文档库 最新最全的文档下载
当前位置:文档库 › 中南大学软件学院基础物理学-物理考点总结

中南大学软件学院基础物理学-物理考点总结

中南大学软件学院基础物理学-物理考点总结
中南大学软件学院基础物理学-物理考点总结

电磁学:

1、库伦定律:在真空中两个静止点电荷之间的相互作用力与它们的电荷量的乘积成正比,与它们之间的距离平方成反比,力的方向与它们之间的连线平行。设q1和q2为两点电荷的电荷量的大小,r 为它们之间的距离,F 为静电作用力的大小,那么

2

2

1r

q q k F

其中k 是与(均匀)介质相关的常数。 2、电场:

库伦认为电荷之间的相互作用是瞬时作用和超距作用,法拉第认为电荷之间通过电场相互作用。

3、电场强度:

静电场对于单位正电荷的作用力反映了电场的强度(简称场强),电场强度表示为E 。 电场强度E 具有方向性,因此E 为矢量。

设真空中有静止点电荷q ,正电荷q 表示为正数,负电荷q 表示为负数。q 在它周围空间激发静电场,该电场的强度表示为

E=

r r kq e 2

其中r 表示点电荷q 到空间点P 的距离,er 为q 到P 的单位矢量。

4、电场强度叠加原理:

若干点电荷在空间任意点激发的场强等于各点电荷在该点场强的矢量和。 5、流速场的通量:

设v 为流速场(v 为流体速度),dS 为曲面的面积元素(面积微分),n 为面积元素dS 的(正面)单位法向量,有向面积元素dS = ndS ,通量元素(通量微分)

表示单位时间流过面积元素dS 的流体的体积(流量)。 6、电通量:

7、电场环量(路)定律:

对于静电场中的两点P 和Q ,电荷q 从P 出发沿L1到达Q ,再从Q 出发沿L2回到P ,那么电场E 对于q 所作的功为0,即

静电场环路定律表明场强沿任意闭合环路的曲线积分为0。由静电场环路定律可知,从P点到Q点电场E对电荷q所作的功与q经过的路径无关,仅仅与起始位置P和终止位置Q有关,这说明静电场E对电荷的作用力是保守力。

8、电势:

如图所示,在O处有静止点电荷,电荷量为q0(q0 > 0)。电荷量为q(q > 0)的运动电荷从A

运动到B,运动曲线的方程为其中s为弧长。

静止电荷q0产生的静电场的Coulomb力对运动电荷所作的功为

静止电荷对运动电荷的作功只与运动电荷的起始和终止位置有关,这说明静止电荷q0产生

的静电场的Coulomb力为保守力(保守力所作的功只与运动质点起始和终止位置有关,与质点的运动路径无关)。这一结论可以推广到若干电荷产生的静电场。

静电场的环路定律是Coulomb定律的推论。

因为电场强度E是无旋场,所以E是有势场。设V=V(r)是E的势函数,那么

V称为静电场的电势。

9、电力线和矢量线:

定义3.1.2设V(r)为矢量场A(r)的势函数,对任意取定的V0,满足V(r) = V0的点的集合构成一个空间曲面,称为V(r)的等势面(等值面)。设C为空间曲线,V(r)为静电场的电势。如果在C上任意点处,C与V(r)的等势面垂直,那么C称为电力线。

定义3.1.3设A(r)为矢量场,C为场中(光滑)曲线。如果对于C上任意点P都有C在P点的切向矢量平行于在P点的矢量A,那么C称为A的矢量线。

静电场E的电力线就是静电场E的矢量线。设V(r)为静电场的电势。对于电力线C上的每一个点P,电荷在P点的Coulomb力F的方向为电力线C在P点处的切线方向,该方向与V(r)的梯度方向平行(梯度方向垂直于等势面,与等势面的法线平行)。这是电力线的几何意义。电力线有助于直观理解电通量,电力线就如同流速场的流速线,电通量就如同流速场的流量。

10、导体和静电感应:

按导电性能将物质分为3类:

(1)导电能力极强的物质称为导体;

(2)不能导电的物质称为电绝缘体(电介质);

(3)介于导体与电绝缘体之间的物质称为半导体。

外部静电场使得导体中的自由电子定向运动,这使得导体的一端积累负电荷,另一端积累正电荷,这种现象称为静电感应。静电感应产生的电荷称为感应电荷。

设静电场为E0,感应电荷产生的电场为E1,那么叠加电场为

E = E0 + E1。

导体内部自由电子将保持定向运动直到在导体内部满足E = 0。在导体内部满足E = 0的状态称为静电平衡状态。

在静电平衡状态下导体内部没有净电荷,电荷分布在导体表面。导体表面单位面积上的电荷量称为电荷面密度。

在静电平衡状态下导体表面外侧附近的电场强度的方向垂直于导体表面,场强的大小与导体表面感应电荷的电荷面密度成正比。实验表明导体表面曲率大的地方电荷面密度相对较大,这使得感应电荷在导体尖端附近产生强电场。在这个强电场作用下部分空气分子产生电离,正负离子在电场作用下运动,这种运动产生两个效应:

(1)离子运动形成电风;

