文档库 最新最全的文档下载
当前位置:文档库 › 富氧燃烧技术

富氧燃烧技术

富氧燃烧技术
富氧燃烧技术

富氧燃烧技术在工业锅炉上的应用

一、概述

通常空气中氧的含量为20.93%、氮为78.1%及少量惰性气体等,在昆明地区空气中氧的含量约为20.8%,在燃烧过程中只占有空气总量的1/5左右的氧参与燃烧,而占空气总量约4/5的氮和其他惰性气体非但不助燃,反而将随烟气带走大量的热能。人们把含氧量大于20.93%的空气叫做富氧空气。富氧空气参与燃烧给燃烧提供了足够的氧气,使可燃物充分燃烧,减少了固体不完全燃烧的排放,减少了氮和其他惰性气体随烟气带走的热能。将具有明显的节能和环保效应。

目前富氧可以通过深冷分离法、变压吸附法及膜分离法获得。膜法富氧技术是近年发展的非常适合各种锅炉、窖炉做助燃用途的高新技术,它具有流程简单、体积小、自身能耗低、使用寿命长、投资较少等特点,被工业发达国家称之为“资源的创造性技术”。

二、膜法富氧原理

膜法富氧是利用空气中各组分透过富氧膜时的渗透速率不同,在压力差驱使下,使空气中的氧气优先通过而得到富氧空气。膜法富氧助燃系统包括空气过滤器、鼓风机、富氧膜组件、水环真空泵、真空表、调节阀、气水分离器、除湿增压电控系统、富氧预热器和喷嘴。

三、富氧燃烧分析

助燃空气中氧浓度越高,燃料燃烧越完全,但富氧浓度太高,会导致火焰温度太高而降低炉膛受热面的寿命,同时制氧投资等费用增高,综合效益反而下降,因此国内外研究均表明,助燃空气富氧浓度一般在26~30%时为最佳。

1、据测试氧含量增加4-5%,火焰温度可升高200-300℃。火焰温度的升高,促进整个炉膛温度的上升,炉堂受热物质更容易获得热量,热效率大幅提高。

2、燃料在空气中燃烧与在纯氧中的燃烧速度相差甚大,如氢气在空气中的燃烧速度最大为280cm/s,在纯氧中为1175cm/s,是在空气中的4.2倍,天然气则高达10.7倍。富氧助燃,可以使燃烧强度提高、燃烧速度加快,从而获得较好的热传导,使燃料燃烧的更完全。

3、燃料的燃点温度不是一个常数,它与燃烧状况、受热速度、富氧用量、环境温度等密切相关,如CO在空气中为609℃,在纯氧中仅388℃,所以用富氧助燃能降低燃料燃点,提高火焰强度、减小火焰尺寸、增加释放热量等。

4、用普通空气助燃,约五分之四的氮气不但不参与助燃,还要带走大量的热量。一般氧浓度每增加1%,烟气量约下降2~4.5%,从而能提

高燃烧效率。

5、如用普通空气助燃,当炉膛温度为1300℃时,其可利用的热量为42%;而用26%的富氧空气助燃时,可利用热量为56%,热量利用率可增加14%。

6、排烟温度每降低12-15℃,可降低排烟热损失约1%,用富氧代替空气助燃,可减少一次风量,降低了空气的过剩系数,减少了排烟量降低了排烟热损失。

四、锅炉热效率分析

1、锅炉热效率提高:

公式: η2=100-∑q=〔q2+q3+q4+q5+q6〕

式中: η2—锅炉反平衡热效率 %

q2—排烟热损失 %

q3—气体不完全燃烧热损失 %

q4—固体不完全燃烧热损失 %

q5—散热损失 %

q6—灰渣物理热损失 %

从锅炉热平衡热效率公式中可看出,锅炉热效率的高低取决于它的五种热损失的大小,分别是1、排烟损失q2,2、气体不完全燃烧热损失q3,3、固体不完全燃烧热损失q4,4、散热损失q5,5、灰渣物理热损失q6。其中排烟损失q2和固体不完全燃烧热损失q4,是正转链条锅炉热损失的最大两项,它们之和占总损失的80%以上。

2、排烟热损失q2

从公式中可看出,排烟热损失q2的大小,取决于排烟温度的高低和排出烟气量的大小,改造后的富氧燃烧锅炉,可减少一次风的风量,使过剩空气系数合理,这样就能减少烟气的大量排出。烟气带走的热量就大大的降低,排烟热损失就小。

3、气体不完全燃烧热损失q3

气体不完全燃烧损失q3,从公式中可看出,主要取决于排烟处烟气容积和可燃气体,改造后的富氧燃烧锅炉,可燃气体得到充分燃烧,炉膛温度高,用普通空气助燃,约五分之四的氮气不但不参与助燃,还要带走大量的热量。一般氧浓度每增加1%,烟气量约下降2~4.5%,所以气体不完全燃烧损失q3也就小。从而能提高燃烧效率。

4、固体不完全燃烧热损失q4

固体不完全燃烧损失q4,取决于炉渣、漏煤、飞灰的量和含碳量。改造后的富氧燃烧锅炉,煤在炉内的着火线与燃尽线都提前。燃煤在距离挡渣器1米处就燃尽,排除的灰渣含碳可保证在15%以下,如果好煤种(挥发份高、热值高)调节得当,灰渣含碳量可低于10%以下,甚

至更低,加上燃烧工况好,炉膛温度高、飞灰中含碳量就大大的降低,因而降低了固体不完全燃烧热损失,提高了锅炉热效率。

5、灰渣物理热损失q6

灰渣物理热损失q6,取决于灰渣温度,改造后的富氧燃烧锅炉,由于炉膛温度高,煤在炉内的着火线与燃尽线都提前,灰渣在炉排上能充分燃烧,燃尽段增长(燃煤在距离挡渣器1米处就燃尽),灰渣温度低。因此灰渣物理热损失就小,提高了锅炉热效率。

针对不同的炉型,确定整体富氧助燃或局部增氧助燃方式,经现场考察综合评估后,配备专用系列富氧喷嘴,区别采用“梯度燃

烧”、“对称燃烧”、“α型燃烧”、“S型燃烧”、“四角燃烧”等与炉窑、燃料及产品等相匹配的高新燃烧技术,关键是将富氧送到最需氧的地方,并合理调整锅炉给风系统。对玻璃窑炉和陶瓷窑炉,实施改造和调试更简单,可以不停窑安装。

五、富氧助燃装置节能效果及其特点

对玻璃窑炉和陶瓷窑炉,可节能8-15%,提高产量5-10%,且产品质量等级均有提高;对工业锅炉,可节能5-15%,提高锅炉出力10%以上,减少环境污染,尤其是在燃油炉上使用富氧,节能和环保效益更好,项目的投资回收期不到一年。

局部增氧助燃技术非常符合中国国情,设备投资成本低,系统操作简单,运行可靠,能耗只有0.11kW.h/Nm3富氧,膜组件部分使用寿命可达8-10年,占地面积只需几平方米,安装周期仅需一周左右,不改动锅炉或窑炉本体,对新老烧煤、油、气的锅炉、窑炉均能改造,设备适应面非常广。

