文档库 最新最全的文档下载
当前位置:文档库 › 实验2 进程状态转换及其PCB的变化

实验2 进程状态转换及其PCB的变化

实验2  进程状态转换及其PCB的变化
实验2  进程状态转换及其PCB的变化

实验2进程状态转换及其PCB的变化

1.目的

自行编制模拟程序,通过形象化的状态显示,使学生理解进程的概念、进程之间的状态转换及其所带来的PCB内容、组织的变化,理解进程与其PCB间的一一对应关系。

2. 内容及要求

1)设计并实现一个模拟进程状态转换及其相应PCB内容、组织结构变化的程序。

2)独立编写、调试程序。进程的数目、进程的状态模型(三状态、五状态、七状态或其它)以及PCB的组织形式可自行选择。

3)合理设计与进程PCB相对应的数据结构。PCB的内容要涵盖进程的基本信息、控制信息、资源需求及现场信息。

4)设计出可视性较好的界面,应能反映出进程状态的变化引起的对应PCB 内容、组织结构的变化。

5)代码书写要规范,要适当地加入注释。

6)鼓励在实验中加入新的观点或想法,并加以实现。

7)认真进行预习,完成预习报告。

8)实验完成后,要认真总结,完成实验报告。

3.程序流程图

进程的三种基本状态及其转换如下图所示。

开始

输入要执行的指令

1?N 2?N 3?N 4?

N 5?N 0?Y

Y 结束

N

提示输入错误

就绪队列已

满?

N

创建进程

Y

提示就绪队列

已满Y

有进程处于运行状态?

Y 该进程执行一个时间片

后放回就绪队列

N

将就绪队列中优先级最高的进程放入运行队列

有进程处于运行状态?

Y

该进程所需执行时间减1,并回到就绪队列

Cputime++

Y

有进程处于运行状态?

Y

将该进程放入阻塞

队列

N

提示无运行的进程

输入事件发生的进程名称

阻塞队列中有该

进程?

Y 将该进程放入就绪队列

N

提示该进程并

未阻塞

4.数据结构及说明

在本实验中,主要的数据结构是PCB 的数据结构,具体如下: struct process{

char name; //进程名称

int needtime; //进程所需要的运行时间

int priority; //进程的优先级

};

5.源程序

#include

#include

#include

struct process{

char name;

int needtime;

int priority;

};

struct process readyQueue[5];

struct process run;

struct process blockedQueue[5];

const struct process null={NULL,0,0};

int readyQueueHead=0;

int blockedQueueHead=0;

int cpuState=0;

int cpuTime=0;

void Order(struct process parameter[],int head);//将队列中的进程按优先级排列int Creat();

void Dispath();

int Timeout();

int EventWait();

int EventOccur();

void Order(struct process parameter[],int head){

int k,i;

struct process temp;

for(k=0;k

for(i=0;i

if(parameter[i].priority>=parameter[i+1].priority){

temp=parameter[i];

parameter[i]=parameter[i+1];

parameter[i+1]=temp;

}

}

}

}

int Creat(){

if(readyQueueHead>=5){

printf("The Ready Queue has been full\n");

return 0;

}

label1:

printf(" input new process name(must be a letter): \n");

scanf("%c",&(readyQueue[readyQueueHead].name));getchar();

int k;

for( k=0;k

if(readyQueue[readyQueueHead].name==readyQueue[k].name||readyQueue[rea dyQueueHead].name==readyQueue[k].name+32||readyQueue[readyQueueHead].na me==readyQueue[k].name-32)

{

printf("the process is already exist!\n");

goto label1;

}

for( k=0;k

if(readyQueue[readyQueueHead].name==blockedQueue[k].name||readyQueue[r eadyQueueHead].name==blockedQueue[k].name+32||readyQueue[readyQueueHea d].name==blockedQueue[k].name-32)

{

printf("the process is already exist!\n");

goto label1;

}

if(readyQueue[readyQueueHead].name==https://www.wendangku.net/doc/007263561.html,||readyQueue[readyQueueH ead].name==https://www.wendangku.net/doc/007263561.html,+32||readyQueue[readyQueueHead].name==https://www.wendangku.net/doc/007263561.html,-32) {

printf("the process is already exist!\n");

goto label1;

}

printf("input needtime (input a int number):\n");

label2:

scanf("%d",&(readyQueue[readyQueueHead].needtime));getchar();

if(readyQueue[readyQueueHead].needtime<1||readyQueue[readyQueueHead].n eedtime>100)

{

printf("please input the true needtime(1--100)\n");

goto label2;

}

printf(" input the priority(1--10): \n");

label3:

scanf("%d",&(readyQueue[readyQueueHead].priority));getchar();

if(readyQueue[readyQueueHead].priority<1||readyQueue[readyQueueHead].prio rity>10)

{

printf("please 1--10!\n");

goto label3;

}

readyQueueHead++;

Order(readyQueue,readyQueueHead);

return 0;

}

void Dispath(){

if (cpuState==0){

readyQueueHead--;

if(readyQueue[readyQueueHead].needtime>0){

Order(readyQueue,readyQueueHead);

run=readyQueue[readyQueueHead];

readyQueue[readyQueueHead]=null;

cpuState=1;

}

else printf("no process in the Ready Queue\n");

}

else {

Timeout();

Dispath();