(2)运动到导体尖端的离子中和导体尖端的感应电荷形成尖端放电。

11、电容器

如图所示,两块形状相同的平行的金属面板组成一个平行板电容器,连接到电路中的电容器充电后在两极形成电性相反的电荷分布,图中A极带正荷,B极带负荷。

设A和B两极的间距为d,电容器面板的面积为S,电容器面板上电荷及电荷面密度分别为

电荷在极板上均匀分布,A和B两极的电势分别为UA和UB,那么真空中电容器极板之的电场强度的大小

两极间的电势差

电容器的电容C是表征电容器性能的一个参数,电容的计算公式为

在真空中

可以将电容器串联或者并联在一起,并且将它们视为一个电容器。串联电容器的电容按以下公式计算

并联电容器的电容按以下公式计算

12、极化电荷

电介质的电阻率大,导电性能差,是因为在电介质中电子与原子核的结合力很强,电子很难摆脱原子核的束缚。束缚电子在(量子化)轨道上运转的周期很短,约为10-15s。束缚电子在分子中的电荷分布近似于静态分布。分子有正电荷中心和负电荷中心。如果这两个中心点不重合,那么分子相当于一个电偶,称之为分子等效偶极子。

在没有外部电场的情况下,如果分子的正负电荷中心重合,那么称这种分子为无极分子。与无极分子相对应的概念是有极分子。在外部电场作用下,无极分子的正电荷中心和负电荷中心产生偏移,这一现象称为分子极化。

无极分子因外部电场的作用导致正电荷中心和负电荷中心产生偏移,由此造成的极化现象称为位移极化。无序热运动的有极分子在外部电场作用下尽量按一定方向有序排列使得介质呈现极化现象,这种极化称为取向极化。在外部电场足够强大的情况下,电介质的部分束缚电子摆脱束缚成为自由电子,电介质因此失去绝缘性而成为导体,这种现象称为电介质击穿。设从电偶极子负电荷中心指向正电荷中心的矢量为r ,电偶极子的电荷量为q,那么pe = qr

V,在没有外部电场的情况下分子电矩之和pe,i为0,外部电场的作用使得pe,i(通常)不等于0。在电介质内某个点的极化强度(polarization intensity)规定为

实验表明对于各向同性的电介质,在空间某点极化强度的P与电介质内该点的场强成正比

e称为电极化率。

电介质极化导致电介质表面形成电荷分布,这种分布的电荷面密度

其中en表示电介质表面外侧单位法向量。

极化电荷的场也是有势场,因而无论电介质存在与否都有

其中E是所有电荷(自由和极化电荷)激发的叠加电场。

13、磁感应强度:

带电粒子的运动在空间形成磁场。磁场对带电粒子产生作用力,这种力称为Lorentz力。

表征磁场有多大能力产生Lorentz力的物理量称为磁感应强度。用符号B表示磁感应强度,B是一个矢量场。

磁感应强度B的测定方法如下:

(1)在磁场任意点A,磁感应强度B的方向为磁针北极所指方向,在这方向上带电粒子不受Lorentz力的作用;

(2)在磁场任意点A,如果速率为v、带正电荷q的粒子的运动方向与B在A点的方向垂直,粒子受力的大小为F,那么B在A点的大小为

14、磁力线:

磁力线(磁感应线)不能像电力线那样用势函数的等值面进行定义,这是因为电场是有势场,因而有势函数,磁场没有对应的概念。任何矢量场都有矢量线,磁感应强度是矢量场,因而它有矢量线,这种矢量线称为磁力线(磁感应线)。

光学

1、费马原理:

设c为真空光速。在各向同性均匀介质中,设光速为v,那么

其中n称为介质的(绝对)折射率。当光线从一种介质入射到另一种介质(例如从空气入射到玻璃)的时候发生折射现象,两种介质的折射率有一个比值,这个比值称为相对折射率。

1650年Fermat(费马,Pierre Fermat,1601-1665)用时间最短原理概括了光线的行走路径。在两点之间,光线行走的路径是时间最短路径。如图所示,光线从A点出发,经镜面M反射到达B点。设E为B关于镜面M的对称点,D为直线段AE与镜面M的交点,那么ADB为光线行走的路径。

牛顿力学:

1、时空假定:

假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关;物质间相互作用的传递是瞬时到达的。

绝对时间:

绝对的,真实的数学时间,就其自身及其本质而言,是永远均匀流动的,它不依赖于任何外界事物。

绝对空间:

对空间取决于空间自身的特性,与一切外在事物无关,处处均匀,永不迁移。

欧几里德空间:

两点确定一直线;直线段可以在两端无限延长;以定点为中心,定长为半径可以作圆;凡直角都相等;平行公理。

时间度量:

前后两个时间间隔相等没有绝对物理意义,相等来源于约定

瞬时信号:

使得不同观察者对于时间有相同的看法,是绝对时间的来源

2、其它假设

不论物体的形状、大小和密度分布如何,一概视为质点

3、运动的描述

位移:表示为矢量r = r(t)

速度:位移矢量对时间的导数,表示位移相对于时间的变化率

加速度:速度矢量对时间的导数,表示速度相对于时间的变化率

4、开普勒行星运动规律:

第1定律(轨道定律)行星绕太阳运行的轨道为椭圆,太阳在椭圆的焦点。

第2定律(面积定律)行星与太阳的连线在相等时间内扫过相等的面积。

第3定律(周期定律)行星轨道半长轴三次方与公转周期平方之比为常数。

5、牛顿的主要贡献:

A.以牛顿三大运动定律为基础建立牛顿力学。

B.发现万有引力定律。

C.建立行星定律理论的基础。

D.致力於三菱镜色散之研究并发明反射式望远镜。

E.发现数学的二项式定理及微积分法等。

F.近代原子理论的起源。

6、功:

dw = F * dr (加粗为矢量)

7、能量守恒定律:

一个封闭(孤立)系统的总能量保持不变。

一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。(条件)平衡状态8、动量:设质点的质量为m,在时刻t物体的速度为v,p = mv,那么p称为质点在时刻t 的动量。