应用范围

锅炉系列:工业燃煤锅炉、燃气锅炉、燃油锅炉、垃圾焚烧炉。

窑炉系列:玻璃窑炉、水泥窑、陶瓷窑、金属冶炼炉,以及燃油、燃气发电机组等。

由于能源越来越紧缺、环保要求越来越严格,相信不久的将来膜法富氧助燃技术的应用会越来越广,发展前景十分广阔。

六、成功案例

大连油脂化学厂30吨燃油锅炉配置300-350Nm3/h富氧量,节约燃油8.25%。

江苏阜宁化肥厂20吨燃煤链条发电锅炉配置150-200Nm3/h富氧量,平均节煤达11.04%。

富氧燃烧技术

富氧燃烧技术在工业锅炉上的应用 一、概述 通常空气中氧的含量为20.93%、氮为78.1%及少量惰性气体等,在昆明地区空气中氧的含量约为20.8%,在燃烧过程中只占有空气总量的1/5左右的氧参与燃烧,而占空气总量约4/5的氮和其他惰性气体非但不助燃,反而将随烟气带走大量的热能。人们把含氧量大于20.93%的空气叫做富氧空气。富氧空气参与燃烧给燃烧提供了足够的氧气,使可燃物充分燃烧,减少了固体不完全燃烧的排放,减少了氮和其他惰性气体随烟气带走的热能。将具有明显的节能和环保效应。 目前富氧可以通过深冷分离法、变压吸附法及膜分离法获得。膜法富氧技术是近年发展的非常适合各种锅炉、窖炉做助燃用途的高新技术,它具有流程简单、体积小、自身能耗低、使用寿命长、投资较少等特点,被工业发达国家称之为“资源的创造性技术”。 二、膜法富氧原理 膜法富氧是利用空气中各组分透过富氧膜时的渗透速率不同,在压力差驱使下,使空气中的氧气优先通过而得到富氧空气。膜法富氧助燃系统包括空气过滤器、鼓风机、富氧膜组件、水环真空泵、真空表、调节阀、气水分离器、除湿增压电控系统、富氧预热器和喷嘴。 三、富氧燃烧分析 助燃空气中氧浓度越高,燃料燃烧越完全,但富氧浓度太高,会导致火焰温度太高而降低炉膛受热面的寿命,同时制氧投资等费用增高,综合效益反而下降,因此国内外研究均表明,助燃空气富氧浓度一般在26~30%时为最佳。 1、据测试氧含量增加4-5%,火焰温度可升高200-300℃。火焰温度的升高,促进整个炉膛温度的上升,炉堂受热物质更容易获得热量,热效率大幅提高。 2、燃料在空气中燃烧与在纯氧中的燃烧速度相差甚大,如氢气在空气中的燃烧速度最大为280cm/s,在纯氧中为1175cm/s,是在空气中的4.2倍,天然气则高达10.7倍。富氧助燃,可以使燃烧强度提高、燃烧速度加快,从而获得较好的热传导,使燃料燃烧的更完全。 3、燃料的燃点温度不是一个常数,它与燃烧状况、受热速度、富氧用量、环境温度等密切相关,如CO在空气中为609℃,在纯氧中仅388℃,所以用富氧助燃能降低燃料燃点,提高火焰强度、减小火焰尺寸、增加释放热量等。 4、用普通空气助燃,约五分之四的氮气不但不参与助燃,还要带走大量的热量。一般氧浓度每增加1%,烟气量约下降2~4.5%,从而能提

富氧燃烧在生物质锅炉的应用

富氧燃烧技术在生物质锅炉的应用的探讨摘要: 根据生物质锅炉燃烧特点、燃料特性,结合富氧燃烧技术特点,阐述了对生物质锅炉利用富氧燃烧技术解决飞灰含碳量高、炉膛负压不稳定、燃烧过程空气需求量大、排烟量大等瓶颈问题,提出见解和分析。 前言: 在世界能源消费中,生物质能源约占16%左右,而在欠发达地区则占63%以上。全球大概有25亿人生活所用的能源90%以上都是生物质能源。中国是人口最多的国家,同时又处在一个经济的快速发展的时期,能源的需求和消费尤为巨大。日益短缺的化石燃料资源,以及燃烧化石燃料造成大气污染,已成为人们关注和忧虑的焦点。 21世纪,中国将会面对环境保护和经济增长的双重压力。因此,转变能源生产和消费结构的模式,开发和利用生物质能和其他可再生能源和清洁能源,建立新的可持续发展的能源利用体系,为保障和促进可持续发展和环境保护有着深远的意义。

生物质能是人类在远古时代就开始利用的能源,中东战争所造成的世界能源危机使人们开始关注和重视开发和利用可再生能源。人们清醒的认识到石油和煤等化石燃料不可再生和所造成的环境等一系列问题使人类的可持续发展遇到了前所未有的重大问题。使用化石燃料会产生“酸雨”,“臭氧耗破坏”,“温室效应”和其他环境问题,人类的生存和发展正面临着巨大的挑战。而为了解决因为使用化石能源所造成的一系列问题,人类正积极探索和研究可再生清洁能源以替代化石燃料。2014年4月18日李克强主持召开新一届国家能源委员会首次会议,明确了国家能源发展战略: “节约、清洁、安全”三大能源战略方针。 “节能优先、绿色低碳、立足国内、创新驱动”四大能源战略。加快构建低碳、高效、可持续的现代能源体系。 二、生物质锅炉运行分析; 据统计,现在生物质能消费占世界总能耗的16%左右,位于煤,石油,天然气之后,位居第四。其中,发展中国家占总生物质能的生物能源的使用量的75%,发达国家占25%左右,部分国家生物能源的使用量甚至占能源使用总量的60%。

燃气燃烧器安全技术规定

1、《燃气燃烧器安全技术规定》(征求意见稿) Safety Technical Regulation for Gas Burner 中华人民共和国国家质量监督检验检疫总局颁布 2006年月日 目录 第一章总则 (1) 第二章结构与设计要求 (1) 第三章安全与控制装置要求 (3) 第四章安装与系统要求 (5) 第五章使用与维护要求 (6) 第六章技术资料与铭牌要求 (8) 第七章附则 (9) 燃气燃烧器安全技术规定(征求意见稿) 第一章总则 第一条为了保障燃气燃烧器(以下称'燃烧器')的安全运行,避免和减少燃气设备安全事故,减少财产损失,保护生命安全,为燃气设备的安全监察提供技术依据,制定本安全技术规定(以下称'规定')。 第二条本规定依据国务院《特种设备安全监察条例》中有关规定,并参考国内外相关标准编制。 关联法规: 第三条适用范围 (一)本规定适用于各类锅炉用燃气燃烧器,其它用途用燃气燃烧器可以参照本规定执行。 (二)本规定规定了燃烧器的结构与设计、安装与系统、运行与维护、安全与控制装置、技术资料与铭牌要求等。 (三)双燃料燃烧器应该同时满足本规定和TSG GB002-2006《燃油燃烧器安全技术规定》的要求。 第四条燃烧器的电气控制系统的安全性能,应该符合GB3797-89《电控设备第二部分装有电子器件的电控设备》的规定。 第二章结构与设计要求 第五条设计 (一)燃气燃烧器一般由以下主要部分组成:燃气喷嘴、燃气阀系、风机、燃气流量调节阀、空气调节装置、点火装置、燃气压力检测开关、空气压力检测开关及火焰监测装置等。(二)燃烧器的设计应该能保证燃烧器达到规定的输出功率及性能要求。燃烧器的结构应该保证不会发生不稳定、变形或开裂等危及安全的问题。 (三)燃烧器各部件结构和尺寸的设计不仅必须保证燃烧器可靠经济运行,还要保证操作人员的安全。 (四)燃烧器上应当有火焰观测孔,为防止火焰喷出或烟气外漏,观测孔配件应当具有足够强度并且被有效密封。

