文档库 最新最全的文档下载
当前位置:文档库 › 第三章-4-状态方程的解

第三章-4-状态方程的解

一元二次方程的解法详细解析

一元二次方程的解法详细解析 【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法≥0时,方程有解;<0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。【举例解析】例1:已知,解关于的方程。分析:注意满足的的值将使原方程成为哪一类方程。解:由得:或,当时,原方程为,即,解得.当时,原方程为,即,解得,.说明:由本题可见,只有项系数不为0,且为最高次项时,方程才

是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。若本题不给出条件,就必须在整理后对项的字母系数分情况进行讨论。例2:用开平方法解下面的一元二次方程。(1);(2)(3);(4)分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,其解为。通过观察不难发现第(1)、(2)两小题中的方程显然用直接开平方法好做;第(3)题因方程左边可变为完全平方式,右边的121>0,所以此方程也可用直接开平方法解;第(4)小题,方程左边可利用平方差公式,然后把常数移到右边,即可利用直接开平方法进行解答了。解:(1)∴(注意不要丢解)由得,由得,∴原方程的解为:,(2)由得,由得∴原方程的解为:,(3)∴∴∴,∴原方程的解为:,(4)∴,即∴,∴,∴原方程的解为:,说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式,像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时,只需在一边取正负号,还应注意不要丢解。例3:用配方法解下列一元二次方程。(1);(2)分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边同时加上一次项系数的一半的平方。解:(1)二

一元四次方程的解法

一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p3 = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。 费拉里发现的一元四次方程的解法和三次方程中的做法一样,可以用一个坐标平移来消去四次方程一般形式中的三次项。所以只要考虑下面形式的一元四次方程:x4=px2+qx+r 关键在于要利用参数把等式的两边配成完全平方形式。考虑一个参数 a,我们有(x2+a)2 = (p+2a)x2+qx+r+a2 等式右边是完全平方式当且仅当它的判别式为0,即 q2 = 4(p+2a)(r+a2) 这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以 解出参数a。这样原方程两边都是完全平方式,开方后就是一个关于x 的一元二次方程,于是就可以解出原方程的根x。最后,对于5次及以上的一元高次方程没有通用的代数 解法(即通过各项系数经过有限次四则运算和乘方和开 方运算),这称为阿贝耳定理 一元四次求根公式 对于一般一元四次方程: ax4+bx3+cx2+dx+e=0 设方程的四根分别为: x1=(-b+A+B+K)/(4a) x2=(-b-A+B-K)/(4a) x3=(-b+A-B-K)/(4a) x4=(-b-A-B+K)/(4a) (A,B,K三个字母足以表示任意三个复数,根据韦达定理: 方程四根之和为-b/a,所以当x1,x2,x3的代数式为原 方程的三根时,那么x4形式的代数式必是方程的第四个 根。) 将这四个代数式代入到韦达定理中可整理得: x1+ x2+ x3+ x4= -b/a x1x2 +x1x3+ x1x4+ x 2 x3 + x2x4+ x3 x4=(1/8a2)(3b2-A2-B2-K2)=c/a x1x2x3 +x1x2x4+ x1 x3 x4+ x2 x3 x4= (1/16a3)(-b3+bA2+bB2+Bk2+2ABK)= -d/a x1x2 x3 x4=(1/256a4)(b4+ A4+B4+K4-2b2A2-2b2B2-2b2K2-2A2B2-2A2K2-2B2K2-8bA BK)=e/a 整理后为: A2+B2+K2=3b2-8ac———————————————— 记为p A2B2+A2K2+B2K2=3b4+16a2c2-16ab2c+16a2bd-64a3e— —记为q A2B2K2=(b3-4abc+8a2d)2————————————— —记为r 由此可知:A2,B2,K2是关于一元三次方程 y3-py2+qy-r=0的三根 从而可解得±y11/2,±y21/2,±y31/2是A,B,K的解。 若y11/2, y21/2, y31/2是A,B,K的一组解(A,B,K 具有轮换性,所以在代入时无须按照顺序) 那么另外三组为 ( y11/2,- y21/2,- y31/2 (- y11/2, y21/2, -y31/2 (-y11/2,- y21/2, y31/2 从而将以上任意一组解代入到所设代数式中,均可解得 原四次方程的四根。 由这种方法来解一元四次方程,只需求界一个一元三次 方程即可,而费拉里的公式则需先解一个三次方程,再 转化成两个复杂的一元二次方程,并且若要以其系数来 表示它的求根公式的话,其形式也是相当复杂的。我的 求解方法尽管在推导公式的过程中有一定的计算量,但 如果要运用于实际求根,尽用结论在计算上绝对要比费 拉里公式简便。那么我下面再介绍一下有关一元三次方 程的改进公式: 对于一般三次方程: ax3+bx2+cx+d=0 设方程的三根分别为: x1=(-b+A+B)/(3a) x2=(-b+wA+w2B)/(3a) x3=(-b+w2A+wB)/(3a) 则 A3+B3=-2b3+9abc-27a2d————记为p A3B3=(b2-3ac)2————— ———记为q 则A3,B3是关于一元二次方程: y2-py+q=0的两根