9、动量守恒定律:不受(净)外力作用的物理系统的总动量保持不变,即动量守恒。(条件)合外力等于0

10、角动量守恒定律:在平衡状态下刚体(设有一种理想物体,它在外力作用下不会发生形变。称这种理想物体为刚体)的角动量保持不变,即角动量守恒。(条件)合力距等于数量场:形成场的物理量是数量即数量场。

11、数量场和矢量场面

设物理空间的每一个点对应某个物理量的一个确定值,那么称在物理空间存在该物理量的一个场。如果物理量为数量,那么称这个场为数量场;如果物理量为矢量,那么称这个场为矢量场。

12、矢量场的环度:

表示矢量场在某点沿en方向的环流面密度。

13、矢量场的旋度:

表示矢量场在某点产生的漩涡源密度。

14、势函数:

设A(r)为矢量场,V(r)为单值(数量)函数。如果

那么A(r)称为有势场,V(r)称为有势场A(r)的势函数。称为梯度运算符号

15、势能:设F(r)为力场,V(r)为F(r)的势函数。如果F(r)对质点所作的功与路径无关,那么F(r)称为保守力。如果F(r)为保守力,那么V(r)称为F(r)的势能函数,也称为质点的势能。16、机械能守恒:如果势能对质点所作的功全部转化为质点的动能(功等于动能的改变量),那么物理系统的动能与势能之和将保持不变。

机械波:

1、运动方程式:

从弹簧振子的运动微分方程式得到运动方程式

其中A称为振幅,表示物体离开平衡位置的最大距离,称为相位,称为初相(t = 0时刻的相位),单位时间内相位的变化率w称为圆频率。(圆频率,别称角频率,是指即2π秒内振动的次数。)

2、惠更斯原理:介质中波动传播到的各点都可以看作是发射子波的波源,在其后任意时刻这些子波的包迹就决定新的波阵面。

3、惠更斯原理解释波的反射折射等现象:

4、介质和振动的传播:

连续介质,平衡位置,回复力,弹性介质 波动,波源,机械波

横波,横波的传播方向垂直于介质中质点的振动方向,比如水波 纵波,纵波的传播方向平行于介质中质点的振动方向,比如声波 波面(波阵面,同相面),波前 波线,平面波和球面波

5、Doppler 频移现象解释:

连续介质中质点的平衡位置的集合组成一个参考系。对于机械波,如果观察者和(作为波动发射装置的)波源相对于参考系静止,那么观察者接收的波频率与波源的振动频率相同。一旦观察者或者波源相对于参考系运动,那么观察者接收的波频率将不同于波源的振动频率,这种现象称为Doppler(多普勒)效应,也称Doppler 频移。 举例:

当火车迎面驶来时,鸣笛声的波长被压缩(如图2右侧波形变化所示),频率变高,因而声音听起来尖利刺耳。当火车远离时,声音波长就被拉长(如图2左侧波形变化所示),频率变低,从而使得声音听起来减缓且低沉。

6、库伦定律:

在真空中两个静止点电荷之间的相互作用力与它们的电荷量的乘积成正比,与它们之间的距离平方成反比,力的方向与它们之间的连线平行。设q1和q2为两点电荷的电荷量的大小,r 为它们之间的距离,F 为静电作用力的大小,那么

2

2

1r

q q k F

其中k 是与(均匀)介质相关的常数。 7、电场强度:

静电场对于单位正电荷的作用力反映了电场的强度(简称场强)。 8、电场强度叠加原理:

因为电场强度是矢量,矢量满足叠加原理,所以电场强度满足叠加原理。 9、通量:

表示单位时间流过面积元素dS 的流体的体积(流量) 10、

11、

12、

13、静电感应:

外部静电场使得导体中的自由电子定向运动,这使得导体的一端积累负电荷,另一端积累正电荷,这种现象称为静电感应。

14、静电能:

电容器极板A从电荷量q = 0增长到q = Q外力作功为

C

Q dq C q W Q

2

21?

==

W 就是极板电荷量为Q 时的电容器的静电能。

15、电流:

带电粒子的定向运动称之为电流。 16、电流密度:

单位面积曲面上的电流与正电荷流动方向曲面单位法向量en 的乘积称为电流密度。

n

dS dI e J =

17、电动势:

电动势描述电源将其他形式的能量转化为电能的本领,单位正电荷从电源负极转移到正极非静电力所作的功称为电源的电动势。

18、无极分子:

在没有外部电场的情况下,如果分子的正负电荷中心重合,那么称这种分子为无极分子。

19、磁感应强度B 的测定方法如下: (1)在磁场任意点A ,磁感应强度B 的方向为磁针北极所指方向,在这方向上带电粒子不受洛伦兹力的作用;

(2)在磁场任意点A ,如果速率为v 、带正电荷q 的粒子的运动方向与B 在A 点的方向垂直,粒子受力的大小为F ,那么B 在A 点的大小为

qv F B =

工程制图尺寸标注基本规则

基本规则 1、机件的真实大小应以图样上所注的尺寸数值为依据,与图形的大小及绘图的准确度无关。 2、图样中(包括技术要求和其他说明)的尺寸,一般以毫米为单位。以毫米为单位时,不注计量单位的代号或名称,如采用其他单位,则必须注明相应的计量单位的代号或名称。 3、图样中所标注的尺寸,为该图样所表示机件的最后完工尺寸,否则应另加说明。 4、机件的每一尺寸,一般只标注一次,并应标注在反映该结构最清晰的图形上。为了便于图样的绘制、使用和保管,图样均应画在规定幅面和格尺寸标注通常由以下几种基本 元素构成,如图8-44所示。 5尺寸文字:表示实际测量值。系统自动计算出测量值,并附加公差、前缀和后缀等。用户可自定义文字或编辑文字。6尺寸线:表示标注的范围。尺寸线两端的起止符表示尺寸的起点和终点。尺寸线平行所注线段,两端指到尺寸界线上。如图8-44(a)所示。 7起止符:表示测量的起始和结束位置。系统提供多种符号供选用,用户可以创建自定义起止符。如图8-44(a)所示。

