并在1969年出版《Percep2trons》一书。该书提出当前的网络只能对简单的线性问题进行解决,而对复杂的多层神经网络无能为力。这一结论使得许多国家的此类项目被暂停资助,自此开始了神经网络的低潮期。但不久后,转机出现。就在1972年,欧洲和美洲的两位学者:芬兰的Kohonen教授,美国的Anderson分别提出了自组织映射SOM(Self2Organizingfeature map)理论和一个名叫“交互存储器 ”的理论。而两者之间竟有着许多相似之处,不由得让人惊讶。但Kohonen的研究是目前所使用神经网络的主要依据。正是由于这些研究,引导了以后人工神经网络的振兴。 1.3:振兴时期 1982年,美国物理学家Hopfield博士发表了Hopfield模型理论,对人工神经网络的研究产生了深远的影响。如下图 Hopfield模型理论证明:神经网络并非不能达到稳定的状态,只是需要一定条件。而他的研究也让许多学者对人工神经网络的研究重新产生了兴趣。1986年,由美国的 Rumelhart 和 McCkekkand主编并撰写的《Parallel Distributed Processing : Ex2ploration in the Microstructures of Cognition》一书出版,提出了 PDP(Parallel Distributed Processing)网络思想,再一次推动了神经网络的发展。20世纪 90 年代, Edelman提出Darwinism 模型。1995 年,Jenkins等人进行了光学神经网络(PNN)的研究 .神经网络的研究重回人们的视野。 1.4:发展时期 20世纪80年代,人工神经网络在世界范围内全面复苏,这也引起了国家对神经网络的重视。“中国神经网络首届学术会议”于1990年2月由国内8个顶尖学会联合在北京召开。 1992年举办了中国第二届神经网络学术大会,中国神经网络学会便由此诞生。我国的“863”计划,“攀登”计划中,都有关于人工神经网络研究的内容。国际上,1987 年,在美国加洲举行了首届国际神经网络学会. 此后每年召开两次.至此,人工神经网络的研究得到了长足的发展。 2.人工神经网络的基本原理 自生物学发展伊始,大脑便是无数科学家研究的重点,人们想要弄清楚大脑是如何运作的?其机理是什么?人工神经网络便应运而生,它的目的是想要对人类神经网络进行开发与测试 2.1:人工神经网络的生物学基础 人工神经网络是人类神经网络的仿生学模拟。我们如果想要了解人工神经网络,就要先了解生物的神经元,如下图:

信号检测用试题(张明友)

滨州学院2012-2013学年第二学期期末考查 电子信息科学与技术(本)2010级《信号检测技术》试卷 (答案一律写在答题纸上,在本试卷上做答无效) 一、选择题(每题2分,共12分) 1.若一个估计量?a 满足[]?E a a =,则我们称该估计量?a 具有( ) A.一致性 B.有效性 C.充分性 D.无偏性 2.白噪声的功率谱密度为( )。 A.幂函数 B.线性函数 C.常数 D.三角函数 3.在白高斯噪声中确知信号的检测的最佳系统的检测性能,关于平均错误概率以下说明错误的是( ) A. e P erfc = B. 1e P =-Φ C. r 一定,E/N 0上升,Pe 下降 D. E/N 0一定,r 越小,Pe 上升 4.关于匹配滤波器理论,以下说法不正确的是( ) A.匹配滤波器理论,是以输出信噪比最大为最佳准则的线性滤波理论 B.匹配滤波器不具备时间上的适应性 C.在高斯白噪声下,匹配滤波器的冲击响应与输入函数之间是镜像函数关系 D.按匹配滤波器理论,其输出的信噪比为: max 0 2S E N N ??= ??? 5.以下相干系统,理想二元通信系统是( ) A.相干相移键控系统 B.相干频移键控系统 C.相干启闭键控系统 D.相干雷达监控系统 6.某一信号x (t)中的有用信号为一正弦信号()sin(2)s t a t ω=,观测时间为(0~T )则其匹配滤波器的冲击响应()h t 为( ) A. sin(2)a t ω B. sin(2)a T t ω- C. sin[2()]a T t ω- D. sin(2)a t ω-