富氧燃烧技术富氧燃烧技术与污染物排放

富氧燃烧技术富氧燃烧技术与污染物排放富氧燃烧是一种新兴的燃烧技术。富氧燃烧能够显著提高燃烧效率和火焰温度,但由于制氧成本较高的问题,在上世纪80年代经历黄金成长期之后,发展速度放缓。而后随着制氧方法的进步,尤其是富氧膜技术的进展,富氧燃烧技术近20年来逐渐推广。而且,富氧燃烧也便于在现有锅炉设备上改造实现,具有可预期的良好发展前景。 与普通的空气燃烧相比,富氧燃烧技术可以显著节约能源,其对环境的影响方面也具有不同特点。其中既有有利的一面,也有不利的一面。本文主要从较为常见的碳排放、粉尘污染、二氧化硫和氮氧化物的排放四个方面来讨论富氧燃烧对环境的影响。 1 富氧燃烧对碳排放的影响 在对CO2排放限制越发严苛的当代社会,节能减排是全社会关注的焦点。常规的燃烧方式都存在着不足之处,局部缺氧会产生不完全燃烧,火焰温度偏低也会产生不完全燃烧,浪费燃料,而作为粉尘排放的未燃烧燃料也会造成大气污染。

富氧燃烧针对缺氧区,局部增氧,可使燃料燃点降低,燃烧速度增快,燃料燃烧更 __,而火焰温度则会提高。根据维恩位移定律,辐射强度与温度的四次方成正比,可使热能的利用率大幅提升。 同时,富氧燃烧可以减少鼓风机进风量和高温烟气的排放量,可降低热能损失。空气中氧气的含量占20.94%,而不助燃的氮气占78.097%。在燃烧过程中,氮气带走了大量热量,采用富氧燃烧后可减少进风量,即减少了热能的流失,并且由于风量的下降,可以使用功率更小的风机。 假设燃料完全燃烧,空气含氧量φ=21%,理论氧气量为Vo,过量空气系数a=1.2,实际空气量为Va,则 Va=a 根据以上公式,设某工况理论氧气量为1 m3/s,可列表1。 对某煤种燃烧的分析,当助燃空气含氧率从21%升高至30%时,理论空气量减少30.0%,理论烟气量减少28.8%,损失减少16.3%。据介绍,日本将23%的富氧用于化铁炉,节能高达26.7%;美国在铸造炉上使用23%~24%的富氧,平均节能44%;国内的武汉钢厂采用富

富氧燃烧技术及工业应用实例分析-2014.2.

一.膜法富氧燃烧技术简介 富氧是应用物理或化学方法将空气中的氧气进行收集,使收集后气体中的富氧含量≥21%。 现有的富氧方式主要有: (1)增压增氧方式 增压增氧主要用在飞机上,通过增加机舱内的压力,使空气密度增加,由于空气中含氧量的比例是一定的(氧在空气中的体积比为20 95%),空气密度增加后,空气中氧的绝对质量也增加,从而达到增加氧的目的。 (2)制氧机制氧方式 制氧机制氧广泛用在各个领域,制氧机有3大类:第一是利用空气为原料,通过物理的方法,把氧气从空气里分离出来。在1个大气压下,液态氧的沸点是-183℃,而液态氮的沸点是-196℃,当控制液态空气的沸点在-183℃以下高于-196℃时,液态氮首先蒸发,留下来的是液态氧,这种方法可制得纯度很高的氧气,再用很大的压力(一般150个大气压)压入钢瓶贮存起来,供工厂、医院使用,贮存在钢瓶的氧气还可向氧气袋充氧,供个人或旅行者使用。平时我们所见的氧气瓶供氧、氧气袋供氧都是使用这种方法制出的氧气。第二种是常压(或叫低压)制氧方法,所需压缩空气的压力在1MPa以内,这是近十几年发展起来的制氧方法,也叫膜制氧方法。膜制氧方法的原理可参见文献。第三种是PSA分子筛制氧方法,PSA分子筛制氧是使用一种变压吸附制氧设备,这种设备主要由空气净化系统,PSA氧氮分离系统,氧气缓冲、检测系统等组成。

(3)化学制氧方式 化学制氧是利用含氧化合物为原料,通过与催化剂的反应,制出氧气。使用的含氧化合物必须具备两个条件:一是这种含氧化合物是较不稳定的,在加热时容易分解放出氧气;二是这种含氧化合物里含氧的百分比是比较高的,能分解放出较多的氧气。一般用氯酸钾(分子式是KClO3),它含氧的百分比达40%,在氯酸钾里加入少量黑色的二氧化锰(MnO2)粉末,氯酸钾会迅速分解,有多量的氧气放出。氯酸钾分解放出的氧气常用“排水集气法”收集,供试验、呼吸等使用。氧立得就是利用这种原理制氧的。 二.富氧燃烧 用比通常空气(含氧21%)含氧浓度高的富氧空气进行燃烧,称为富氧燃烧。它是一项高效节能的燃烧技术,在玻璃工业、冶金工业及热能工程领域均有应用与用普通空气燃烧有以下优点: 1.高火焰温度和黑度 2.加快燃烧速度,促进燃烧安全。 3.降低燃料的燃点温度和减少燃尽时间。 4.降低过量空气系数,减少燃烧后的烟气量。 富氧燃烧: oxygen enriched combustion 变压吸附制氧设备在富氧助燃特点: ①节能效果显著 应用于各个燃烧领域均能大幅提高燃烧热效率,如在玻璃行业中平均节油(气)为20%-40%,在工业锅炉、加热炉、炼铁断和水泥厂机立窑等应用节能量为20%-50%,显著提高热能使用效率。

燃烧器技术协议(1版)

新疆黑山煤炭化工有限责任公司煤气发电项目2×65t/h锅炉低氮燃烧器及管路系统 技 术 协 议 买(需)方: 卖(供)方:

二O一五年八月

目录 一、总则 (1) 二、供货范围、设计界限及设备性能介绍 (4) 三、技术资料及交付进度 (15) 四、进度 (15) 五、包装和运输 (16) 六、监造、检查和性能验收试验 (16) 七、技术服务 (16) 八、安装、调试和验收方案 (17) 九、质量保证及售后服务承诺 (18) 十、其它 (19)