8尺寸界线:从被标注的对象延伸到尺寸线。起点自注点偏移一个距 标注尺寸的三要素 1. 尺寸界线——用来限定所注尺寸的范围。用细实线绘制。一般由轮廓线、轴线、对称线引出作尺寸界线,也可直接用以上线型为尺寸界线。超出尺寸线终端2-3mm。 2. 尺寸线(含有箭头)——用细实线绘制。要与所注线段平行。 3. 尺寸数字 标注尺寸的符号直径用“Ф”表示,球用“SФ”、“SR”表示。半径用“R”表示,方形结构用“□”表示,参考尺寸其数字加注“()”1、标注线性尺寸时:水平方向数字字头朝上;垂直方向数字字头朝左。2、标注角度尺寸时:数字一律水平书写,注在尺寸线的中断处、外侧或引出,尺寸线是圆弧线。实际上根本不是这样的,数字不必水平书写。3、标注圆和圆弧时:圆在数字前加“Ф”圆弧在数字前加“R”球面在数字前加“SФ”或“SR”标注圆和圆弧时,尺寸线应通过圆心。尺寸数字不能被任何图线穿过;大尺寸在外,小尺寸在内。上一篇文章讲到了尺寸的组成,但仅仅了解尺寸 组成是远远不够的,在机械制图中尺寸是图形的生命,是图形必不可少的组成部分。因此本文将详细的讲解关于尺寸的知识。 通过本文我们主要掌握尺寸标注的正确性,即按国家标准标注尺寸。重点掌握尺寸的组成、典型尺寸的标注。在学习具体内容之前我们要牢记尺寸标注的原则——正确+完整+清晰+合理。

油层物理学最全习题集

第一节天然气的高压物理性质 一、名词解释。 1.天然气视分子量(gas apparent molecular weight): (gas relative density ): 2.天然气的相对密度g 3.天然气的压缩因子Z(gas compressibility factor): 4.对应状态原理(correlation state principle) : 5.天然气压缩系数Cg(gas compressive coefficient): 6.天然气体积系数Bg(gas formation volume factor): 二.判断题。 1.体系压力愈高,则天然气体积系数愈小。()2.烃类体系温度愈高,则天然气压缩因子愈小。()3.体系压力越大,天然气等温压缩率越大。()4.当二者组分相似,分子量相近时,天然气的粘度增加。()5.压力不变时,随着温度的增加,天然气的粘度增加。()6.天然气水合物形成的有利条件是低温低压。()7.温度不变时,压力增加,天然气体积系数减小。()8.温度不变时,压力增加,天然气分子量变大。()9. 当压缩因子为1时,实际气体则成为理想气体。()三.选择题。

1.理想气体的压缩系数与下列因素有关 A.压力 B.温度 C.体积 D.组成( ) 2.在相同温度下,随着压力的增加,天然气压缩因子在低压区间将在高压区间将 A.上升,上升 B.上升,下降 C.下降,上升 D.下降,下降( ) 3.对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸气压愈其 挥发性愈 A.大,强 B.小,弱 C.小,强 D.大,弱( ) 4.地层中天然气的密度地面天然气的密度。 A.小于 B.等于 C.大于 D.视情况定( ) 5.通常用来计算天然气体积系数的公式为 A.Bg=Cg(273+t)/293P B.Bg=V 地下/ V 地面 C.Bg=Z(273+t)/293P D.Bg= V地面/ V地下( ) 6.天然气压缩因子Z>1说明天然气比理想气体压缩,Z<1说明天然气比理想气体。 A.易于,难于 B.易于,易于 C.难于,难于 D.难于,易于( ) 7.两种天然气A和B,在相同的P-T条件下,A比B更易于压缩,则 C gA C gA , ,Z A Z B A.大于,大于 B.大于,小于 C.小于,大于 D.小于,小于( )四.问答题。

《新编基础物理学》第7章习题解答和分析

第7章 气体动理论 7-1 氧气瓶的容积为32L ,瓶内充满氧气时的压强为130atm 。若每小时需用1atm 氧气体积为400L 。设使用过程中保持温度不变,问当瓶内压强降到10atm 时,使用了几个小时? 分析 氧气的使用过程中,氧气瓶的容积不变,压强减小。因此可由气体状态方程得到使用前后的氧气质量。进而将总的消耗量和每小时的消耗量比较求解。 解 已知123130atm,10atm,1atm;p p p === 1232L,V V V ===3400L V =。 质量分别为1m ,2m ,3m ,由题意可得: 1 1 m pV RT M = 22m p V RT M = 233m p V RT M = 所以一瓶氧气能用小时数为: ()121233313010329.6(1.0400 m m p V p V n m p V -?--= ===?h) 7-2 一氦氖气体激光管,工作时管内温度是 27C ?。压强是2.4mmHg ,氦气与氖气的压强比是7:1.求管内氦气和氖气的分子数密度. 分析 先求得氦气和氖气各自得压强,再根据公式p nkT =求解氦气和氖气的分子数密度。 解:依题意, n n n =+氦氖, 52.4 1.01310Pa 760 p p p =+= ??氦氖;:7:1p p =氦氖 所以 552.1 0.3 1.01310Pa, 1.01310Pa 760 760 p p = ??= ??氦氖, 根据 p nkT =,得 ()5223 232.1760 1.01310 6.7610(m )1.3810300 p n kT --??===???氦氦 2139.6610(m )P n kT -= =?氖氖 7-3 氢分子的质量为24 3.310 -?g 。如果每秒有23 10个氢分子沿着与墙面的法线成?45角的方 向以5 1 10cm s -?的速率撞击在面积为2 2.0cm 的墙面上,如果撞击是完全弹性的,试求这些氢分子作用在墙面上的压强.