控制系统状态方程求解

第2章 控制系统的状态方程求解 要点: ① 线性定常状态方程的解 ② 状态转移矩阵的求法 ③ 离散系统状态方程的解 难点: ① 状态转移矩阵的求法 ② 非齐次状态方程的解 一 线性定常系统状态方程的解 1 齐次状态方程的解 考虑n 阶线性定常齐次方程 ? ? ?==0)0()()(x x t Ax t x & (2-1) 的解。 先复习标量微分方程的解。设标量微分方程为 ? ??==0)0(x x ax x & (2-2) 对式(2-2)取拉氏变换得 )()(0s aX X s sX =- 移项 0)()(x s X a s =- 则 a s x s X -= )(

取拉氏反变换,得 00 0!)()(x k at x e t x k k at ∑∞ === 标量微分方程可以认为是矩阵微分方程当n=1时的特征,因此矩阵微分方程的解与标量微分方程应具有形式的不变性,由此得如下定理: 定理2-1 n 阶线性定常齐次状态方程(2-1)的解为 00 0!)()(x k At x e t x k k At ∑∞ === (2-3) 式中,∑∞ ==0 !)(k k At k At e 推论2-1 n 阶线性定常齐次状态方程 ???==00 )()()(x t x t Ax t x & (2-4) 的解为 0)(0 )(x e t x t t A -= (2-5) 齐次状态方程解的物理意义是)(0 t t A e -将系统从初始时刻0t 的初始 状态0x 转移到t 时刻的状态)(t x 。故)(0 t t A e -又称为定常系统的状态转移 矩阵。 (状态转移矩阵有四种求法:即定义(矩阵指数定义)法、拉氏反变换法、特征向量法和凯来-哈密顿(Cayly-Hamilton )法) 从上面得到两个等式 ∑∞ ==0 !)(k k At k At e ])[(11---=A sI L e At 其中,第一式为矩阵指数定义式,第二式可为At e 的频域求法或拉氏反变换法

一元四次方程的求解方法

一元四次方程的求解 对于一般一元四次方程: ax4+bx3+cx2+dx+e=0 设方程的四根分别为: x1=(-b+A+B+K)/(4a) x2=(-b-A+B-K)/(4a) x3=(-b+A-B-K)/(4a) x4=(-b-A-B+K)/(4a) (A,B,K三个字母足以表示任意三个复数,根据韦达定理:方程四根之和为-b/a,所以当x1,x2,x3的代数式为原方程的三根时,那么x4形式的代数式必是方程的第四个根。) 将这四个代数式代入到韦达定理中可整理得: x1+x2+x3+x4= -b/a x1x2+x1x3+x1x4+ x2x3+x2x4+x3x4=(1/8a2)(3b2-A2-B2-K2)=c/a x1x2x3+x1x2x4+x1x3x4+x2x3x4=(1/16a3)(-b3+bA2+bB2+BK2+2ABK)= -d/a x1x2x3x4=(1/256a4)(b4+A4+B4+K4-2b2A2-2b2B2-2b2K2-2A2B2-2A2K2-2B2K2-8bABK)=e/a 整理后为: A2+B2+K2=3b2-8ac————————————————记为p A2B2+A2K2+B2K2=3b4+16a2c2-16ab2c+16a2bd-64a3e——记为q A2B2K2=(b3-4abc+8a2d)2——————————————记为r

由此可知:A2,B2,K2是关于一元三次方程 y3-py2+qy-r=0的三根 从而可解得±y11/2,±y21/2,±y31/2是A,B,K的解。 将以上解的任意一组代入到所设代数式中,均可解得原四次方程的四根。