}

}

int Timeout(){

cpuTime++;

if (https://www.wendangku.net/doc/007263561.html,==NULL) return 0;

readyQueue[readyQueueHead]=run;

run=null;

cpuState=0;

readyQueue[readyQueueHead].needtime--;

if(readyQueue[readyQueueHead].needtime==0){

printf("The process '%c' has finished",readyQueue[readyQueueHead].name);

readyQueue[readyQueueHead]=null;

return 0;

}

readyQueueHead++;

Order(readyQueue,readyQueueHead);

return 0;

}

int EventWait(){

if(blockedQueueHead>=5){

printf("error:The Blocked Queue has been full\n");

return 0;

}

if(cpuState==0){

printf("error:no process in CPU");

return 0;

}

run.needtime--;

blockedQueue[blockedQueueHead]=run;

blockedQueueHead++;

run=null;

cpuState=0;

cpuTime++;

printf("The process is blocked!\n");

return 0;

}

int EventOccur(){

if(readyQueueHead>=5){

printf("The Ready Queue has been full\n");

return 0;

}

printf("Please input the process name whose event occured!\n");

char name=getchar();

getchar();

int i;

struct process temp;

for(i=0;i

if(name==blockedQueue[i].name){

blockedQueueHead--;

readyQueue[readyQueueHead]=blockedQueue[i];

readyQueueHead++;

blockedQueue[i]=blockedQueue[blockedQueueHead];

blockedQueue[blockedQueueHead]=null;

Order(readyQueue,readyQueueHead);

printf("The process %c is ready!\n",name);

return 0;

}

}

if(i==blockedQueueHead){

printf("error:This process has not been blocked!\n");

}

return 0;

}

int Show(){

printf("\nCPU time:%d\n",cpuTime);

printf(" name needtime priority\n");

printf("Ready Queue: ");

int i;

if(readyQueue[0].name!=NULL)

for(i=readyQueueHead;i>0;i--)

printf("%c %d %d\n ",readyQueue[i-1].name,readyQueue[i-1].needtime,readyQueue[i-1].priority);

else printf("null");

printf("\nRunning Process: ");

if(https://www.wendangku.net/doc/007263561.html,==NULL) printf("null");

else printf("%c %d %d\n ",https://www.wendangku.net/doc/007263561.html,,run.needtime,run.priority);

printf("\nBlock Queue: ");

if(blockedQueue[0].name==NULL) printf("null");

else for(i=blockedQueueHead;i>0;i--)

printf("%c %d %d\n ",blockedQueue[i-1].name,blockedQueue[i-1].needtime,blockedQueue[i-1].priority); }

int main(){

SELECT:

printf("\n\n1:input new process\n2:Dispath\n3:Timeout\n4:EventWait\n5:EventOccurs\n0:exit\n");

int select=getchar();getchar();

switch(select)

{

case '1':Creat();Show();break;

case '2':Dispath();Show();break;

case '3':Timeout();Show();break;

case '4':EventWait();Show();break;

case '5':EventOccur();Show();break;

case '0':exit(0);

default:printf("Please select from 0 to 5\n");

}

goto SELECT;

return 0;

6.运行结果及其说明

(1)创建进程:按‘1’创建进程,进程被放入就绪队列,并按优先级从高到低排列。就绪队列最多容纳5个进程,当创建第6个进程时,程序会提示。

(2)Dispath:按‘2’将就绪队列中的进程转移到运行队列中,如果运行队列中已有进程则该进程先执行一个时间片,然后回到就绪队列中,最后将新就绪队列中优先级最大的进程放到运行队列中

(3)Timeout:消耗一个时间片,若之前运行队列中有进程,则该进程所需执行时间减一并回到就绪队列,否则什么也不发生

(4)EventWait:当运行队列中有程序时,使用EventWait将该程序转移到阻塞队列

(5)EventOccurs:在阻塞队列中选择一个事件发生的进程,将其放入就绪队列中。

7.程序使用说明

(1)输入‘1’创建进程

(2)输入‘2’将就绪队列中优先级最大的进程放入运行队列(3)输入‘3’消耗一个时间片

(4)输入‘4’将正在运行状态的进程放入阻塞队列中

(5)输入‘5’将阻塞的进程放入就绪队列中

实验二(1)进程同步

实验二(2)进程同步 一、实验目的 1、生产者-消费者问题是很经典很具有代表性的进程同步问题,计算机中的很多同步问题都可抽象为生产者-消费者问题,通过本实验的练习,希望能加深学生对进程同步问题的认识与理解。 2、熟悉VC的使用,培养和提高学生的分析问题、解决问题的能力。 二、实验内容及其要求 1.实验内容 以生产者/消费者模型为依据,创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 学习并理解生产者/消费者模型及其同步/互斥规则;设计程序,实现生产者/消费者进程(线程)的同步与互斥; 三、实验算法分析 1、实验程序的结构图(流程图); 2、数据结构及信号量定义的说明; (1) CreateThread ●功能——创建一个在调用进程的地址空间中执行的线程 ●格式 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize,

LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParamiter, DWORD dwCreationFlags, Lpdword lpThread ); ●参数说明 lpThreadAttributes——指向一个LPSECURITY_ATTRIBUTES(新线程的安全性描述符)。dwStackSize——定义原始堆栈大小。 lpStartAddress——指向使用LPTHRAED_START_ROUTINE类型定义的函数。 lpParamiter——定义一个给进程传递参数的指针。 dwCreationFlags——定义控制线程创建的附加标志。 lpThread——保存线程标志符(32位) (2) CreateMutex ●功能——创建一个命名或匿名的互斥量对象 ●格式 HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpMutexAttributes, BOOL bInitialOwner, LPCTSTR lpName); bInitialOwner——指示当前线程是否马上拥有该互斥量(即马 ●参数说明 lpMutexAttributes——必须取值NULL。上加锁)。 lpName——互斥量名称。 (3) CreateSemaphore ●功能——创建一个命名或匿名的信号量对象 ●格式 HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, LONG lInitialCount, LONG lMaximumCount, LPCTSTR lpName ); ●参数说明 lpSemaphoreAttributes——必须取值NULL。

实验二进程管理

实验二进程管理 (一)实验目的或实验原理 1.加深对进程概念的理解,明确进程和程序的区别。 2.进一步认识并发执行的实质。 3.分析进程竞争资源现象,学习解决进程互斥的方法。 4.了解Linux系统中进程通信的基本原理。 (二)实验内容 1.进程的创建。 2.进程的控制。 3.①编写一段程序,使其现实进程的软中断通信。 要求:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill()向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child Processll is Killed by Parent! Child Processl2 is Killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止 Parent Process is Killed! ②在上面的程序中增加语句signal (SIGNAL, SIG-IGN) 和signal (SIGQUIT, SIG-IGN), 观察执行结果,并分析原因。 4.进程的管道通信。 编制一段程序,实现进程的管理通信。 使用系统调用pipe()建立一条管道线;两个子进程P1和P2分别向管道中写一句话: Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。 要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。 实验2 指导 [实验内容] 1.进程的创建 〈任务〉 编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 〈程序〉 #include<> main() { int p1,p2; if(p1=fork()) /*子进程创建成功*/ p utchar('b'); else { if(p2=fork()) /*子进程创建成功*/

实验2 进程状态转换及其PCB的变化

实验2进程状态转换及其PCB的变化 1.目的 自行编制模拟程序,通过形象化的状态显示,使学生理解进程的概念、进程之间的状态转换及其所带来的PCB内容、组织的变化,理解进程与其PCB间的一一对应关系。 2. 内容及要求 1)设计并实现一个模拟进程状态转换及其相应PCB内容、组织结构变化的程序。 2)独立编写、调试程序。进程的数目、进程的状态模型(三状态、五状态、七状态或其它)以及PCB的组织形式可自行选择。 3)合理设计与进程PCB相对应的数据结构。PCB的内容要涵盖进程的基本信息、控制信息、资源需求及现场信息。 4)设计出可视性较好的界面,应能反映出进程状态的变化引起的对应PCB 内容、组织结构的变化。 5)代码书写要规范,要适当地加入注释。 6)鼓励在实验中加入新的观点或想法,并加以实现。 7)认真进行预习,完成预习报告。 8)实验完成后,要认真总结,完成实验报告。 3.程序流程图 进程的三种基本状态及其转换如下图所示。

开始 输入要执行的指令 1?N 2?N 3?N 4? N 5?N 0?Y Y 结束 N 提示输入错误 就绪队列已 满? N 创建进程 Y 提示就绪队列 已满Y 有进程处于运行状态? Y 该进程执行一个时间片 后放回就绪队列 N 将就绪队列中优先级最高的进程放入运行队列 有进程处于运行状态? Y 该进程所需执行时间减1,并回到就绪队列 Cputime++ Y 有进程处于运行状态? Y 将该进程放入阻塞 队列 N 提示无运行的进程 输入事件发生的进程名称 阻塞队列中有该 进程? Y 将该进程放入就绪队列 N 提示该进程并 未阻塞 4.数据结构及说明 在本实验中,主要的数据结构是PCB 的数据结构,具体如下: struct process{