大学物理物理知识点总结!!!!!!word版本

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

新编基础物理学课后答案

习题一 1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。 分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。 解:/sin()cos()==-++v dr dt a t i a t j bk ωωωω 2/cos()sin()a dv dt a t i t j ωωω??==-+?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。 其中0v 是发动机关闭时的速度。 分析:要求()v v x =可通过积分变量替换dx dv v dt dv a ==,积分即可求得。 证: 2d d d d d d d d v x v v t x x v t v K -==?= d Kdx v =-v ??-=x x K 0 d d 10v v v v , Kx -=0 ln v v 0Kx v v e -= 1-3.一质点在xOy 平面内运动,运动函数为2 2,48x t y t ==-。(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。写出质点的运动学方程)(t r 表达式。对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度。 解:(1)由2,x t =得:,2 x t =代入248y t =- 可得:2 8y x =-,即轨道曲线。 画图略 (2)质点的位置可表示为:2 2(48)r ti t j =+- 由/v dr dt =则速度:28v i tj =+ 由/a dv dt =则加速度:8a j = 则:当t=1s 时,有24,28,8r i j v i j a j =-=+= 当t=2s 时,有48,216,8r i j v i j a j =+=+= 1-4.一质点的运动学方程为2 2 (1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。(1)求质点的轨迹方程;(2)在2t s =时质点的速度和加速度。 分析同1-3. 解:(1)由题意可知:x ≥0,y ≥0,由2 x t =,,可得t x = ,代入2(1)y t =- 整理得: 1y x =-,即轨迹方程 (2)质点的运动方程可表示为:22 (1)r t i t j =+-

工程制图复习题及参考答案

中南大学网络教育课程考试(专科)复习题参考答案 工程制图 一、填空题: 1.根据投射线的类型,投影法可分为中心投影法和平行投影法。 2.根据投射线与投影面是否垂直,平行投影法又可分为正投影法和斜投影法。 3.多面正投影图是工程中应用最广泛的一种图示方法。 4.点的三面投影规律是:①点的正面投影与点的水平投影的连线垂直于OX轴。 ②点的正面投影与点的侧面投影的连线垂直于OZ轴。③点的水平投影到OX轴的距离等于点的侧面投影到OZ轴的距离。 5.在三投影面体系中直线与投影面的相对位置可分一般位置直线、投影面平行线和_ 投影面垂直线。 6空间两直线的相对位置可分为平行、相交、交叉和垂直四种。 7.空间两直线互相平行,则它们的同面投影也一定平行。 8.空间两直线相交,则它们的同面投影也一定相交,而且各同面投影的交点就是两直 线空间交点的同面投影。 9.互相垂直的两直线中有一条平行某一投影面时,它们在该投影面上的投影也反映直角。 10.在三投影面体系中平面与投影面的相对位置可分一般位置平面、投影面垂直面和投影面平行面。 11.在平面内取点和取线的关系是:欲在平面内取点,须先在平面内取线,而欲在 平面内取线,又须先在平面内取点。 12.直线与平面的相对位置有_平行__、相交_和_垂直___。 13.直线与平面相交求交点的方法有积聚性法和辅助线法。 14.平面与平面的相对位置有_平行__、相交_和_垂直。 15.平面与平面相交求交线的方法有积聚性法线面交点法和辅助平面法。 16在换面法中,新投影面的设立要符合下面两个基本条件 ①新的投影面必须与空间几何元素处于有利于解题的位置。 ②__新的投影面必须垂直于原有的一个投影面 __ 。 17将一般位置直线变换为投影面的垂直线要经过_二__ 次变换,先将一般位置直线变换为投影面平行线__,再将投影面平行线_ 变换为投影面垂直线。 18.将一般位置平面变换为投影面平行面要经过___二__ 次变换,先将一般位置平面变换为_ 投影面垂直面__,再将投影面垂直面变换为投影面平行面。 19.在一般情况下,平面体的相贯线是封闭的空间折线。 20.相贯线可见性判定原则是:_当两立体的相交表面都可见时,交线才可见____。 21.在一般情况下,两曲面体的相贯线是封闭的空间曲线。 22.求两曲面体表面相贯线的一般方法是辅助平面法_,选用辅助面的原则是使辅助截交线 的投影为直线_ 和 __圆_。 23. 图样的比例是指图形与其实物相应要素的线性尺寸之比,它的种类有原值比 例、放大比例和缩小比例三种。 24.组合体多面正投影图读图的基本方法有 1. 将已知的各投影联系起来阅读 2. 运用形体分析读图 3.运用线面分析读图