技术协议 **有限公司(以下简称“买方”)与(以下简称“卖方”) 就新疆黑山煤炭化工有限责任公司兰炭尾气发电工程2×65t/h锅炉低氮燃烧器及管路的设计、制造、供货与技术服务相关事宜,经双方代表充分友好协商,达成以下技术协议。 一、总则 1.1本技术协议按锅炉相关技术参数及要求编写。 1.1.1燃烧系统设计能保证大于20%负荷时,低氮燃烧器不发生回火、 脱火、灭火事故。确保不发生煤气燃爆事故,不会造成停炉。 1.1.2低氮燃烧器设计能确保在各种工况下能稳定燃烧,并具有防止 回火功能。 1.1.3点火系统实现程控及安全联锁。 1.1.4为保证燃烧安全,留有火焰检测装置接口,配置有完备的火检 设备,并与煤气管道上的快速切断阀形成联锁控制,保证锅炉的 安全。 1.1.5低氮燃烧器喷嘴的使用寿命不低于设备经安装试验合格后三 年,且便于检修。 1.1.6低氮燃烧器在热态运行下,其调节装置不受热膨胀的影响而产 生卡涩现象,应灵活可靠。 的措施。 1.1.7低氮燃烧器的设计、布置考虑降低燃烧中产生NO X 1.1.8点火器装置在出厂前成套调试合格,并提供证明文件。 1.1.9就地安装柜及阀门均要求防爆。 1.1.10必须有同类产品运行业绩或型式试验证书。 1.2本技术协议中规定了最低限度的技术要求,并未规定所有的技术要求和 适用的标准,卖方将提供一套满足本技术协议和所列标准要求的高质 量产品及其相应服务。产品必须同时满足国家关于安全、环境保护的 强制性标准和规范要求。 1.3供方须执行本协议所列标准。有矛盾时,按较高标准执行。卖方在设备 设计和制造中所涉及的各项规程、规范和标准必须遵循现行最新版本 的标准。

燃烧器基本介绍

燃烧器基本介绍

燃烧器常见故障现象的原因分析及排除方法 国内燃烧器由于利雅路,威索,百得,威特等众多国际化品牌的参与,使得使用和维护更加的复杂。所以我们整理了一些燃烧器常见故障现象的原因分析及排除方法和大家交流。 1.能够正常点火但着火几十秒钟后自行熄灭 这种故障现象的典型原因是燃烧器配件的火焰传感器脏污。火焰传感器是一个光敏电阻当受光照射时其自身电阻值下降呈低阻抗状态当无光照射时电阻值上升呈高阻抗状态。燃烧器中的控制器根据火焰传感器的电阻值来判断燃烧过程是否持续若燃烧停止火焰传感器呈高阻抗则立即停止供油以防止未燃烧的柴油积存。火焰传感器探头位于燃烧器的风道内,由于冒黑烟、回火、送风尘土等原因其表面很容易脏污从而失去感光功能。检查传感器探头,必要时用酒精或清洗剂清洁其表面。 2.着火正常但排气烟色不正常 喷入燃烧器的柴油是一边混合一边燃烧的当送风量合适时雾化CO2和水蒸气排气是无色的。当送风量不足时会造成柴油不完全燃烧生成CO和碳粒从而出现排气冒黑烟现象。但如果进风量过大强大的风力可能会把来不及燃烧的油雾吹走,形成白色烟雾排出。 排气冒黑烟的常见原因是燃烧的进风门开度过小,冒白烟的见原因是进风门开度过大,这两种情况均应重新调整进风门。调整时可一边观察排气烟色一边调节风门的开度直到排气烟色接近于无色。 排气冒黑烟还有一种原因是柴油雾化不良,油雾中含有较大的液滴,不能与空气充分混合由于局部燃烧不完全而产生黑烟。造成柴油雾化不良的原因有: 1)喷嘴老化或堵塞使其雾化量能力严重下降; 2)油泵出油压力过高或过低。油泵压力过低则喷嘴出油压力低当然雾化效果差,但油泵出油压力过高,也会造成喷油压力低。这是因为,油泵的输油量与输油压力是成反比的,油压过高,出油量必然降低由于喷嘴的量孔是不变的所以喷嘴两端的压力差减小,造成喷油 常伴有冒黑烟现象,这是因为供油雾化不良。可根据排气烟色对油泵的出油压力进行调节,顺时针拧动调压螺钉压力升高出油量下降;反之压力下降出油量上升。油泵压力的正常范围是0.98~1.18MPa,使用中不可随意调节。

富氧燃烧的节能特性及其对环境的影响

基金项目:湛江市2004年重大科技攻关项目(项目编号:2004-3) 富氧燃烧的节能特性及其对环境的影响 郑晓峰,冯耀勋,贾明生 (广东海洋大学工程学院,广东湛江524088) 摘要:本文从富氧燃烧的节能特性及其对环境的影响两方面来探讨富氧燃烧。随着氧气制备技术的低成本化,采用富氧燃烧对于当前来讲可以很好地提高燃烧效率从而达到节能的效果,同时也要注意其对环境的影响。 关键词:富氧燃烧;节能;环境 中图分类号:T K16 文献标识码:B 文章编号:1004-7948(2006)07-0026-03 1引言 迄今为止,人类消费能源的80%是通过燃烧的途径得到的,而燃烧过程的排放物也是造成环境污 染的主要原因。围绕如何提高资源的利用率并在利用的同时尽可能地降低对环境造成的影响,各种高效率、低污染燃烧技术的开发非常活跃,高温空气燃烧、催化燃烧、富氧燃烧等技术已显示了其广阔的应用前景。 富氧燃烧采用比空气中氧含量高的空气来助燃,富氧的极限就是使用纯氧。富氧燃烧可以显著提高燃烧效率和火焰温度,长久以来主要是应用在玻璃熔窑和金属冶炼等需要高温操作的行业。随着膜法制氧技术、变压吸附PSA 法(Pressure Swing Adsorption )等新型制氧技术的成熟和利用,富氧成本将会不断降低,使得富氧燃烧技术的应用领域不断扩大,在燃气发电系统、工业锅炉、生物质能和废弃物能的利用等多方面都具有应用前景。2富氧燃烧节能特性 富氧燃烧具有节能特性主要是由其燃烧特点来决定的,其主要特点如下[1 ~5]: (1)火焰温度大幅度提高,以甲烷燃烧为例(见图1):30%富氧空气时的绝热火焰温度为2500K ,比通常空气燃烧提高近300K;氧浓度大于80%时的火焰温度接近3000K ,层流燃烧速度增大到近3m/s ,而普通空气的层流燃烧速度仅为0145m/s 。通过富氧助燃可以提高燃烧强度,加快燃烧速度,获得较好的热传导,同时温度提高有利于燃烧反应; (2)由于惰性成分的氮气浓度大大降低,无谓的能源消耗大幅度降低,30%~40%的富氧空气燃烧 图1 氧气质量浓度对最高温度、火焰传播速度的影响 就可以降低燃料消费20%~30%,提高了热效率;(3)烟气量大幅度减低,纯氧燃烧时的烟气体积只有普通空气燃烧的1/4,烟气中的CO 2浓度增加,有利于回收CO 2综合利用或封存,实现清洁生产;烟气中高辐射率的CO 2和水蒸气浓度增加,可促进炉内的辐射传热; (4)设备尺寸缩小,燃烧系统的设备投资成本和维护费用降低。3富氧燃烧应用现状 由上述特点可知富氧燃烧作为一项具有良好开发前景的高效节能技术具有很广阔的市场前景。目前在冶金、建材等需要高温工况的行业已有应用,低热值的生物质燃料以及固体废弃物的富氧燃烧也是最近发展的热点。 311富氧燃烧技术在金属冶炼中的应用 目前世界富氧消耗中,钢铁占50%以上[6],各个大型钢铁厂基本上采用了富氧鼓风。现代的钢、铁联合企业都自建有配套的氧气厂,富氧鼓风可以增大处理能力,降低热消耗水平,提高高炉煤气质量[7]。炼钢过程中,由于炼钢方法不一样,富氧使用情况也不同。对于转炉或平炉炼钢法,采用的是 — 62— 节 能EN ER GY CONSERVA TION 2006年第7期 (总第288期)