二、填空题(每空2分,共40分) 1.在信号检测中,通常可能出现两种错误的判决,定义为 ,其概率分别表示为 和 。二元通信系统通常采用代价因子C 00=C 11=0,C 10=C 01=1,采用极大极小化准则确定假设的先验概率为 。 2.作为双择检测问题的特例,现在研究在加性噪声背景下测量只能为1V 和0V 的直流电压。假定加性噪声()n t 服从均值为0、方差为2σ的正态分布,则此时两个假设可以表示为: 和 ,两个条件概率密度函数可以写为 和 。其似然比为 。 3.设x 1,x 2,…,x n 是统计独立的、且方差为σ2的高斯随机变量。在假设H 1下其均值为a 1,在假设H 0下均值为a 0。如果Λ0为似然比门限,在这两种假设下的联合概率密度函 数分别为 和 ,其等效统计量为 ,随着测量次数n 的增加,其错误概率会 。 4.假设观测波形在观测时间[0,T ]内可表示为: x (t )=s (t ,α)+w i ,式中s (t ,α)为幅值为α的矩形脉冲信号,w i 为零均值高斯白噪声样本函数。试利用矩法估计脉冲信号的幅度α为 ,其方差为 。 5.双择一假设条件下,时域连续接收波形x (t )的似然函数为 和 。 6.以 为准则的最佳滤波,即匹配滤波理论, 和 两种检测等效。 三、综合题(每题16分,共48分) 1.根据n 维输入矢量x 设计一种最佳检测器,对下述四种假设作出判决:H 1—均值为4,H 2 —均值为5,H 3—均值为6,H 4—均值为7,各假设下的条件概率密度函数是高斯的,方差为2σ,假定所有假设的先验概率都相等,且C ij =1(i ≠j )C ii =0 2.一次采样信号表示为x s n =+,信号两种假设:0:2H s =-;1:2H s =。(1)设代价因 子001110010,1,2C C C C ====,用极大极小值准则确定检测门限和检测概率()11P D H 。 (2)若虚警概率101)(P H D P =,用纽曼皮尔逊准则确定检测门限和漏检概率()01P D H 。(注:公式表明计算方法即可) 设:2222(), () x t t x x e dt erfc x e dt φ+∞--==?? 3.利用一个高斯过程的M 个统计独立样本i x (i =1,2……M )这个过程的均值为μ,但 方差σ2未知。(1)求σ2的最大似然估计。(2)判断σ2的最大似然估计是否是优效估计?

人工神经网络研究综述

人工神经网络研究综述 一、引言 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络[1]。大量的人工神经元以一定的规则连接成神经网络,神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息,具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果,网络具有并行运算能力,实时性非常强。神经网络对信息的处理具有自组织、自学习的特点,便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域[2]。 二、人工神经网络概述 (一)定义: 关于它的定义有很多种,而Hecht-Nielsen给出的神经网络定义最具有代表意义:神经网络是一种并行的分布式信息处理结构,它通过称为连接的单向信号通路将一些处理单元互连而成。每一个处理单元都有一个单输出到所期望的连接。每一个处理单元传送相同的信号即处理单元输出信号。处理单元的输出信号可以是任一种所要求的数学类型。在每一个处理单元中执行的信息处理在它必须完全是局部的限制下可以被任意定义,即它必须只依赖于处理单元所接受的输入激励信号的当前值和处理单元本身所存储记忆的值[3-5]。 (二)基本原理: 1、人工神经元模型 神经元是人工神经网络的基本处理单元,是生物神经元的抽象、简化和模拟。抽象是从数学角度而言,模拟是以神经元的结构和功能而言。 2、神经网络结构 神经网络结构和工作机理基本上是以人脑的组织结构和活动规律为背景的,它反映了脑的某些基本特征,但并不是要对人脑部分的真正实现,可以说它是某种抽象、简化或模仿。如果将大量功能简单的形式神经元通过一定的拓扑结构组织起来,构成群体并行分布式处理的计算结构,那么这种结构就是人工神经网络,在不引起混淆的情况下,统称为神经网络。 (三)人工神经网络的基本属性 1、非线性:人脑的思维是非线性的,故人工神经网络模拟人的思维也应是非线性的。 2、非局域性:非局域性是人的神经系统的一个特性,人的整体行为是非局域性的最明显体现。神经网络以大量的神经元连接模拟人脑的非局域性,它的分布存储是非局域性的一种表现。 3、非定常性:神经网络是模拟人脑思维运动的动力学系统,它应按不同时刻的外界刺激对自己的功能进行修改,故而它是一个时变的系统。 4、非凸性:神经网络的非凸性即是指它有多个极值,也即系统具有不只一个的较稳定的平衡状态,这种属性会使系统的演化多样化。 三、人工神经网络模型模型 (一)人工神经网络模型的分类 1、按照网络的结构区分,则有前向网络和反馈网络。 2、按照学习方式区分,则有教师学习和无教师学习网络。

人工神经网络的发展和分类

人工神经网络的发展和分类 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 它的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。 1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究。加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。 在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐ART,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。 1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视。美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变 RWC项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两

相关文档