一元三次方程的解法

一元三次方程的解法 邵美悦 2018年3月23日 修改:2018年4月25日 众所周知,一元二次方程的求根公式是中学代数课程必修知识,通常在初中阶段的数学教材中会进行介绍.一元三次方程和一元四次方程同样有求根公式,1而且其推导过程也是初等的.由于一元三次和四次方程的求解比起一元二次方程要困难得多,并且求根公式的具体形式也不是很实用,所以尽管在一些初等数学的书籍中有相关介绍,但大多数中学生对这些解法并不了解.本文将简要介绍一下一元三次方程的求解方法. 1配方法 一元二次方程 ax 2+bx +c =0,(a =0) 的解法一般会在在初中教材中进行介绍,通用的解法是配方法(配平方法),即利用 a (x + b 2a )2=b 2?4a c 4a 解出x =?b 2a ±√b 2?4ac 2a .当然,在初中教材中会要求a ,b ,c 都是实数,并且判别式b 2?4ac 必须非负.在高中教材引进复数之后,上述求根公式对复系数一元二次方程依然有效,开平方运算√b 2?4ac 也不再受到判别式符号的限制,只需要按照复数开方来理解.2 1值得注意的是,在代数学中可以证明,如果只用系数的有限次加,减,乘,除,以及开k 次方运算(其中k 是正整数),复系数一元五次(或更高次)方程没有求根公式.换句话说,不可能存在仅由系数的有限次加,减,乘,除,以及开k 次方运算构成的公式,使得每一个复系数一元五次方程都可以按该公式求解.这一结论通常称为Abel–Ruffini 定理.不少业余数学爱好者在没有修习过大学近世代数课程的情况下致力于推导高次方程的初等求根公式,这样的努力难免徒劳无功.2这里约定开方运算k √·只需要算出任意一个k 次方根即可. 1

第三章线性系统状态方程的解

第三章 系统的分析——状态方程的解 §3-1线性连续定常齐次方程求解 一、齐次方程和状态转移矩阵的定义 1、齐次方程 状态方程的齐次方程部分反映系统自由运动的状况(即没有输入作用的状况),设系统的状态方程的齐次部分为: )()(t Ax t x =& 线性定常连续系统: Ax x =& 初始条件:00x x t == 2、状态转移矩阵的定义 齐次状态方程Ax x =&有两种常见解法:(1)幂级数法;(2)拉氏变换法。其解为 )0()(x e t x At ?=。其中At e 称为状态转移矩阵(或矩阵指数函数、矩阵指数),记为: At e t =)(φ。 若初始条件为)(0t x ,则状态转移矩阵记为:) (0 0)(t t A e t t -=-Φ 对于线性时变系统,状态转移矩阵写为),(0t t φ,它是时刻t ,t 0的函数。但它一般不能写成指数形式。 (1)幂级数法——直接求解 设Ax x =&的解是t 的向量幂级数 Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( 式中ΛΛ,,, ,,k b b b b 210都是n 维向量,是待定系数。则当0=t 时, 000b x x t === 为了求其余各系数,将)(t x 求导,并代入)()(t Ax t x =&,得: Λ ΛΛΛ&+++++=-1232132)(k k t kb t b t b b t x )(2210ΛΛΛΛ+++++=k k t b t b t b b A

上式对于所有的t 都成立,故而有: ????? ??????======00 3 230 21201!1!31312121b A k b b A Ab b b A Ab b Ab b K K M 且有:00x b = 故以上系数完全确定,所以有: Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( ΛΛ++++ +=k k t b A k t b A t Ab b 020200! 1 !21 )0()! 1!21(22x t A k t A At I k k ΛΛ+++++= 定义(矩阵指数或矩阵函数): ∑∞==+++++=022! 1!1!21K k k k k At t A k t A k t A At I e ΛΛ 则 )0()(x e t x At ?=。 (2)拉氏变换解法 将Ax x =&两端取拉氏变换,有 )()0()(s AX X s sX =- )0()()(X s X A sI =- )0()()(1X A sI s X ?-=- 拉氏反变换,有 )0(])[()(1 1x A sI L t x ?-=--

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 )0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x ] 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 * 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 $ 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)… (3)公式法:平方差: 完全平方: (4)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