富氧燃烧与普通空气燃烧区别

与用普通空气燃烧相比,富氧燃烧有以下优点: 1.高火焰温度和黑度。 辐射换热是锅炉换热主要的方式之一,按气体辐射特点,只有三原子和多原子气体具有辐射能力,原子气体几乎无辐射能力。所以在常规空气助燃的情况下,无辐射能力的氮气所占比例很高,因此烟气的黑度很低,影响了烟气对锅炉辐射换热面的传热。富氧助燃技术因氮气量减少,空气量及烟气量均显著减少,故火焰温度和黑度随着燃烧空气中氧气比例的增加而显著提高,进而提高火焰辐射强度和强化辐射传热。一般富氧浓度在26%~3l%时最佳。 2.加快燃烧速度,促进燃烧安全。 燃料在空气中和在纯氧中的燃烧速度相差甚大,如氢气在纯氧中的燃烧速度是在空气中的4.2倍,天然气则达到10.7倍左右。故用富氧空气助燃后,不仅使火焰变短,提高燃烧强度,加快燃烧速度,获得较好的热传导,同时由于温度提高了,将有利于燃烧反应完全。 3.降低燃料的燃点温度和减少燃尽时间。 燃料的燃点温度随燃烧条件变化而变化。燃料的燃点温度不是一个常数,如CO在空气中为609℃,在纯氧中仅388℃,所以用富氧助燃能提高火焰强度、增加释放热量等。 4.减少燃烧后的烟气量,减小锅炉体积。 随着富氧空气中含氧量的增加,理论空气需要量减少,烟气量减少。采用纯氧燃烧时烟气量减少近80%,故可以采用体积更小的锅炉和辅助设备,减少工程造价。 5.减少污染物排放。 富氧燃烧烟气量减少,使燃烧废气中的污染物浓度增加,可使废气处理更有效率。同时N2减少可减少热力型NOx生成量。 6.有利于CO2的捕获。 目前CO2捕获主要有3种技术路径:燃烧前捕捉、富氧燃烧捕捉和燃烧后捕捉。燃烧前捕捉主要通过IGCC来实现,其原理是通过化学反应将煤或石油残渣等富碳燃料转化为合成气,由于将现有煤粉锅炉改建为IGCC电厂几乎不可能,因此IGCC技术仅适用于新电厂的建设。富氧燃烧捕捉:富氧燃烧技术的原理是用纯氧燃烧同体燃料,由二氧化碳循环流控制燃烧。富氧燃烧产生的烟气主要由水和二氧化碳组成,采用水分离技术在后端能比较容易地捕集到二氧化碳。富氧燃烧技术适用于新机组,也可应用于某些改造机组。燃烧后捕捉:这种技术目前相对简便,能够适应大型燃煤和燃气机组,通过捕集装置将电厂烟气中的二氧化碳有选择地去除。因此,富氧燃烧是很有前途的CO2分离方法。 但同时富氧燃烧还面临很多问题: 1. 运行方面 由于富氧燃烧,炉膛温度很高,需要采取措施(如烟气再循环)降低炉膛温度。 需要进一步了解富氧燃烧点火,火焰稳定性,耐腐蚀,传热的问题。 2. 污染物控制方面 由于燃烧环境变化,将改变污染物的形成,因此需要更多相关研究。 污染物的变化将影响现有污染物控制装置。 在CO2捕捉与封存之前需要对其他污染物进行脱除。

富氧燃烧技术的应用

生产技术经验 文章编号:1000-2871(2000)02-0026-04 富氧燃烧技术的应用Ξ 戴树业,韩建国,李 宏 (华北制药股份有限公司玻璃分公司,河北 石家庄050041) 摘要:介绍富氧燃烧在燃油玻璃窑炉上的应用及改进经验。 关键词:玻璃窑炉;燃油;富氧燃烧 中图分类号:T Q171.6+25.3 文献标识码:B Application of Oxyboosted Burning T echnology DAI ShuΟye,H AN JianΟguo,LI Hong 1 概述 富氧燃烧就是采用比空气中含氧量高的空气来进行助燃。两方发达国家及前苏联早在70年代就开始这项技术的研究,并在70年代末80年代初取得了良好的效果。象日本松下电气产业公司和大阪煤气公司开发的富氧装置,其所用的膜材料是聚硅氧烷与聚对羟基苯乙烯的交联共聚体,能生产含氧量为28%的富氧空气。美国通用电气公司UOP公司制造的富氧发生器可生产30%浓度的富氧空气。我国80年代中期开始此项技术的研究,中科院大连化物所自1986年起一直从事国家“七五”和“八五”科技攻关项目:卷式富氧膜、组件、装置及其应用和开发的研究,并且研制成功“LT V-PS富氧膜、<100×1000mm卷式组件及装置Ⅰ型”。 我公司现有4台马蹄焰蓄热室窑炉,面积在23~28m2之间,主要生产药用玻璃管,对玻璃的熔制质量要求较高,熔化率低,能耗高。随着市场经济竞争日趋激烈,能源价格上涨,成本不断提高。节能挖潜、降低成本对于耗能大户玻璃行业来说至关重要,而采用新技术是最佳途径。我公司1992年就开始对富氧燃烧进行调研工作,但当时富氧膜成本高,使用周期短,工艺设备不成熟,故障率高,一些厂家的使用效果不理想。以后几年我们一直在关注该技术的发展。随着时间的推移,技术的成熟,我公司于1996年上马富氧燃烧项目。 2 膜法富氧制取技术 众所周知,空气中的主要成分是氧占20.94%,氮占78.09%。而氧气、氮气在特制的高分子膜中的溶解度大小和扩散速率不同。膜法富氧就是利用空气中各组分透过高分子富氧 Ξ收稿日期:1999-09-16

燃气燃烧机的安全控制要求(标准版)

燃气燃烧机的安全控制要求 (标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0814

燃气燃烧机的安全控制要求(标准版) 我国天然气和煤制气(原料为煤)资源丰富,且属于洁净能源,顾有着良好的社会经济效益。燃气燃烧机符合我国产业政策,市场前景很好,大有发展前途。然而在燃气燃烧机研制设计中,燃气特性-易燃、易爆及毒性,安全控制的首要问题。下面介绍一下燃气燃烧机的安全控制要求: 根据燃气在炉膛内的燃烧特性,对其安全控制要求内容主要有预吹风、自动点火、燃烧状态监控、点不着火的保护、熄火的保护、燃气压力高低限保护、空气压力不足保护、断电保护、预防燃气泄漏事故的措施等。 1.预吹风 燃烧机在点火前,必须有一段时间的预吹风,把炉膛与烟道中余气吹除或稀释。因为燃烧机工作炉膛内不可避免地有余留的燃气,

