文档库 最新最全的文档下载
当前位置:文档库 › 激光三角测距法

激光三角测距法

激光三角测距法

激光三角测距法

如图,激光器LD发出一束激光打在被测量物体上反射回来,经过镜头成像于CCD(成像屏幕)上,由几何关系三角形相似得到被测距离为z = bf/x

式中,b为激光器光轴与接收镜头光轴之间的距离;

f为接收镜头的焦距;

x为接收像点到镜头光轴的距离。

其中,b和f已知,则只要测出x的值就可以求出距离z。

本设计中x的测量利用高分辨率线阵CCD来完成,具有很高的精确度。

激光测距的方法及原理

激光测距的方法及原理 激光测距技术与一般光学测距技术相比具有操作方便、系统简单及白天和夜晚都可以工作的优点。与雷达测距相比,激光测距具有良好的抗干扰性和很高的精度,而且激光具有良好的抵抗电磁波干扰的能力。其在探测距离较长时,激光测距的优越性更为明显。光测距技术是指利用射向目标的激光脉冲或连续波激光束测量目标距离的距离测量技术。较常用的激光测距方法有三角法、脉冲法和相位法激光测距。 1.三角法激光测距 激光位移传感器的测量方法称为激光三角反射法,激光测距仪的精度是一定的,同样的测距仪测10米与100米的精度是一样的。而激光三角反射法测量精度是跟量程相关的,量程越大,精度越低。 采用激光三角原理和回波分析原理进行非接触位置、位移测量的精密传感器。广泛应用于位置、位移、厚度、半径、形状、振动、距离等几何量的工业测量。半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 图1. 激光三角测量原理图 激光发射器通过镜头将可见红色激光射向物体表面,经物体反射的激光通过接受器镜头,被内部的CCD线性相机接受,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度即知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可设置独立检测窗口。常用在铁轨、产品厚度、平整度、尺寸等方面。

光电子课程设计_基于三角测量法的激光测距

光电子课程设计: 基于三角测量法的激光测距 摘要:本文先对激光测距的种类及原理进行介绍,其次分析不同种类的优缺点。确定制作测距仪器的制作方向。分析测量当中不同元器件存在的问题,寻找有效的解决方案,重点研究摄像头成像时存在误差的形成原因。根据研究得到的数据,对PC客户端的程序设计进行调整。利用程序尽可能减少由于硬件产生的误差。重点是设计出能确定光点的定位算法,通过对摄像头的定标、激光定位,达到实验数据与实际测量误差在10%以内。最后,提出对作品进行优化和系统功能提升计划 关键词:短距离、低成本、三角测量法 ABSTRACT: In this paper, the principle of laser ranging species and introduced first, followed by analysis of the advantages and disadvantages of different types. Production rangefinder to determine the direction of the production. Analytical measurements among different components of the problems, to find effective solutions to the causes errors in the presence of the camera focused on imaging. According to data obtained from studies on the client PC programming adjustments. The use of procedures to minimize errors due to hardware-generated. Focuses the light spot can be determined to design the location algorithm, through the camera calibration, laser positioning, to the experimental data and the actual measurement error is within 10%. Finally, the work in optimizing system functionality and Enhancement Programme KEY WORDS: Short distance、Low cost 、Triangle measurement

激光三角测距实验第八组报告

激光三角测距实验 ——第八组 一、实验目的 学习激光三角测距基本原理;了解激光三角测距的应用;搭建激光三角测距系统,实现测量距离的显示,掌握激光三角测距技术。 二、实验原理 三角位移测量系统是从光源发射一束光到被测物体表面,在另一方向通过成像观察反射光点的位置,从而计算出物点的位移。由于入射光和反射光构成一个三角形,所以这种方法被称为三角测量法,又可按入射光线与被测工件表面法线的关系分为直射式和斜射式。 三、摆放方式 直射式直射式三角法测量等效光路如图 1 所示。激光器发出的光线,经会聚透镜聚焦后垂直入射到被测物体表面上,物体移动或表面变化导致入射光点沿入射光轴移动。接收透镜接收来自入射光点处的散射光,并将其成像在光点位置探测器(如PSD、CCD)敏感面上。 若光点在成像面上的位移为x′,利用相似三角形各边之间的比例关系,有 化简后可求出被测面的位移