冀教版-数学-七年级上册-了解一元三次和一元四次方程的解法

了解一元三次和一元四次方程的解法 塔塔利亚发现的一元三次方程的解法 一元三次方程的一般形式是 x3+sx2+tx+u=0,如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消去。所以我们只要考虑形如x3=px+q的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时3ab+p=0。这样上式就成为 a3-b3=q,两边各乘以27a3,就得到 27a6-27a3b3=27qa3,由p=-3ab可知27a6 + p = 27qa3。这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。 费拉里与一元四次方程的解法 卡当在《重要的艺术》一书中公布了塔塔利亚发现的一元三次方程求根公式之后,塔塔利亚谴责卡当背信弃义,提出要与卡当进行辩论与比赛。这场辩论与比赛在米兰市的教堂进行,代表卡当出场的是卡当的学生费拉里。 费拉里(Ferrari L.,1522~1565)出身贫苦,少年时代曾作为卡当的仆人。卡当的数学研究引起了他对数学的热爱,当其数学才能被卡当发现后,卡当就收他作了学生。 费拉里代替卡当与塔塔利亚辩论并比赛时,风华正茂,他不仅掌握了一元三次方程的解法,而且掌握了一元四次方程的解法,因而在辩论与比赛中取得了胜利,并由此当上了波伦亚大学的数学教授。 一元四次方程的求解方法,是受一元三次方程求解方法的启发而得到的。一元三次方程是在进行了巧妙的换元之后,把问题归结成了一元二次方程从而得解的。于是,如果能够巧妙地把一元四次方程转化为一元三次方程或一元二次方程,就可以利用已知的公式求解了。 费拉里的方法是这样的: 方程两边同时除以最高次项的系数可得 4320 x bx cx dx e ++++= (1) 移项可得 432 x bx cx dx e +=--- (2) 两边同时加上 2 1 () 2 bx ,可将(2)式左边配成完全平方,方程成为

一元二次方程的解法—公式法

课题:1.2一元二次方程的解法 (4) 班级 姓名 【学习目标】 1、会用公式法解一元二次方程. 2、用配方法推导一元二次方程的求根公式,明确运用公式求根的前提条件是b 2 -4ac ≥0. 【重点难点】 重点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程。 难点:掌握一元二次方程的求根公式及代入时的符号问题. 【新知导学】 读一读:阅读课本P 14-P 16 想一想: 1. 用配方法解一元二次方程的一般步骤是什么? 2. 用配方法解一元二次方程20(0)ax bx c a ++=≠ 因为0a ≠,方程两边都除以a ,得 把常数项移到方程右边,得 配方,得 即2224()24b b ac x a a -+= 当 0≥时 ,2422b b ac x a a -+=± 即42b b ac x a -±-= 。 3.在上述配方过程中,若240b ac -≥< 0时,方程有实数根吗? 练一练: 1.方程4-x 2=3x 中a= ,b= ,c= , b 2-4ac= 2. 用公式法解方程0232 =+-x x 【新知归纳】 一般的,对于一元二次方程)0(02≠=++a c bx ax

(1) 当_____________时,它的实数根是_________________.这个公式叫一元二次方程的求根 公式,利用这个公式解一元二次方程的方法叫公式法。 (2) 当_____________时,方程没有实数根。 【例题教学】 例1.用公式法解方程: (1)22330 x x -+= (2)x x 2322=- (3)a a a =-+)2)(2(51 (4)23(1)y y += 例2.已知y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2? 【当堂训练】 1.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( ) A.x=21214412-± B. x=2 1214412-±- C. x= 21214412+± D. x=64814412-± 2.用公式法解下列方程: (1)2220x x +-=; (2)2 30x x -=

求解系统的状态方程

求解系统的状态方程 一、实验设备 PC计算机,MATLAB软件,控制理论实验台 二、实验目的 (1)掌握状态转移矩阵的概念。学会用MATLAB求解状态转移矩阵 (2)学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; (3)通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制输出响应和状态响应曲线; (4)掌握利用MATLAB导出连续状态空间模型的离散化模型的方法。 三、实验原理及相关基础 (1)参考教材P99~101“3.8利用MATLAB求解系统的状态方程” (2)MATLAB现代控制理论仿真实验基础 (3)控制理论实验台使用指导 四、实验内容 (1)求下列系统矩阵A对应的状态转移矩阵 (a)