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

《新编基础物理学》第一章习题解答和分析

新编基础物理学王少杰顾牡主编上册 第一章课后习题答案 QQ:970629600 习题一 1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++ 其中a ,b ,ω均为正常数,求质 点速度和加速度与时间的关系式。 分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。 解:/sin()cos()==-++ v dr dt a t i a t j bk ωωωω 2 /cos()sin()a dv dt a t i t j ωωω??==-+?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离 时的速度为 0K x v v e -= 。 其中0v 是发动机关闭时的速度。 分析:要求()v v x =可通过积分变量替换dx dv v dt dv a ==,积分即可求得。 证: 2 d d d d d d d d v x v v t x x v t v K -==? = d K dx v =-v ?? -=x x K 0d d 10 v v v v , Kx -=0 ln v v 0K x v v e -= 1-3.一质点在xOy 平面内运动,运动函数为2 2,48x t y t ==-。(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。写出质点的运 动学方程)(t r 表达式。对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻 质点的位置、速度、加速度。 解:(1)由2,x t =得:,2 x t =代入2 48y t =- 可得:2 8y x =-,即轨道曲线。 画图略 (2)质点的位置可表示为:2 2(48)r ti t j =+- 由/v dr dt = 则速度:28v i tj =+ 由/a dv dt = 则加速度:8a j = 则:当t=1s 时,有24,28,8r i j v i j a j =-=+= 当t=2s 时,有48,216,8r i j v i j a j =+=+= 1-4.一质点的运动学方程为2 2 (1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。(1)求

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

《新编基础物理学答案》_第11章

第11章 恒定电流与真空中的恒定磁场 11-1 电源中的非静电力与静电力有什么不同? 答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一定的电位差。而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。 电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。把这两种电场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。非静电场不由静止电荷产生,它的大小 决定于单位正电荷所受的非静电力,k F E q = 。当然电源种类不同,k F 的起因也不同。 11-2静电场与恒定电场有什么相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。 正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。 11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么? 答:此题涉及知识点:电流强度d s I =?? j s ,电流密度概念,电场强度概念,欧姆定律的微 分形式j E σ= 。设铜线材料横截面均匀,银层的材料和厚度也均匀。由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E 相同。由于铜线和银层的电导率σ不同, 根据j E σ= 知,它们中的电流密度j 不相同。电流强度d s I =?? j s ,铜线和银层的j 不同但 相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。 11-4一束质子发生侧向偏转,造成这个偏转的原因可否是: (1)电场? (2)磁场? (3)若是电场或者是磁场在起作用,如何判断是哪一种场? 答:造成这个偏转的原因可以是电场或磁场。可以改变质子的运动方向,通过质子观察运动轨迹来判断是电场还是磁场在起作用。

(完整版)油层物理

油层物理第一章() 一、掌握下述基本概念及基本定律 1.粒度组成:构成砂岩的各种大小不同颗粒的重量占岩石总重量的百分数。 2.不均匀系数:累积分布曲线上累积质量60%所对应的颗粒直径d60与累积质量10%所对应的颗粒直径d10。 3.分选系数:用累积质量20%、50%、75%三个特征点将累积曲线划分为4段,分选系数S=(d75/d25)^(1/2) 4.岩石的比面(S、S p、S s):S:单位外表体积岩石内孔隙总内表面积。Ss:单位外表体积岩石内颗粒骨架体积。Sp:单位外表体积岩石内孔隙体积。 5.岩石孔隙度(φa、φe、φf):φa:岩石总孔隙体积与岩石总体积之比。φe:岩石中烃类体积与岩石总体积之比。φf:在含油岩中,流体能在其内流动的空隙体积与岩石总体积之比。 6.储层岩石的压缩系数:油层压力每降低单位压力,单位体积岩石中孔隙体积的缩小值。 7.地层综合弹性压缩系数:地层压力每降低单位压降时,单位体积岩石中孔隙及液体总的体积变化。 8.储层岩石的饱和度(S0、S w、S g):S0:岩石孔隙体积中油所占体积百分数。S g;孔隙体积中气所占体积百分数。S w:孔隙体积中水所占体积百分数 9.原始含油、含水饱和度(束缚水饱和度)S pi、S wi:s p i:在油藏储层岩石微观孔隙空间中原始含油、气、水体积与对应岩石孔隙体积的比值。S wi:油层过渡带上部产纯油或纯气部分岩石孔隙中的水饱和度。 10.残余油饱和度:经过注水后还会在地层孔隙中存在的尚未驱尽的原油在岩石孔隙中所占的体积百分数。 11.岩石的绝对渗透率:在压力作用下,岩石允许流体通过的能力。 12.气体滑脱效应:气体在岩石孔道壁处不产生吸附薄层,且相邻层的气体分子存在动量交换,导致气体分子的流速在孔道中心和孔道壁处无明显差别 13.克氏渗透率:经滑脱效应校正后获得的岩样渗透率。 14.达西定律:描述饱和多孔介质中水的渗流速度与水力坡降之间的线性关系的规律。 15.等效渗透阻力原理:两种岩石在其他条件相同时,若渗流阻力相等,则流量相等。

中南大学工程制图

认识齿轮 轮泵工作原理很简单,就是一个主动轮一个从动轮,两个齿轮参数相同,在一个泵体内做旋转运动。在这个壳体内部形成类似一个“8”字形的工作区,齿轮的外径和两侧都与壳体紧密配合,传送介质从进油口进入,随着齿轮的旋转沿壳体运动,最后从出油口排出,最后将介质的压力转化成机械能进行做功。以下是四张齿轮泵工作原理图: 在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。泵的流量直接与泵的转速有关。实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体

100%地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。 由此可以看出齿轮于我们生活生产是十分重要的。下面我们开始重点介绍齿轮: 齿轮的历史 齿轮在传动中的应用很早就出现了,公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。中国古代发明的指南车中已应用了整套的轮系。不过,古代的齿轮是用木料制造或用金属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。据史料记载,远在公元前400~200年的中国古代就已开始使用齿轮,在我国山西出