式中,a 为激光束光轴和接收光轴的交点到接收透镜前主面的距离;b 为接收透镜后主面到成像面中心点的距离;α 为激光束光轴与接收透镜光轴之间的夹角;β 为探测器与接收透镜光轴之间的夹角。 斜射式 图3.2 为斜射式三角测量原理图,激光器发出的光与被测面的法线方向成一定角度入射到被测面上,同样用接收透镜接收光点在被测面的散射光或反射光。 若光点的像在探测器敏感面上移动x′,则物体表面沿法线方向的移动距离为x,利用相似三角形的比例关系,参照前一个公式,用x/cosγ 替换x,α+γ 替换α,有 式中,α 为激光束光轴与被测面法线之间的夹角;γ 为成像透镜光轴与被测面法线之间的夹角;β 为探测器光轴与成像透镜光轴之间的夹角。当γ 为零时,属于斜入射直接收式。 直射式和斜射式特点比较 斜射式可接收来自被测物体的正反射光,比较适合测量表面接近镜面的物体。λ直射式接收散射光,适合于测量散射性能好的表面,如果表面较为平滑,则可能由于耦λ合到光电探测器的散射光强过弱,使测量无法进行,也就是说可能存在测量盲区。斜射式入射光光点照射在物体不同的点上,因此无法直接知道被测物体某点的位移情况,λ而直射式可以。当然,斜射式也可以通过标定的方法得出位移。直射式光斑较小,光强集中,不会因被测面不垂直而扩大光斑,而且一般体积较小。斜λ射式传感器分辨率高于直射式,但它的测量范围较小,体积较大。斜入射直接收式传感器的体积和直入射式相当,并且分辨率高于直射式,因此较为常用。

激光三角法测量钢板厚度光学系统设计

光学系统设计论文

目录 摘要….......................................................................................................................... 第一章引言.................................................................................................................. 1.1研究的背景和意义........................................................................................... 1.2 国内外研究现状................................................................................................ 1.2.1 国外发展现状............................................................................................. 1.2.2 国内发展现状............................................................................................... 第二章测量原理及方案论证..................................................................................... 2.1 设计任务分析..................................................................................................... 2.2 测厚技术简述.................................................................................................... 2.3 激光三角法测量原理........................................................................................... 2.3.1激光三角法测量的类型和区别.................................................................... 2.3.2激光三角法测量的基本原理........................................................................ 2.4 沙姆条件…………………………………………………................................ 2.5 测量模型及方案论证…………………………………………........................... 第三章光学系统设计.................................................................................................... 3.1总体结构布局....................................................................................................... 3.2光源...................................................................................................................... 3.3聚焦系统与成像系统........................................................................................... 第四章误差与精度分析................................................................................................ 4.1 误差分析............................................................................................................... 4.1.1光学系统误差分析......................................................................................... 4.1.2随机误差分析................................................................................................ 4.2 精度分析............................................................................................................. 第五章总结.................................................................................................................... 参考文献.........................................................................................................................

基于激光三角测距法的激光雷达原理综述

龙源期刊网 https://www.wendangku.net/doc/0d7272222.html, 基于激光三角测距法的激光雷达原理综述 作者:周俞辰 来源:《电子技术与软件工程》2016年第19期 摘要 本文主要介绍了激光雷达系统的特点和基本结构,着重讨论了基于激光三角测距法的激光雷达的工作原理,详细论述了二维激光扫描的测量方法,并延伸讨论了三维激光扫描的测量方法及光路结构。 【关键词】激光雷达激光三角测距法 2D/3D激光扫描 1 引言 激光雷达LiDAR(Light Detection and Ranging),是激光探测及测距系统的统称,是一种通过位置、距离、角度等测量数据直接获取对象表面点三维坐标,实现地表信息提取和三维场景重建的对地观测技术。激光雷达最基本的工作原理与普通雷达相似,均是通过发射系统发送一个信号,由接收系统收集并处理与目标作用产生的返回信号,来获得对象表面的三维信息。目前激光雷达的测量原理主要分为脉冲法,相干光法和三角法三种,本文主要讨论基于激光三角测距法的激光雷达系统的工作原理。 2 激光雷达基本理论 2.1 激光雷达系统的特点及应用前景 激光雷达相比于传统接触式测量具有快速、不接触、精度高等优点,同时该技术受成像条件影响小,反应时间短,自动化程度高,对测量对象表面的纹理信息要求低。 在激光雷达应用的主要测量原理中,脉冲法和相干光法对激光雷达的硬件要求高,但测量精度比激光三角法要高得多,故多用于军事领域。相比于此,激光三角测距法因其成本低,精度满足大部分工业及民用要求,得以受到关注。 目前移动机器人的导航方式主要包括:磁导航、惯性导航和视觉导航,其中视觉导航由于具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向。目前机器人的SLAM(Simultaneous localization and mapping,同步定位与地图构建)算法中最理想的设备仍旧是激光雷达,机器人通过激光扫描得到所处环境的2D或3D点云,从而可以进行诸如SLAM等定位算法,确定自身在环境当中的位置并创建出所处环境的地图。激光雷达的非 接触式测量特点,具有快速、精度高、识别准确等优点,广泛应用于移动机器人视觉系统的距离、角度、位置的测量方面,成为测量研究领域的热点。