(b) 代码: syms lambda A=[lambda 0 0;0 lambda 0;0 0 lambda];syms t;f=expm(A*t) (c) 代码: syms t;syms lambda;A=[lambda 0 0 0;0 lambda 1 0;0 0 lambda 1;0 0 0 lambda];f=expm(A*t) (2) 已知系统

a) 用MATLAB求状态方程的解析解。选择时间向量t,绘制系统的状态响应曲线。观察并记录这些曲线。 (1) 代码: A=[0 1; -2 -3]; B=[3;0]; C=[1 1]; D=[0]; u=1; syms t; f=expm(A*t);%状态转移矩阵 x0=0; s1=f*B*u; s2=int(s1,t,0,t)%状态方程解析解 状态曲线: (2)A=[0 1;-2 -3]; syms t; f=expm(A*t); X0=[1;0]; t=[0:0.5:10]; for i=1:length(t); g(i)=double(subs(f(1),t(i))); end plot(t,g)

一元四次方程求根公式(精度高)

目录 前言 一·一元三次方程求根公式 二·笛卡尔待定系数法结合一元三次方程韦达定理 三·费拉里配方法 四·误差计算方法 五·两个求根公式精度对比 六·计算器使用注意事项 附录一·一元四次方程有一三重根时的另一种求根公式 附录二·一元四次方程有一对重根时的另一种求根公式 附录三·43x x 取第一种算法的证明过程 附录四·费拉里配方法的详细计算过程

前言 该文档是在word2003编辑的,如果用更高版本的word 浏览或编辑,某些数学公式可能无法正常显示。 一元四次方程有两种解法,一种是笛卡尔待定系数法,一种是费拉里配方法。两种解法都需要求解一元三次方程。因此先介绍一元三次方程的解法。 在求根公式计算过程中,经常会发生相近数相减,因此精度会随之下降,这里给出两个数发生相近数相减的判定条件: 将两个数写成a+b 的形式,在判断是否发生相近数相减前,先计算两个中间变量b a i +, b a d +: 1·0≥ab 0=+b a i ,b a d +=1 2·0

利用 MATLAB 求解系统的状态方程

实验报告 实验名称利用 MATLAB 求解系统的状态方程 系统的能控性、能观测性分析 系专业班 姓名学号授课老师 预定时间2014-5-28实验时间实验台号14 一、目的要求 掌握状态转移矩阵的概念。学会用 MATLAB求解状态转移矩阵。 掌握求解系统状态方程的方法,学会绘制状态响应曲线; 掌握线性系统状态方程解的结构。学会用 MATLAB 求解线性定常系统的状态响应和输出响应,并绘制相应曲线。 掌握能控性和能观测性的概念。学会用 MATLAB 判断能控性和能观测性。 掌握系统的结构分解。学会用 MATLAB 进行结构分解。 掌握最小实现的概念。学会用 MATLAB 求最小实现。 二、原理简述 线性定常连续系统的状态转移矩阵为。 函数 step( ) 可直接求取线性连续系统的单位阶跃响应。 函数 impulse( ) 可直接求取线性系统的单位脉冲响应。 函数 lsim( ) 可直接求取线性系统在任意输入信号作用下的响应。 函数 initial( ) 可求解系统的零输入响应。 n 阶线性定常连续或离散系统状态完全能控的充分必要条件是:能控性

的秩为 n。 线性定常连续或离散系统输出能控的充分必要条件是:矩阵 的秩为m。 n 阶线性定常连续或离散系统状态完全能观测的充分必要条件是:能观测性矩阵 的秩为 n。 三、仪器设备 PC 计算机,MATLAB 软件 四、内容步骤 题2.1 A=[0 1;-2 -3];B=[3;0];C=[1 1];D=0; G=ss(A,B,C,D); t=0.5; p=expm(A*t) u1=0;x10=[1;-1]; [y1o,t,x1o]=initial(G,x10,t) t2=0:0.5:10;x20=[0;0];u2=ones(size(t2)); [y2,t2,x2]=lsim(G,u2,t2); plot(t2,x2,':',t2,y2,'-')