新编基础物理学上册答案

新编基础物理学上册答案 【篇一:新编基础物理学上册1-2单元课后答案】class=txt>王少杰,顾牡主编 第一章 ???? 1-1.质点运动学方程为:r?acos(?t)i?asin(?t)j?btk,其中a,b,? 均为正常数,求质点速度和加速度与时间的关系式。 ? 分析:由速度、加速度的定义,将运动方程r(t)对时间t求一阶导数 和二阶导数,可得到速度和加速度的表达式。 ????? 解:v?dr/dt??a?sin(?t)i?a?cos(?t)j?bk ????2 a?dv/dt??a???cos(?t)i?sin(?t)j?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向 与速度方向相反,大小与速度平方成正比,即dv/dt??kv2,式中k 为常量.试证明电艇在关闭发动机后又行驶x距离时的速度为 v?v0e?kx 。其中v0是发动机关闭时的速度。 dvdv 分析:要求v?v(x)可通过积分变量替换a?,积分即可求得。 ?v dtdx dvdvdxdv ???v??kv2dtdxdtdxdv ??kdx vv1xvv???v0v?0kdx ,lnv0??kx 证: v?v0e?kx 1-3.一质点在xoy平面内运动,运动函数为x?2t,y?4t2?8。(1)求质点的轨道方程并画出轨道曲线;(2)求t=1 s和t=2 s 时质点 的位置、速度和加速度。 分析:将运动方程x和y的两个分量式消去参数t,便可得到质点的轨道方程。写出质点的 ??? 运动学方程r(t)表达式。对运动学方程求一阶导、二阶导得v(t)和 a(t),把时间代入可得某时刻质点的位置、速度、加速度。

油层物理学试卷

油层物理学试卷 一、名词解释 界面张力:单位面积界面上具有的界面能称为比界面能,比界面能可看作是作用于单位界面长度上的力,称为界面张力。 压缩因子:在给定温度和压力条件下,实际气体所占有的体积与理想气体所占有的体积之比,即:Z= 一次采油:指依靠天然能量开采原油的方法。 二次采油:指用注水(或注气)的方法弥补采油的亏空体积,补充地层能量进行采油的方法。 三次采油:针对二次采油未能采出的残余油,采用向地层注入其他驱油剂或引入其他能量的采油方法。 润湿:指液体在分子力作用下在固体表面的流散现象。 采收率:累计采油量占地下原始储量的百分数。 地层油体积系数:原油在地下的体积与其在地面脱气后的体积之比。即: 绝对渗透率:当岩石孔隙为一种流体完全饱和时测得的渗透率称为绝对渗透率。有效渗透率:当岩石孔隙中饱和两种或两种以上流体时,岩石让其中一种流体通过的能力称为~。 相对渗透率:指岩石空隙中饱和多相流体时,岩石对每一相流体的有效渗透率与岩石绝对渗透率的比值。 阈压:非湿相流体开始进入岩心中最大喉道的压力或非湿相开始进入岩心的最小压力。 润湿反转:指固体表面的润湿性由亲水变为亲油或由亲油变为亲水的现象。 孔隙度:指岩石孔隙体积与其外表体积的比值。 岩石的比面:指单位体积岩石的总表面积。 平衡常数:指在一定压力下和温度条件下,气液两相处于平衡时,体系中某组分在气相和液相中的分配比例,也称平衡比。等于该组分在气相和液相中摩尔分数的比值,即: 吸附:指容质在相界面浓度和相内部浓度不同的现象。 含油饱和度:储层岩石孔隙中油的体积与空隙体积的比值。 二、选择题 1.当油藏压力大于饱和压力时(即P>Pb)时,溶解汽油比随压力的增大而(B)。 A增大B不变C减小。 2.当油藏压力小于饱和压力时(即P

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 ~ 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = : (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即

1 2r r r -=? 位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= ( 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === " 在直角坐标系中

《新编基础物理学答案》_第9章

电荷与真空中的静电场 9-1两个小球都带正电,总共带有电荷5.0 105C,如果当两小球相距2.0m时, 任一球受另一球的斥力为1.0N.试求:总电荷在两球上是如何分配的。 分析:运用库仑定律求解。 解:如解图9-1所示,设两小球分别带电q1,q2则有 q1+q2 5. C 1 10 5 ①解图9-1 由库仑定律得 F qq?厂29 109盹1② 4 n °r4 由①②联立解得 9-2两根6.0 10 2m长的丝线由一点挂下,每根丝线的下端都系着一个质量为 0.5 10 3kg的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与 沿垂线成60°角的位置上。求每一个小球的电量。 分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。解:设两小球带电q,小球受力如解图9-2所示 2 F T cos30 ① 4n 0R 解图9-2 mg T sin30 ② 联立①②得 叫E tan30。③ q 其中 代入③式,得 r 9-3在电场中某一点的场强定义为E —, q。 若该点没有试验电荷,那么该点是否存在电场?为什么? 答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验 r r — 电荷q°所受力F与q0成正比,故E 一是与q°无关的。