操作系统精髓与设计原理-第3章 进程描述和控制

第3章进程描述和控制 复习题: 3.1什么是指令跟踪? 答:指令跟踪是指为该进程而执行的指令序列。 3.2通常那些事件会导致创建一个进程? 答:新的批处理作业;交互登录;操作系统因为提供一项服务而创建;由现有的进程派生。(详情请参考表3.1) 3.3对于图3.6中的进程模型,请简单定义每个状态。 答:运行态:该进程正在执行。就绪态:进程做好了准备,只要有机会就开始执行。 阻塞态:进程在某些事件发生前不能执行,如I/O操作完成。新建态:刚刚创建的进程,操作系统还没有把它加入到可执行进程组中。退出态:操作系统从可执行进程组中释放出的进程,或者是因为它自身停止了,或者是因为某种原因被取消。 3.4抢占一个进程是什么意思? 答:处理器为了执行另外的进程而终止当前正在执行的进程,这就叫进程抢占。 3.5什么是交换,其目的是什么? 答:交换是指把主存中某个进程的一部分或者全部内容转移到磁盘。当主存中没有处于就绪态的进程时,操作系统就把一个阻塞的进程换出到磁盘中的挂起队列,从而使另一个进程可以进入主存执行。 3.6为什么图3.9(b)中有两个阻塞态? 答:有两个独立的概念:进程是否在等待一个事件(阻塞与否)以及进程是否已经被换出主存(挂起与否)。为适应这种2*2的组合,需要两个阻塞态和两个挂起态。3.7列出挂起态进程的4个特点。 答:1.进程不能立即执行。2.进程可能是或不是正在等待一个事件。如果是,阻塞条件不依赖于挂起条件,阻塞事件的发生不会使进程立即被执行。3.为了阻止进程执行,可以通过代理把这个进程置于挂起态,代理可以是进程自己,也可以是父进程或操作系统。4.除非代理显式地命令系统进行状态转换,否则进程无法从这个状态中转移。 3.8对于哪类实体,操作系统为了管理它而维护其信息表? 答:内存、I/O、文件和进程。 3.9列出进程控制块中的三类信息。 答:进程标识,处理器状态信息,进程控制信息。 3.10为什么需要两种模式(用户模式和内核模式)? 答:用户模式下可以执行的指令和访问的内存区域都受到限制。这是为了防止操作系统受到破坏或者修改。而在内核模式下则没有这些限制,从而使它能够完成其功能。 3.11操作系统创建一个新进程所执行的步骤是什么? 答:1.给新进程分配一个唯一的进程标识号。2.给进程分配空间。3.初始化进程控制块。 4.设置正确的连接。 5.创建或扩充其他的数据结构。 3.12中断和陷阱有什么区别? 答:中断与当前正在运行的进程无关的某些类型的外部事件相关,如完成一次I/O操作。陷阱与当前正在运行的进程所产生的错误或异常条件相关,如非法的文件访问。 3.13举出中断的三个例子。 答:时钟终端,I/O终端,内存失效。 3.14模式切换和进程切换有什么区别? 答:发生模式切换可以不改变当前正处于运行态的进程的状态。发生进程切换时,一个正在执行的进程被中断,操作系统指定另一个进程为运行态。进程切换需要保存更

操作系统实验-进程控制

实验一、进程控制实验 1.1 实验目的 加深对于进程并发执行概念的理解。实践并发进程的创建和控制方法。观察和体验进程的动态特性。进一步理解进程生命期期间创建、变换、撤销状态变换的过程。掌握进程控制的方法,了解父子进程间的控制和协作关系。练习Linux 系统中进程创建与控制有关的系统调用的编程和调试技术。 1.2 实验说明 1)与进程创建、执行有关的系统调用说明进程可以通过系统调用fork()创建子进程并和其子进程并发执行.子进程初始的执行映像是父进程的一个复本.子进程可以通过exec()系统调用族装入一个新的执行程序。父进程可以使用wait()或waitpid()系统调用等待子进程的结束并负责收集和清理子进程的退出状态。 fork()系统调用语法: #include pid_t fork(void); fork 成功创建子进程后将返回子进程的进程号,不成功会返回-1. exec 系统调用有一组6 个函数,其中示例实验中引用了execve 系统调用语法: #include int execve(const char *path, const char *argv[], const char * envp[]); path 要装入 的新的执行文件的绝对路径名字符串. argv[] 要传递给新执行程序的完整的命令参数列表(可以为空). envp[] 要传递给新执行程序的完整的环境变量参数列表(可以为空).

Exec 执行成功后将用一个新的程序代替原进程,但进程号不变,它绝不会再返回到调用进程了。如果exec 调用失败,它会返回-1。 wait() 系统调用语法: #include #include pid_t wait(int *status); pid_t waitpid(pid_t pid,int *status,int option); status 用 于保留子进程的退出状态 pid 可以为以下可能值: -1 等待所有PGID 等于PID 的绝对值的子进程 1 等待所有子进程 0 等待所有PGID 等于调用进程的子进程 >0 等待PID 等于pid 的子进程option 规 定了调用waitpid 进程的行为: WNOHANG 没有子进程时立即返回 WUNTRACED 没有报告状态的进程时返回 wait 和waitpid 执行成功将返回终止的子进程的进程号,不成功返回-1。 getpid()系统调用语法: #include #include pid_t getpid(void); pid_t getppid(void); getpid 返回当前进程的进程号,getppid 返回当前进程父进程的进程号 2)与进程控制有关的系统调用说明可以通过信号向一个进程发送消息以控制进程的 行为。信号是由中断或异常事件引发的,如:键盘中断、定时器中断、非法内存引

os实验二 进程同步

实验二:进程同步 一.实验目的 (1)掌握基本的同步算法,理解生产者消费者模型。 (2)学习使用Windows XP中基本的同步对象,掌握相关API的使用方法。 (3)了解Windows XP中多线程的并发执行机制,实现进程的同步与互斥。 二.实验属性 该实验为设计性实验。 三.实验仪器设备及器材 普通PC386以上微机 四.实验要求 本实验要求2学时完成。 本实验要求完成如下任务: (1)以生产者/消费者模型为依据,在Windows XP环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 学习并理解生产者/消费者模型及其同步/互斥规则; 学习了解Windows同步对象及其特性; 熟悉实验环境,掌握相关API的使用方法; 设计程序,实现生产者/消费者进程(线程)的同步与互斥。 (2)扩展任务2选1: 1>利用信号量机制,写出不会发生死锁的解决哲学家进程(线程)。 最多允许4个同时进餐;奇:先左后右偶:先右后左。 2>利用信号量机制,写出不会发生死锁的读者写者进程(线程)。五:实验内容: 利用至多同时允许4位哲学家同时去拿左边筷子的方法解决进餐死锁的问题。 实验详细设计:流程图:

程序首先创建一个线程参数结构体 struct ThreadInfo { int serial; double delay; }; 设置最多同时去拿筷子的人数#define MAX_BUFFER_NUM 4 设置一个信号量数组用来表示五位哲学家的左右边的筷子HANDLE chopstick [5]; 设置同时去拿筷子的人数的信号量HANDLE People; 设置一个互斥信号量HANDLE h_mutex; 在main()函数中,首先创建信号量: for (int i=0;i<5;i++) { chopstick[i]=CreateSemaphore(NULL,n_Buffer_or_Critical,n_Buffer_or_Criti cal,"chopstick"+i); } People=CreateSemaphore(NULL,MAX_BUFFER_NUM,MAX_BUFFER _NUM,"People");

操作系统实验报告+进程状态转换

实验进程状态转换及其PCB的变化 一、程序流程图: 二、使用的数据结构及说明: 在本实验中,主要用到的数据结构是PCB的结构,其中PCB的数据结构如下: struct PCB { int P_Id; //PCB的ID号 char P_Name[10]; //PCB的名称 char P_State[10]; //PCB状态 int P_Runtime; //PCB的所需要的运行时间 int P_Requiry; //PCB所需要的资源要求 struct PCB * next ; //PCB块的下一个指针 } ; 其中,P_Id,和P_Name用来标示一个进程,而P_State用来标示进程的五种状态:

Create_state,Ready_state,Block_state,Run_state,Exit_state。P_Runtime标示要完成一个进程所需要的时间。P_Requiry标示一个进程的执行所需要的其他条件,当其他的条件满足,则P_Requiry 置1,否则置0。Struct PCB * next 用来指向同一队列中的下一个PCB块。 三、程序源代码: #include"stdlib.h" #include"stdio.h" #include"string.h" /********** globle structure and viable ******/ struct PCB { int P_Id; //PCB的ID号 char P_Name[10]; //PCB的名称 char P_State[10]; //PCB状态 int P_Runtime; //PCB的所需要的运行时间 int P_Requiry; //PCB所需要的资源要求 struct PCB * next ; //PCB块的下一个指针 } ; struct PCB * Create_state; //创建状态 struct PCB * Run_state; //运行状态 struct PCB * Ready_state; //就绪状态 struct PCB * Block_state; //阻塞状态 struct PCB * Exit_state; //退出状态 int signal4=0; //标示进程4的完成状态 int signal5=0; //标示进程5的完成状态 void InsertQueue(struct PCB **head,struct PCB *node) /* insert node function */ { struct PCB * p,*q; node->next=NULL; if(*head==NULL) //如果队列为空 { *head=node; } Else //队列不空 { p=*head; q=p->next; while(q!=NULL) //找到最后的元素位置 { p=q; q=q->next; } p->next=node; //将节点插入队列 }

实验一-进程控制实验

实验一进程控制 一、实验目的: 加深对进程概念的理解,明确进程和程序的区别;掌握Linux操作系统的进程创建和终止操作,体会父进程和子进程的关系及进程状态的变化;进一步认识并发执行的实质,编写并发程序。 二、实验平台: 虚拟机:VMWare9以上 操作系统:Ubuntu12.04以上 编辑器:Gedit | Vim 编译器:Gcc 三、实验内容: (1)编写一段程序,使用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示“身份信息”:父进程显示“Parent process! PID=xxx1 PPID=xxx2”;子进程显示“Childx process! PID=xxx PPID=xxx”。多运行几次,观察记录屏幕上的显示结果,并分析原因。 说明: xxx1为进程号,用getpid()函数可获取进程号; xxx2为父进程号,用getppid()函数可获取父进程号; Childx中x为1和2,用来区别两个子进程; wait()函数用来避免父进程在子进程终止之前终止。 程序源码: #include #include #include #define NUM 2 int main(void) {

pid_t pid1,pid2; if((pid1=fork())<0){ printf("创建进程1失败"); }else{ if(pid1==0){ //子进程1执行 printf("Child1 process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); sleep(2); }else{ if((pid2=fork())<0){ printf("创建进程2失败"); }else{ if(pid2==0){ //子进程2执行 printf("Child2 process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); } else{ //父进程执行 wait(); wait(); printf("Parent process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); exit(0); } } } } }

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

操作系统实验二(进程管理)

操作系统进程管理实验 实验题目: (1)进程的创建编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。 (2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。 (3)编制一段程序,使其实现进程的软中断通信。要求:使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按Del键);当捕捉到中断信号后,父进程调用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止:Parent process is killed! 在上面的程序中增加语句signal(SIGINT, SIG_IGN)和signal(SIGQUIT, SIG_IGN),观察执行结果,并分析原因。 (4)进程的管道通信编制一段程序,实现进程的管道通信。使用系统调用pipe( )建立一条管道线;两个进程P1和P2分别向管道各写一句话:Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。 实验源程序及报告: (1)、进程的创建 #include int main(int argc, char *argv[]) { int pid1,pid2; /*fork first child process*/ if ( ( pid1=fork() ) < 0 ) { printf( "ProcessCreate Failed!"); exit(-1); }