若未进行预吹风而点火,有发生爆炸的危险.必须把余气吹除干净或稀释,保证燃气浓度不在爆炸极限内。 预吹风时间与炉膛结构及吹风量有关一般设置为15-60秒 2.自动点火 燃气燃烧机宜采用电火花点火,便于实现自动控制。可用高压点火变压器产生电弧点火,要求其输出能量为:电压≥3.5KV、电流≥15mA,点火时间一般为:2~5秒。 3.燃烧状态监控 燃烧状态必须予以动态监控,一旦火焰探测器感测到熄火信号,必须在极短时间内反馈到燃烧机,燃烧机随即进人保护状态,同时切断燃气供给。 火焰探测器要能正常感测火焰信号,既不要敏感,也不要迟钝。因为敏感,燃烧状态如有波动易产生误动作而迟钝,反馈火焰信号滞后,不利于安全运行。 一般要求从熄火到火焰探测器发出熄火信号的响应时间不超过0.2秒。

燃烧器基本知识

燃烧器基本知识 燃烧器作为一种自动化程度较高的机电一体化设备,从其实现的功能可分为五大系统: 送风系统、点火系统、监测系统、燃料系统、电控系统。 一、送风系统 送风系统的功能在于向燃烧室里送入一定风速和风量的空气,其主要部件有: 壳体、风机马达、风机叶轮、风枪火管、风门控制器、风门档板、扩散盘。 1.壳体: 是燃烧器各部件的安装支架和新鲜空气进风通道的主要组成部分。从外形来看可以分为箱式和枪式两种,大功率燃烧器多数采用分体式壳体,一般为枪式。壳体的组成材料一般为高强度轻质合金铸件。 (如图1-1)顶盖上的观火孔有观察火焰作用 2.风机xx: 主要为风机叶轮和高压油泵的运转提供动力,也有一些燃烧器采用单独电机提供油泵动力。 某些小功率燃烧器采用单相电机,功率相对较小,大部分燃烧器采用三相电机,电机只有按照确定的方向旋转才能使燃烧器正常工作。有带动油泵及风叶作用,电机一般是2800转(如图1-2) 3.风机叶轮: 通过高速旋转产生足够的风压以克服炉膛阻力和烟囱阻力,并向燃烧室吹入足够的空气以满足燃烧的需要。它由装有一定倾斜角度的叶片的圆柱状轮子

组成,其组成材料一般为高强度轻质合金钢,所有合格的风机叶轮均具有良好的动平衡性能。 4.风枪火管: 起到引导气流和稳定风压的作用,也是进风通道的组成部分,一般有一个外套式法兰与炉口联接。其组成材料一般为高强度和耐高温的合金钢。有风速调节作用。 5.风门控制器: 是一种驱动装置,通过机械连杆控制风门档板的转动。一般有手动调节、液压驱动控制器和伺服马达驱动控制器三种,前者工作稳定,不易产生故障,后者控制精确,风量变化平滑。 6.风门档板: 主要作用是调节进风通道的大小以控制进风量的大小。其组成材料有合金,合金档板有单片、双片、三片等多种组合形式。 7.扩散盘: 又称稳焰盘,其特殊的结构能够产生旋转气流,有助于空气与燃料的充分混合,同时还有调节二次风量的作用。 二、点火系统 点火系统的功能在于点燃空气与燃料的混合物,其主要部件有: 点火变压器、点火电极、电火高压电缆。 8.点火变压器: 分电子式和机械(电感)式两种,是一种产生高压输出的转换元件,其输出电压一般为:25KV、26KV、27KV,输出电流一般为15~30mA。有EDI、丹佛斯、国产丹佛斯、飞达这几种。油机跟气机的区别是: 油机一般两个头气机一般一个头。分电子式和机械式两种

富氧燃烧技术的应用

富氧燃烧技术 一、富氧燃烧可以提高燃烧区的火焰温度。 研究表明,火焰温度随着燃烧空气中氧气比例增加而显著提高,详见图1。富氧燃烧可明显提高火焰温度,提高火焰对配合料和玻璃液的加热效果。燃烧过程是空气中的氧参与燃料氧化,并同时发出光和热的过程。热的传递一般通过辐射、传导和对流三种形式进行。这三种形式何种作用最大主要取决于:火焰类型和形状、加入空气中的含氧量及燃烧设备周围的情况等。由于热传递速率与温度的四次方成正比,所以提高燃烧温度将会大大增加热辐射。 火焰温度与氧浓度的关系图 由火焰温度与氧浓度的关系图可知:A)火焰温度随富氧空气氧浓度的提高而增高;B)随氧浓度的继续提高,火焰温度的增加幅度逐渐下降。为有效利用富氧空气,氧浓度不宜选得过高,一般按空气过剩系数m=1~1.5组织火焰时,富氧空气浓度取23~27%为宜,其中空气含氧量从21%增加到23%时,效果最明显;C)空气过剩系数不宜过大,否则,同样浓度的富氧空气助燃,火馅温度较低。通常在组织燃烧时,控制在1.05~1.1,以达到既能获得较高火焰温度又能燃烧完全的效果。 火焰温度与氧浓度的关系图所示的是理论火焰温度值,实际值要低得多。因为普通燃料燃烧后的最终产物都是二氧化碳和水,它们加热到1500℃时会分解为一氧化碳、氧和氢。也就是说,任何碳氢化合物燃料的高温火焰混合物都将出现CO2、

CO、H2、H2O、O2、CH。由于CO2和H2O高温分解反应是吸热反应,所以实际火焰温度比理论火焰温度要低得多。 (2)富氧燃烧改变了燃料与助燃气体的接触方式,降低燃料的燃点温度,可明显缩短火焰根部的黑区,增大有效传热面积。当用重油作燃料时,它先蒸发成气体,主要是氢气和一氧化碳,其燃点温度为500~600℃,当富氧空气参与助燃时,其燃烧条件得到改善,从而降低重油的燃点温度,使火焰变短,火焰强度提高,释放热量增加。尤其是玻璃熔窑燃料燃烧时,通常将燃料喷枪置于助燃空气的下方,由于不能及时混合,在火焰根部常有低温区存在,形成所谓的黑区。黑区的存在减小了火焰在熔窑内的覆盖区域,降低了传热效果。 (3)富氧燃烧可以加快燃烧速度,改善燃料的燃烧条件,使得燃烧在窑内充分完成,减少了在蓄热室内的残余燃烧,因而能充分地利用燃料。下表中示出各种燃料应用空气和氧气助燃的燃烧速度比较情况,由表可见,各种气体燃料在纯氧中的燃烧速度大大加快。由于加入氧气后提高了火焰温度,因此增加了燃烧速度。燃烧速度实际上是一种定性的说法。如乙炔是一种燃烧速度快的燃料,其火焰短而密实;天然气是一种比乙炔燃烧速度相对慢的燃料,其火焰较长,但只要燃烧完全,都可放出很大热量。因此,要使燃料达到完全燃烧,必须使燃料和空气混合均匀或充分接触。富氧空气参与助燃后,能加快燃烧速度,提高燃烧强度、使火焰变短,获得较好的热传导,同时由于提高了燃烧温度,所以有利于燃烧反应完全。另外,因为1摩尔C在不完全燃烧的情况下比完全燃烧时少释放出约70%左右的热量。排出尾气中的CO含量增加,热损失呈直线增加。CO热损失增加,单位蒸汽的热耗也近似直线增加。所以说富氧燃烧促进燃料燃烧完全,是节约热能的重要原因。 (4)富氧燃烧使燃烧所需空气量减少,废气带走的热量下降。排出废气的容积比与燃烧空气中氧浓度(%)的关系如下图所示。通常的燃烧只有占空气总量1/5的氧气参与燃烧,其余约占4/5的氮气非但不助燃,反而要带走燃烧产生的大量热量,从烟气中排出。使用富氧空气的情况下,燃料燃烧完全,自然排出废气减少,排烟热损失也相应减少从而节能。