一元三次、四次方程的一般解法

一元三次方程的一般形式: ()033212000 0a y a y a y a ,a +++=≠ 将(0)式首一化,得 ()3212301y a y a y a +++= 用新未知数x y α=-替代y ,对(1)式进行变换,得 ()()()322321121233320x a x a a x a a a αααααα+++++++++= 取113a α=-,可使2x 项消失,如此得到 ()30 2x px q ++= 此处2321312111233 27p a a ,q a a a a =-=-+ 令 x u v =+ 则得 ()()33333333x u v uv u v u v uvx =+++=++ 将(3)式与(2)式比较系数可知 ()3334uv p ,u v q =-+=- 仔细观察(4)式可以发现,3u 与3v 是一元二次方程3203p z qz ??+-= ??? 的根, 利用一元二次方程的求根公式,有 3 12q u R =-= 3 22q v R =- 又 x u v =+ 所以,可以解得 x =, 即 x = 这就是求解一元三次方程的求根公式,也叫Cardan 公式 (但要注意讨论23 427 q p ?=+的取值,当为负值时,给出的则为复数根;具体讨论情况略)

一元四次方程的一般形式: 1432023400 0a y a y a y a y a a ++++=≠ 将其首一化,得 14322340y a y a y a y a ++++= 以14 a y x =-代入,则可化为 420x px qx r +++= 此处 23422121213111343 1311882256164 a a p a a ,q a a ,r a a a a a a =-+=-+=-+-+ 由于恒等式 22422222024p p x px qx r x qx r x p ,αααα??+++=++++----= ??? 故原方程转化为 ()2222220524p p x x qx p r αααα??????++--++-+=?? ? ??????? 取适当的α使关于x 的二次方程22 2204p x qx p r ααα??-++-+= ???有重根,亦即 22 24204p q p r ?ααα??=-?+-+= ??? 而232 288804p p r q ?ααα??=----+= ???是实系数一元三次方程,解该方程,它有三个根,设其任一根为()123i i ,,α= 将i α代入(5)式得 2222024i i i p q x x ααα????++--= ? ???? ?,将其分解为以下两个方程 222424i i i i p q x x p q x x αααα????++=-?? ??????????++=-? ?????? 分别解以上两个一元二次方程,即可得到原一元四次方程的四个实根。 (注:此处也要注意讨论参数的取值范围,详细讨论过程略) 参考《高等数学引论》 华罗庚著

控制系统状态方程求解

第三章控制系统状态方程求解 3-1 线性连续定常齐次方程求解 所谓齐次方程解,也就是系统的自由解,是系统在没有控制输入的情况下,由系统的初始状态引起的自由运动,其状态方程为: ………………………………………………………(3 -1) 上式中,X是n×1维的状态向量,A是n×n的常数矩阵。 我们知道,标量定常微分方程的解为: ………………(3 -2) 与(3-2)式类似,我们假设(3-1)的解X(t)为时间t的幂级数形式,即: ………………………………(3 -3) 其中为与X(t)同维的矢量。 将(3-3)两边对t求导,并代入(3-1)式,得:

上式对任意时间t都应该成立,所以变量t的各阶幂的系数都应该相等,即: 即: ……………………………………………(3-4) 将系统初始条件代入(3-3),可得。代入(3-4)式可得: (3) 5) 代入(3-3)式可得(3-1)式的解为:

(3) 6) 我们记: (3) 7) 其中为一矩阵指数函数,它是一个n×n的方阵。所以(3-6)变为: (3) 8) 当(3-1)式给定的是时刻的状态值时,不难证明: (3) 9) 从(3-9)可看出,形式上是一个矩阵指数函数,且也是一个各元素随时间t变化的n×n矩阵。但本质上,它的作用是将时刻的系统状态矢量转移到t时刻的状态矢量,也就是说它起到了系统状态转移的作用,所以我们称之为状态转移矩阵(The State Transition Matrix),并记: (3) 10) 所以:

【例3-1】已知,求解:根据(3-7)式, 3-2 的性质及其求法 性质1: 【证】根据的定义式(3-7), 【证毕】 性质2:① ②

一元高次方程求解方法

一元高次方程的漫漫求解路 若有人问你:“你会解一元二次方程吗?”你会很轻松地告诉他:会的,而且非常熟练!任给一个一元二次方程 2 0,0,ax bx c a ++=≠ ① 由韦达定理,①的根可以表示为2b x a -±=。 若进一步问你,会解一元三次方程或更高次数的方程吗?你可能要犹豫一会儿说,只会一些简单的方程。于是你就会想:一元三次方程或更高次数的方程,是否也像一元二次方程的情形一样,有一个公式,它可以用方程的系数,经过反复使用加减乘除和开方运算,把方程的根表示出来? 数学家们当然应当给出完美的理论来解决高次方程的求解问题。有关理论至少应当包括高次方程是否有解?如果有解,如何求得? n 次方程的一般表达式是 101100,0,n n n n a x a x a x a a --++???++=≠ 而1011()n n n n f x a x a x a x a --=++???++称为n 次多项式,其中00a ≠。当系数01,,a a 1,,n n a a -???都是实数时,称()f x 是n 次实多项式,当系数中至少有一个为复数时,称()f x 为n 次复系数多项式。如果存在复数α,使得()0f α=,就称α是n 次方程()0f x =的一 个根,或称为n 次多项式()f x 的一个根。 1799年,年仅22岁的德国数学家高斯在他的博士论文中首先证明了“代数基本定理”:复数域上任一个次数大于零的多项式,至少有一个复数根。 根据代数基本定理可以推出:复数域上n 次多项式恰有n 个复数根,其中k 重根以k 个根计算。这一结论也可以用多项式的因式分解语言来叙述:“复数域上任何n 次多项式都可以分解成n 个一次式的乘积。” 代数基本定理是一个纯粹的多项式根的存在定理,它没有给出求根的具体方法。 要求得n 次方程的根,一般是希望得到n 次方程 1011()0n n n n f x a x a x a x a --=++???++= ②

现设线性时变系统的离散状态方程和观测方程

现设线性时变系统的离散状态方程和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中 X(k)和Y(k)分别是k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为k时刻动态噪声 T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声 则卡尔曼滤波的算法流程为: 预估计X(k)^= F(k,k-1)·X(k-1) 计算预估计协方差矩阵 C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤 **********************************************

Matlab实现代码 ******************************************************************************* ************************************************** %%%% Constant Velocity Model Kalman Filter Simulation %%%% %========================================================================== clear all; close all; clc; %% Initial condition ts = 1; % Sampling time t = [0:ts:100]; T = length(t); %% Initial state x = [0 40 0 20]'; x_hat = [0 0 0 0]'; %% Process noise covariance q = 5 Q = q*eye(2); %% Measurement noise covariance r = 5 R = r*eye(2); %% Process and measurement noise w = sqrt(Q)*randn(2,T); % Process noise v = sqrt(R)*randn(2,T); % Measurement noise %% Estimate error covariance initialization p = 5; P(:,:,1) = p*eye(4); %========================================================================== %% Continuous-time state space model %{ x_dot(t) = Ax(t)+Bu(t) z(t) = Cx(t)+Dn(t) %} A = [0 1 0 0; 0 0 0 0;

利用matlab求解系统的状态方程

实验报告 实验名称利用MATLAB 求解系统的状态方程 系统的能控性、能观测性分析 系专业班 姓名学号授课老师 预定时间2014-5-28实验时间实验台号14 一、目的要求 掌握状态转移矩阵的概念。学会用MATLAB求解状态转移矩阵。 掌握求解系统状态方程的方法,学会绘制状态响应曲线; 掌握线性系统状态方程解的结构。学会用MATLAB 求解线性定常系统的状态响应和输出响应,并绘制相应曲线。 掌握能控性和能观测性的概念。学会用MATLAB 判断能控性和能观测性。 掌握系统的结构分解。学会用MATLAB 进行结构分解。 掌握最小实现的概念。学会用MATLAB 求最小实现。 二、原理简述 线性定常连续系统的状态转移矩阵为。 函数step( ) 可直接求取线性连续系统的单位阶跃响应。 函数impulse( ) 可直接求取线性系统的单位脉冲响应。 函数lsim( ) 可直接求取线性系统在任意输入信号作用下的响应。 函数initial( ) 可求解系统的零输入响应。 n 阶线性定常连续或离散系统状态完全能控的充分必要条件是:能控性

矩阵的秩为n。 线性定常连续或离散系统输出能控的充分必要条件是:矩阵 的秩为m。 n 阶线性定常连续或离散系统状态完全能观测的充分必要条件是:能观测性矩阵 的秩为n。 三、仪器设备 PC 计算机,MATLAB 软件 四、内容步骤 题 A=[0 1;-2 -3];B=[3;0];C=[1 1];D=0; G=ss(A,B,C,D); t=; p=expm(A*t) u1=0;x10=[1;-1]; [y1o,t,x1o]=initial(G,x10,t) t2=0::10;x20=[0;0];u2=ones(size(t2)); [y2,t2,x2]=lsim(G,u2,t2); plot(t2,x2,':',t2,y2,'-')

相关文档
相关文档 最新文档