实验一 进程状态转换

实验一进程的状态及其转换 一、实验目的: 自行编制模拟程序,通过形象化的状态显示,加深理解进程的概念、进程之间的状态转换及其所带来的PCB内容、组织的变化,理解进程与其PCB间的一一对应关系。 二、实验内容及要求: 1)设计并实现一个模拟进程状态转换及其相应PCB内容、组织结构变化的程序。 2)独立编写、调试程序。进程的数目、进程的状态模型(三状态、五状态、七状 态或其它)以及PCB的组织形式可自行选择。 3)合理设计与进程PCB相对应的数据结构。PCB的内容要涵盖进程的基本信息、控 制信息、资源需求及现场信息。 4)设计出可视性较好的界面,应能反映出进程状态的变化引起的对应PCB内容、 组织结构的变化。 三、程序流程图:

四、使用的数据结构及说明: 在本实验中,主要用到的数据结构是PCB的结构,其中PCB的数据结构如下: struct PCB { int P_Id; //PCB的ID号 char P_Name[10]; //PCB的名称 char P_State[10]; //PCB状态 int P_Runtime; //PCB的所需要的运行时间 int P_Requiry; //PCB所需要的资源要求 struct PCB * next ; //PCB块的下一个指针 } ; 其中,P_Id,和P_Name用来标示一个进程,而P_State用来标示进程的五种状态:Create_state,Ready_state,Block_state,Run_state,Exit_state。P_Runtime标示要完成一个进程所需要的时间。P_Requiry标示一个进程的执行所需要的其他条件,当其他的条件满足,则P_Requiry置1,否则置0。Struct PCB * next 用来指向同一队列中的下一个PCB 块。 五、参考程序源代码: #include"stdlib.h" #include"stdio.h" #include"string.h" #include /*全局结构体及变量定义*/ struct PCB { int P_Id; //PCB的ID号 char P_Name[10]; //PCB的名称 char P_State[10]; //PCB状态 int P_Runtime; //PCB的所需要的运行时间 int P_Requiry; //PCB所需要的资源要求 struct PCB * next ; //PCB块的下一个指针 } ; struct PCB * Create_state; //创建状态 struct PCB * Run_state; //运行状态 struct PCB * Ready_state; //就绪状态 struct PCB * Block_state; //阻塞状态 struct PCB * Exit_state; //退出状态 int signal4=0; //标示进程4的完成状态 int signal5=0; //标示进程5的完成状态 void InsertQueue(struct PCB **head,struct PCB *node) //将进程插入到队列的尾部

实验1进程的控制与描述资料

实验1 进程的控制与描述 1.1 Windows任务管理器的进程管理 1.1.1 背景知识 Windows 的任务管理器提供了用户计算机上正在运行的程序和进程的相关信息,也显示了最常用的度量进程性能的单位。使用任务管理器.可以打开监视计算机性能的关键指示器,快速查看正在运行的程序的状态,或者终止已停止响应的程序。也可以使用多个参数评估正在运行的进程的活动,以及查看CPU和内存使用情况的图形和数据。其中: (1)“应用程序”选项卡显示正在运行程序的状态,用户能够结束、切换或者启动程序。(2)“进程”选项卡显示正在运行的进程信息。例如,可以显示关于CPU和内存使用情况、页面错误、句柄计数以及许多其他参数的信息。 (3)“性能”选项卡显示计算机动态性能,包括CPU和内存使用情况的图表,正在运行的句柄、线程和进程的总数、物理、核心和认可的内存总数(KB)等。 1.1.2 实验目的 通过在windows任务管理器中对程序进程进行响应的管理操作系统进程管理的概念,学习观察操作系统运行的动态性能。 1.1.3工具/准备工作 在开始本实验之前,请回顾教科书的相关内容。 需要准备一台运行windows 7操作系统的计算机。 1.1.4 实验内容与步骤 启动并进入Windows环境,按Ctrl+A1t+DeL键,或者右键单击任务栏,快捷菜单中单击“任务管理器”,打开“任务管理器”窗口。 在本次实验中,你使用的操作系统版本是: 在当前机器中,由你打开、正在运行的应用程序有:

Windows“任务管理器”的窗口由个选项卡组成,分别是: 当前“进程”选项卡显示的栏目分别是(可移动窗口下方的游标/箭头,或使窗口最大化进行观察): (1)使用任务管理器终止进程 步骤1:单击“进程”选项卡,一共显示个进程。请试着区分一下,其中:系统(system)进程有个,填入表2-1中。 表2-1 实验记录

实验二进程同步

实验二进程同步演示 一、实验目的 ?深入掌握进程同步机制——信号量的应用; ?掌握Windows编程中信号量机制的使用方法; ?可进行简单的信号量应用编程。 二、实验工具 Windows系统+ VC++ 6.0 三、实验内容 1、复习教材上信号量机制的定义与应用,复习经典进程同步问题——生产者消费者问题及其同步方案; 2、验证后附的参考代码pc.cpp(生产者消费者问题),掌握Windows系统中信号量的定义与使用方法; 注意: (1)代码中生产者和消费者所做的工作用过程Producer和Consumer描述,并通过创建线程的方法创建3个生产者线程和1个消费者线程,具体创建方法:CreateThread(NULL,0,Producer,NULL,0,&producerID[i]);其中第3个参数就是指定该线程所做的工作为过程Producer; (2)问题中设置了三个信号量g_hMutex(用于互斥访问临界区buffer)、 g_hFullSemaphore、g_hEmptySemaphore(用于控制同步的资源信号量),先声明,再定义,最后使用。互斥信号量和资源信号量的定义方法不同: g_hMutex = CreateMutex(NULL,FALSE,NULL); 互斥信号量最开始没有指定针对那个资源g_hFullSemaphore = CreateSemaphore(NULL,SIZE_OF_BUFFER-1,SIZE_OF_BUFFER-1,NULL); 其中第2和3个参数为信号量的初始值和最大值 信号量的使用方法:WaitForSingleObject为信号量的P操作,每对一个信号量执行该操作,则信号量值减1,并判断减1后值是否仍大于等于0,如是则该操作成功,否则进程阻塞;ReleaseSemaphore为信号量的V操作,每执行一次将该信号量的值加1,并起到唤醒作用。如: WaitForSingleObject(g_hFullSemaphore,INFINITE); … ReleaseSemaphore(g_hEmptySemaphore,1,NULL);