ECLIPSE燃烧器 天时燃烧器在干燥行业的应用(转)

ECLIPSE燃烧器在干燥行业的应用 摘 要:本文介绍了在废气再循环加热中,在保证热气流一定温度和流量的同时,ECLIPSE燃烧器能直接加热再循环烟气,提高其温度,起到节能降耗的作用。并在再循环烟气背压较高的情况下,能保证充分燃烧的干燥工艺。 关键词:节能 充分燃烧 直接加热 背压高 引言 具有部分废气再循环干燥系统中,经过干燥后的废气,部分排空,部分返回风机,并同外界空气混合,外界空气的量等于排出废气的量,废气与新鲜空气混合后进入加热器,加热后的混合气体进入干燥器。从干燥器出来后,气流重新分开,如此循环进行下去。工艺流程如下图: 该方法一般应用于间接加热混合气体的加热方式,采用燃料以燃油和电加热为主。虽间接加热对废气没有要求,但是间接加热的换热器成本高,设备初期投资大;且烟气属于二次间接换热,换热效率低,产品的能耗大;并且作为燃料的轻油和电与燃气相比,费用太高。若采用一般的炉用燃烧器,像利雅路、百得、威索等燃烧器,采用燃气直接加热方式,由于该类型的燃气燃烧器都自配风机,风机的风压是个定值,燃烧器只能在微正压的情况下,正常燃烧。如果在风压较高的情况下,则燃烧器不能保证充分燃烧,(燃烧不充分,出现烟气颗粒对产品有影响)并且有可能出现燃烧脱火的情况;再者,该类型燃烧器的调节比较低,对温度控制要求精确度较高的场合不适应。这样,不但不能满足生产的工艺要求,而且安全方面也没有保障。如果在该工艺中采用负压燃烧方式,则需提供高温的引风机,风机的投资较大。如何在实际工艺中尽最大可能的利用余热,并能利用燃烧器直接加热废气,保证燃烧器的充分燃烧,最大限度的降低能耗,是我们在现实中经常碰到的问题。采用ECLIPSE的TAH燃烧器能很好地解决以上问题。 1 综述 1.1介绍 TAH燃烧器是AH燃烧器的一种,AH燃烧器是一种过程空气加热燃烧器,特别适合于需要较大热风场合的应用,像干燥炉、窑炉、焚烧炉等。其特点为: 喷嘴混合型。 类型多样化。AH系列有RAH、TAH、AH-O、AH-C、AH-D等多种规格型号,根据使用情况和工艺要求,可广泛应用于多种加热场合,满足多种要求。 博尼尔热能科技(天津)有限公司

富氧燃烧锅炉初探

第39卷第1期2008年1月 锅 炉 技 术 BOIL ER T ECH NO L OGY Vol.39,No.1 Jan.,2008 收稿日期:2007-08-08 作者简介:牛天况(1940-),男,工学博士,教授级高级工程师。 文章编号: CN31-1508(2008)01-0025-07 富氧燃烧锅炉初探 牛天况 (上海锅炉厂有限公司,上海200245) 关键词: 富氧;膜法富氧;富氧燃烧;锅炉 摘 要: 介绍了不同目的的锅炉富氧燃烧技术,重点分析了膜法富氧对于锅炉性能所带来的影响,对于进一步发展膜法富氧锅炉技术和扩大应用提出了建议。中图分类号: T K 227.1 文献标识码: B 1 前 言 近年来,富氧燃烧出现在各类刊物的场合逐渐增多。可是时至今日,国内主流的专业刊物还是缺少由锅炉专业的视角来分析探讨这个新出现的技术。笔者根据近几年以来所接触的有关信息,在这里做个初步的探讨,希望能起抛砖引玉的作用。 2 富氧燃烧的分类 根据富氧燃烧的目的不同,大体可以分作以下3类: 2.1捕获CO 2为目的的富氧燃烧 现在气候变暖、降低CO 2的排放已经成为家喻户晓的国际性的重大课题。解决方案中的一个措施是,将锅炉排出的含有CO 2的烟气深埋在地下。普通锅炉采用空气为介质进行燃烧,其中大量的是氮气,这样对于深埋的方案来说,必须先除去氮气。目前,国外正在实施中的300M W 等级的项目中,采用空气分离系统向锅炉供给纯氧。锅炉设有烟气再循环,用燃烧产物(主要是CO 2)来稀释供给锅炉的纯氧,使得用于燃烧气体(O 2+CO 2)中氧的浓度大约在27%上下。使用这类工艺的发电厂示意图见图1。 2.2降低有害气体的排放为目的的富氧燃烧 另外一类富氧燃烧的目的是为了降低有害 物质的排放。 图1 捕获CO 2的富氧燃烧发电厂系统 三菱重工的富氧燃烧垃圾焚烧炉就是一个例子,见图2 。 图2 应用PSA (变压吸附法)富氧装置的垃圾焚烧炉 氧气由PSA(变压吸附法)装置产生,作为一次风送入炉排下面;再循环烟气作为二次风送入

燃气燃烧器安全技术规定标准范本

管理制度编号:LX-FS-A15919 燃气燃烧器安全技术规定标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

燃气燃烧器安全技术规定标准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 第一章总则 第一条为了保障燃气燃烧器(以下称'燃烧器')的安全运行,避免和减少燃气设备安全事故,减少财产损失,保护生命安全,为燃气设备的安全监察提供技术依据,制定本安全技术规定(以下称'规定')。 第二条本规定依据国务院《特种设备安全监察条例》中有关规定,并参考国内外相关标准编制。 关联法规:

第三条适用范围 (一)本规定适用于各类锅炉用燃气燃烧器,其它用途用燃气燃烧器可以参照本规定执行。 (二)本规定规定了燃烧器的结构与设计、安装与系统、运行与维护、安全与控制装置、技术资料与铭牌要求等。 (三)双燃料燃烧器应该同时满足本规定和TSG GB002-2006《燃油燃烧器安全技术规定》的要求。 第四条燃烧器的电气控制系统的安全性能,应该符合GB3797-89《电控设备第二部分装有电子器件的电控设备》的规定。 第二章结构与设计要求