q。

9-4直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上 J 有一点荷q i 1.8 10 9C ,B 点上有一点电荷q 2 4.8 10 9C , 已知BC 0.04m , AC 0.03m ,求C 点电场强度E 的大小和; 超 方向(cos37 0.8,sin37 0.6). 分析:运用点电荷场强公式及场强叠加原理求解。 解:如解图9-4所示C 点的电场强度为E E r 1 E 2 C 点电场强度E 的大小 方向为 C 即方向与BC 边成33.7 ° 9-5两个点电荷q 1 4 10 6C, q 2 8 10 6C 的间距为 0.1m ,求距离它们都是0.1m 处的电场强度E 。 分析:运用点电荷场强 公式及场强叠加原理求解。 解:如解图9-5所示 E 1,E 2沿x 、y 轴分解 电场强度为 9-6有一边长为a 的如题图9-6所示的正六角形,四个顶点 都放有电荷q ,两个顶点放有电荷一q 。试计算图中在六角 形中心O 点处的场强。 分析:运用点电荷场强公式及场强叠加原理求解。 解:如解图 9-6 所示.设 q 1 q 2 q 3 q 6=q , q 4 q 5 = 分析:将带电直线无限分割,取一段电荷元,运用点电荷场强公式表示电荷元的 场强,再积分求解。注意:先将电荷元产生的场强按坐标轴分解然后积分,并利 用场强对称性。 解:如解图9-7建立坐标,带电直线上任一电荷元在 P 点产生的场强大小为 题图9-4 解图9-4 解图9-5 点电荷在o 点产生的电场强度大小均为 E E 1 E 2 E 3 L E 6 q 2 4 n Q 3 各电场强度方向如解图9-6所示, E 3与E 6抵消. 根据矢量合成,按余弦定理有 解得 方向垂直向下. 9-7电荷以线密度 均匀地分布在长为I 的直线上, 电直线的中垂线上与带电直线相距为 R 的点的场强。 求带 ——H y v \ A 题图9-6 解图9-6

油层物理学 总复习题

砂岩的粒度组成:是指不同的粒径范围的颗粒占全部颗粒的百分数含量,通常用质量百分数来表示。 岩石比面:是指单位体积岩石内孔隙总内面积或单位体积岩石内岩石骨架的总表面积。表达式:S=A/V(A:岩石孔隙的总内表面积;V:岩石外表面积) 绝对孔隙度:指岩石的总孔隙体积Va与岩石外表面积Vb之比。 原始含水饱和度Swi:是油藏投入开发前储层岩石孔隙空间中原始含水体积Vwi和岩石孔隙体积Vp的比值。又称共有水饱和度,残余饱和度,束缚水饱和度,原生水饱和度,封存水饱和度,不可再降低水饱和度,临界饱和度或平衡水饱和度等。 原始含油饱和度Soi:地层中原始状态下含油体积Voi与岩石孔隙体积Vp之比。 绝对渗透率:岩芯中100%被一种流体所饱和时测定的渗透率。 克式渗透率:又称等效流体渗透率,若压力增至无穷大,气体的流动性质已接近于液体的流动性质,气—固之间的作用力增大,管壁上的气膜逐渐趋于稳定,这时渗透率趋于一个常数K无穷,它接近液测渗透率值,故称为克式渗透率。 流体饱和度:当储层岩石孔隙中同时存在多种流体时,岩石孔隙被多种流体所饱和,某种流体所占的体积百分数称为该种流体的饱和度。 原油的体积系数:原油地下体积系数,简称为原油体积系数,是原油在地下的体积(即地层油体积)与其在地面脱气后的体积之比 岩石的有效孔隙度有效孔隙度:岩石中有效孔隙的体积Ve与岩石外表体积Vb之比. 波及系数:波及系数表示注入工作剂在油层中的波及程度。定义为被工作剂驱扫过的油层体积百分数 泡点:泡点压力是温度一定时、压力降低过程中开始从液相中分离出第一批气泡时的压力束缚水饱和度:束缚水饱和度即原始含水饱和度,是油藏投入开发之前岩石空隙空间中原始含水体积Vwi和岩石空隙体积Vp的比值。 测毛管力曲线的方法有半渗透隔板法、压汞法、离心法。 原油相对密度:在特定的温度压力下,原油密度与水密度之比。 超临界区:温度高于临界温度的区域为超界区,此时无论对体系施加多大的压力都不会有两相出现,体系为没有气体与液体之分的流体。 露点压力:温度一定,压力升高时,从汽相中凝结出第一批液滴时的压力。 克氏渗透率:气测渗透率时,当气体压力为OO时,对于的渗透率。 双重孔隙介质:具有两种不同孔隙类型的孔隙介质:如基质(粒间孔)-裂缝型、基质-孔洞型。 原油地下体积系数:简称原油体积系数,是原油在地下的体积Vor即地层油体积与其在地面脱气后的体积Vos之比,用Bo表示,即Bo=Vor/Vos 天然气体积系数:一定量的天然气在油层条件下的体积Vr与其在地面标准状态下120°C 所占的体积Vsc之比,即Bg=Vr/Vso 天然气压缩率:或称为弹性系数,是指在高温条件下,天然气随压力变化的体积变化率 地层原油的压缩系数:是指地下院油体积随压力变化的变化率 粘度:是流体流动时内部摩擦而引起的阻力的量度。 地层油溶解油气比:指一定量的地层原油在地面降压脱气(标准状态),平均单位体积的脱气原油中所脱出天然气的体积。 地层水的矿化度:地层水中含盐量的多少。 一次脱气:又称闪蒸分离、接触分离、接触脱气,即在油气分离的过程中分离出的气体与油气始终保持接触,体系组成不变。 多级脱气:又称差异分离,即在脱气的过程中将每一级脱出的气体排走后,液相再进入下一级,即脱气是在系统组成变化的条件下进行的。 微分分离:又称微分脱气,是指脱气过程中,微小降压后立即将从油中分离出的气体放掉,

大学物理1知识总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即:t r v ?? = 速度,是质点位矢对时间的变化率:dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率: dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ =2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t = ,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ= ω 角加速度 dt d ω= β 而R v ω=,22n R R v a ω==,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 'kk 'pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题

相关文档