操作系统实验一模拟进程状态转换

实验一模拟进程状态转换及其PCB的变化 一、实验目的: 自行编制模拟程序,通过形象化的状态显示,使学生理解进程的概念、进程之间的状态转换及其所带来的PCB内容、组织的变化,理解进程与其PCB间的一一对应关系。 二、实验内容及要求: (1)、设计并实现一个模拟进程状态转换及其相应PCB内容、组织结构变化的程序。 (2)、独立编写、调试程序。进程的数目、进程的状态模型(三状态、五状态、七状态或其它)以及PCB的组织形式可自行选择。(3)、合理设计与进程PCB相对应的数据结构。PCB的内容要涵盖进程的基本信息、控制信息、资源需求及现场信息。 (4)、设计出可视性较好的界面,应能反映出进程状态的变化引起的对应PCB内容、组织结构的变化。 (5)、代码书写要规范,要适当地加入注释。 (6)、鼓励在实验中加入新的观点或想法,并加以实现。 (7)、认真进行预习,完成预习报告。 (8)、实验完成后,要认真总结,完成实验报告。 三、实现: 数据结构 struct PCB{

char name; int priority; int needtime; bool operator < (const PCB &b) const{ return priority>b.priority; } }; 五状态进程模型 最高优先数优先调度算法流程图

四、运行结果:

图1创建2个进程,因为这时cpu空闲所以内核调度,b优先级高先执行 图2超时,因为这时cpu空闲所以内核调度,b优先级还是比a高所以先执行

图32个进程均被阻塞,其中一旦进程被阻塞就会引发调度 图4唤醒1个进程,从阻塞队列取队首放到就绪队列队尾,由于这时cpu空闲所以内核调 度

操作系统实验二:进程控制

题目要求: 学习和了解进程控制的基本和常用的系统调用fork wait sleep exit exec 等等。 查看/usr/src/include/sched.h中的task_struct 数据结构,并分析Linux 操作系统进程状态。 通过进程创建的应用实例,深刻理解进程创建的过程。 程序例题1 #include #include #include #include //实验指导上少了这一个头文件 int main(void) { pid_t pid; int data=5; if((pid=fork())<0) { printf("fork error\n"); exit(0); } else if(pid==0) { data--; printf("child\'s data is:%d\n",data); exit(0); } else { printf("parent\'s data is:%d\n",data); } exit(0); } 程序例题2 用fork创建一个子进程,由其调用execve启动shell命令ps查看系统当前的进程信息。

#include #include #include #include //实验指导上少了这一个头文件#include //实验指导上少了这一个头文件main( ) { pid_t pid; char *path="/bin/ps"; char *argv[5]={ "ps","-a","-x",NULL}; printf(“Run ps with execve by child process:\n”); if((pid=fork( ))<0) { printf(“fork error!”); exit(0); } else if (pid==0) { if(execve(path,argv,0)<0) { printf(“fork error!”); exit(0); } printf(“child is ok!\n”); exit(0); } //wait( ); pid = wait(NULL); //实验指导上wait 用错了 printf(“it is ok!\n”); exit(0); }

进程的同步实验报告

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

一、实验概述 1. 实验名称 进程的同步 2. 实验目的 ⑴使用EOS的信号量,编程解决生产者 消费者问题,理解进程同步的意义。 ⑵调试跟踪EOS信号量的工作过程,理解进程同步的原理。 ⑶修改EOS的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。 3. 实验类型 验证+设计 4. 实验内容 ⑴准备实验 ⑵使用EOS的信号量解决生产者-消费者问题 ⑶调试EOS信号量的工作过程 ①创建信号量 ②等待释放信号量 ③等待信号量(不阻塞) ④释放信号量(不唤醒) ⑤等待信号量(阻塞) ⑥释放信号量(唤醒) ⑷修改EOS的信号量算法 二、实验环境 WindowsXP + EOS集成实验环境 三、实验过程 1. 设计思路和流程图

图4-1.整体试验流程图

图4-2.Main 函数流程图、生产者消费、消费者流程图 2. 算法实现 3. 需要解决的问题及解答 (1). 思考在ps/semaphore.c 文件内的PsWaitForSemaphore 和PsReleaseSemaphore 函数中,为什么要使用原子操作?