热风炉富氧燃烧特性与操作策略研究

热风炉富氧燃烧特性与操作策略研究 孟凡双金国一 (鞍钢股份有限公司炼铁总厂,辽宁鞍山 114021) 摘要:介绍了富氧燃烧技术的基本特性,根据富氧燃烧的特性,分析了采用单一燃料——高炉煤气燃烧的热风炉,其富氧混合操作、空燃比设定、废气和拱顶温度的变化,及运行效果,对采用富氧燃烧技术热风炉的操作和使用有一定的指导意义。关键词:热风炉富氧燃烧操作 1 前言 燃料燃烧是燃料与助燃剂在一定条件下发生放热和发光的剧烈氧化反应。通常的燃料燃烧都以空气作为助燃剂,而空气中参与燃烧反应的O2含量仅为21%,不参与燃烧反应的N2含量却高达79%,这些N2吸收了大量的燃烧反应热,最终随烟气排人大气中,造成了很大的能源浪费。富氧燃烧就是助燃剂中的O2含量大于21%的燃料燃烧。这种燃烧方式提高了助燃剂中的有用成分O2的含量,降低了助燃剂中的无用成分N2的含量,对于稳定燃烧过程,提高燃烧效率,改善炉内传热具有积极意义。 根据燃料燃烧的基本理论知识,阐述了采用高炉煤气作为燃料,增加助燃空气中含氧量时,燃烧反应速度、空气消耗系数、燃耗产物生成量和理论燃烧温度等,一些燃烧的基本特性;通过燃烧的基本特性分析,针对热风炉的实际操作带来的变化;同时对于同种结构的热风炉,同时采用双预热和富氧燃烧技术,其运行情况进行了分析,提出了富氧燃烧技术对热风炉的适用性,对采用富氧燃烧技术热风炉的操作和使用有一定的指导意义。 2 富氧燃烧特性 2.1燃烧反应速度 应用燃烧反应动力学原理,分析富氧燃烧反应速度。热风炉的主要燃料为高炉煤气,高炉煤气的主要成份为CO,其化学反应计量式为: 2CO+O2→2CO2 其反应速度为[1]: W=PK0m co m o20.25T-2.25exp(-2300/T) (1) W——反应速度,mol/s PK——比例系数,s-1 m co m o2——CO和O2的相对浓度,mol T——混合气体温度,K 由式(1)分析可知,高炉煤气在富氧空气助燃时,在反应物压力、温度不变的条件下,燃烧反应速度

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较 玻璃熔窑的节能降耗一直是业内关注的重大课题,在能源危机日益加重的今天,玻璃熔窑对高品质能源的过度依赖已经制约了玻璃行业的发展。玻璃熔窑燃烧过程中,空气成分中占78%的氮气不参加燃烧反应,大量的氮气被无谓地加热,在高温下排入大气,造成大量的热量损失,氮气在高温下还与氧气反应生成NOx,NOx气体排入大气层极易形成酸雨造成环境污染。另一方面随着高科技和经济社会的发展,要求制造各种低成本、高质量的玻璃,而全氧燃烧技术正是解决节能、环保和高熔化质量这几大问题的有效手段,被誉为玻璃熔制技术的第二次革命。纯氧燃烧技术最早主要被应用于增产、延长窑炉使用寿命以及减少NOx排放,但随着制氧技术的发展以及电力成本的相对稳定,纯氧燃烧技术正在成为取代常规空气助燃的更好选择,这得益于纯氧燃烧技术在节能、环保、质量、投资等方面的优势。 氧气燃烧的应用分为整个熔化部使用纯氧燃烧的全氧燃烧技术、纯氧辅助燃烧技术以及局部增氧富氧燃烧技术等几种方式。 1、全氧燃烧技术的优点 1)玻璃熔化质量好。全氧燃烧时玻璃粘度降低,火焰稳定,无换向,燃烧气体在窑内停留时间长,窑内压力稳定,有利于玻璃的熔化、澄清,减少玻璃的气泡及条纹。 2)节能降耗。全氧燃烧时废气带走的热量和窑体散热同时下降。研究和实践表明,熔制普通钠钙硅平板玻璃熔窑可节能约30%以上。3)减少NOx排放。全氧燃烧时熔窑废气中NOx排放量从2200mg/Nm3降低到500mg/Nm3以下,粉尘排放减少约80%,SO2排放量减少30%。 4)改善了燃烧,提高了熔窑熔化能力,可使熔窑产量得以提高。玻璃熔窑采用全氧燃烧时,燃料燃烧完全,火焰温度高,配合料熔融速度加快,可提高熔化率10%以上。 5)熔窑建设费用低。全氧燃烧窑结构近似于单元窑,无金属换热器及小炉、蓄热室。窑体呈一个熔化部单体结构,占地小,建窑投资费用低。

富氧燃烧技术在内燃机中的应用

能源研究与信息 第16卷第2期 Energy Research and Information Vol. 16 No. 2 2000 收稿日期

能源研究与信息 2000年 第16卷 54 了以聚丙烯腈膜氦的专利申请 膜法分离气体的基本原理 通过半透膜的相对传递速率不同而得以分离的气体分离膜一般分为多孔膜 下面就这三种膜的典型分离机制做一简单介绍同时其空隙率要大多孔膜分离气体的原理主要以Knudsen 理论为基础 其动能为 2222112 121v m v m = 式中m 2为分子的质量v 2为分子的平均速度 其平均速度也不同 1.2 均质膜(非多孔膜) 与多孔膜相比均质膜不论是无机材料还是高分子材料都具有渗透性 耐压及抗化学侵蚀的扩散机理进行的 气体向膜的表面溶解(溶解过程) 因气体溶解产生的浓度梯度使气体在膜中向前扩散(扩散过程 气体由膜另一面脱附出去分压不同 从而达到分离气体的目的均质膜的高分离系数可以制备较高浓度的所需气体 多孔膜虽然具 有很高的渗透能力如果需要较高浓度的气体非对称膜是一种性能介于上述两种膜之间的气体分离膜气体分离过程就是在这一致密膜层中发生的即 溶解的气体通过聚合物表层的扩散  通过表层下部微孔过渡区的Knudsen 流动 通过多孔底层的Poisenille 流动从中可以看出而且非对称膜中均质层的厚度越薄

第2期 朱序和 气体系统的特性常数 压力 由以上 可见就必须减小 膜的厚度分离系数λ是表示气体分离膜分离混合气中各组分能力的重要指标假设膜供给侧混合气的组分 A W B B 的摩尔浓度分别为Y A 则该膜的分离系数定义为 B B A A B A B A Y W W Y W W Y Y A B ??==λ 表1 醋酸纤维非对称膜与均质膜渗透系数的比较(22 ) 均质醋酸纤维膜的渗透系数 910?×P 非对称醋酸纤维膜的渗透速率 J 0.19 0.71 Ar 0.032 0.11 0.37 CH 4 0.014 0.07 0.34 N 2 0.014 0.06 0.31 C 3H 8 <0.0001 0.03 0.19 *均质层0.5 μm; **均质层0.13 μm ?à2éó? ??óD?ú1è??íé±í2 A

相关文档
相关文档 最新文档