答:在执行等待信号量和释放信号量的时候,是不允许cpu响应外部中断的,如果此时cpu响应了外部中断,会产生不可预料的结果,无法正常完成原子操作。 (2). 绘制ps/semaphore.c文件内PsWaitForSemaphore和PsReleaseSemaphore函数的流程图。 (3).P143生产者在生产了13号产品后本来要继续生产14号产品,可此时生产者为什么必须等待消费者消费了4号产品后,才能生产14号产品呢?生产者和消费者是怎样使用同步对象来实现该同步过程的呢? 答:这是因为临界资源的限制。临界资源就像产品仓库,只有“产品仓库”空闲生产者才能生产东西,有权向里面放东西。所以它必须等到消费者,取走产品,“产品空间”(临界资源)空闲时,才继续生产14号产品。 (4). 根据本实验3.3.2节中设置断点和调试的方法,自己设计一个类似的调试方案来验证消费者线程在消费24号产品时会被阻塞,直到生产者线程生产了24号产品后,消费者线程才被唤醒并继续执行的过程。 答:可以按照下面的步骤进行调试 (1) 删除所有的断点。 (2) 按F5启动调试。OS Lab会首先弹出一个调试异常对话框。 (3) 在调试异常对话框中选择“是”,调试会中断。 (4) 在Consumer函数中等待Full信号量的代码行(第173行)WaitForSingleObject(FullSemaphoreHandle, INFINITE); 添加一个断点。 (5) 在“断点”窗口(按Alt+F9打开)中此断点的名称上点击右键。 (6) 在弹出的快捷菜单中选择“条件”。 (7) 在“断点条件”对话框(按F1获得帮助)的表达式编辑框中,输入表达式“i == 24”。 (8) 点击“断点条件”对话框中的“确定”按钮。 (9) 按F5继续调试。只有当消费者线程尝试消费24号产品时才会在该条件断点处中断。 4. 主要数据结构、实现代码及其说明 修改PsWaitForSemaphore函数 if (Semaphore->Count>0){ Semaphore->Count--; flag=STATUS_SUCCESS; }//如果信号量大于零,说明尚有资源,可以为线程分配 else flag=PspWait(&Semaphore->WaitListHead, Milliseconds); KeEnableInterrupts(IntState); // 原子操作完成,恢复中断。 return flag; }//否则,说明资源数量不够,不能再为线程分配资源,因此要使线程等待 修改PsReleaseSemaphore函数 if (Semaphore->Count + ReleaseCount > Semaphore->MaximumCount) {

实验二 进程管理

实验二进程管理 实验目的 通过进程的创建、撤销和运行加深对进程概念和进程并发执行的理解,明确进程与程序的区别。 实验内容 1、了解系统调用fork()、exec()、exit()和waitpid()的功能和实现过程。 2、编写一段程序,使用系统调用fork()创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 3、编写一段程序,使用系统调用fork()来创建一个子进程,子进程通过系统调用exec()更换自己的执行代码,显示新的代码“new program.”后,调用exit()结束。而父进程则调用waitpid()等待子进程结束,并在子进程结束后显示子进程的标识符,然后正常结束。

实验指导 一、所涉及的系统调用 1、getpid 在2.4.4版内核中,getpid是第20号系统调用,其在Linux函数库中的原型是: getpid的作用很简单,就是返回当前进程的进程ID,请大家看以下的例子: 这个程序的定义里并没有包含头文件sys/types.h,这是因为我们在程序中没有用到pid_t类型,pid_t类型即为进程ID的类型。事实上,在i386架构上(就是我们一般

PC计算机的架构),pid_t类型是和int类型完全兼容的,我们可以用处理整形数的方法去处理pid_t类型的数据,比如,用"%d"把它打印出来。 编译并运行程序getpid_test.c: 再运行一遍: 正如我们所见,尽管是同一个应用程序,每一次运行的时候,所分配的进程标识符都不相同。 2、fork 在2.4.4版内核中,fork是第2号系统调用,其在Linux函数库中的原型是:

实验一:进程控制描述及控制

实验一:进程控制描述与控制 [1]Windows“任务管理器”的进程管理 一、实验名称 Windows“任务管理器”的进程管理 二、实验目的 通过在Windows 任务管理器中对程序进程进行响应的管理操作,熟悉操作系统进程管理的概念,学习观察操作系统运行的动态性能。 三、实验容与步骤 1. 使用任务管理器终止进程 2. 显示其他进程计数器 3. 更改正在运行的程序的优先级 启动并进入Windows环境,单击Ctrl + Alt + Del键,或者右键单击任务栏,在快捷菜单中单击“任务管理器”命令,打开“任务管理器”窗口。 在本次实验中,你使用的操作系统版本是: _______Windows_XP______________________ 当前机器中由你打开,正在运行的应用程序有: 1) _______ ________ 2) ___________实验一___ 3) _________操作系统_____________ 4) ___________百度首页________ 5) ____________ftp://172.16.20.168_______ Windows“任务管理器”的窗口由____4__个选项卡组成,分别是: 1) _______应用程序______________ 2) _进程__________________ 3) ______ 性能___________________ 4) ________联网__________________ 当前“进程”选项卡显示的栏目分别是(可移动窗口下方的游标/箭头,或使窗口最大化进行观察) :

1. 使用任务管理器终止进程 步骤1:单击“进程”选项卡,一共显示了__40___个进程。请试着区分一下,其中:系统(SYSTEM) 进程有____25__个,填入表3-1中。 表3-1 实验记录 Wmiprvse SYSTEM 00 5376k cidaemon SYSTEM 00 300k cidaemon SYSTEM 00 856k cidaemon SYSTEM 50 284k cisvc SYSTEM 00 924k csrss SYSTEM 00 7412k mqtgsvc SYSTEM00 4144k mqsvc SYSTEM 00 6632k

相关文档
相关文档 最新文档