利用光电池进行激光三角法测距

利用光电池进行激光三角法测距 张琬祺(20142301038),苏秀崖,王美凤 (华南师范大学物理与电信工程学院,广东广州510006) 摘要:利用光电池对于不同强度的光转换成不同的电信号的特性以及光反射的原理,进行近距离精密测距实验。物体的移动导致光反射点的位置的改变,通过光电池接收光的强度确定光反射点的改变位置。当入射角确定时,光电池的移动距离和物体移动的距离存在一定关系。 关键词:光电池,三角法,近距离精密测距 Using photovoltsic cell laser triangulation ranging (Zhang wan-qi Su xiu-ya Wang mei-feng) (1.School of physics and communication engineering , South China Normal University, Guangzhou 510006, China) Abstract: Using photovoltsic cell for different intensity of light into different characteristics of the electrical signals and the principle of light reflection, precision ranging from close range to experiment on.Moving the position of the light reflection point of the object changes, through cell receives light intensity determine the change of light reflection point position.When the incident Angle to determine cell moving distance and moving object distance there is a certain relationship. Key words:photovoltaic cell,trigonometry,precision ranging from close range

激光三角法测量物体位移

课程设计Ⅱ(论文)说明书题目:激光三角法测量物体位移 学院:电子工程与自动化学院 专业:光信息科学与技术 学生姓名:覃荣梅 学号:1000830303 指导教师:王新强 2014 年1月5 日

摘要 本课程设计基于激光三角法原理对物体较小范围内的移动进行测量。在长度、距离及三位形貌等的测试中有广泛应用。通过激光三角法两个方案直射式和斜射式的特点,结合实验条件,选择最合适的方案进行测量。本次测量最大的特点就是非接触式测距,实际中对非接触式测距一般很难知道物体到成像透镜的距离,可由成像透镜焦距以及激光光线和物体散射光线组成的三角形的边长计算出该距离。通过定标,得出透镜上成像距离与物体像移动距离间的对应关系,用此标尺作为计算移动位移的标准。移动物体采集光斑图像,用matlab软件对图像处理进行处理,计算像的移动距离,再根据几何关系推导出物体的实际移动距离。在最后计算出该方案的标准不确定度,并对方案产生的误差进行分析,提出改进意见。设计方案光路简单,方便快捷,受环境影响小而且测量精确度较高。 关键词:激光三角法;测距;定标;CCD;误差分析

目录 引言 (1) 1. 设计任务 (1) 2. 激光三角法测距基本原理 (1) 3.方案论证和选择 (2) 3.1 激光三角法测距现状 (2) 3.2 测量方案 (2) 3.3 方案比较与选择 (4) 3.4 器件选择 (6) 4. 方案验证步骤及数据记录 (6) 4.1 方案验证步骤 (6) 4.2 测量数据记录 (6) 4.2.1 测量获得成像透镜焦距 (6) 4.2.2 定标 (8) 4.2.3 移动物体测量位移 (8) 5. 测量数据处理 (9) 5.1 各个距离测量值计算 (9) 5.2 定标计算 (9) 5.3 光斑位移量计算 (11) 5.4夹角和物体实际移动位移计算 (11) 6. 误差分析及方案评价 (12) 6.1 相对误差和绝对误差计算 (12) 6.2 误差分析 (13) 6.3 设计方案评价 (13) 7. 课题分析评价 (14) 8. 课设总结 (14) 参考文献 (15) 附录1 实验器件清单 (16) 附录2 实验光路图 (17) 附录3 图像处理程序 (18) 附录4 光斑图像处理后灰度图 (19) 附录5 物体移动光斑图 (20)

基于CMOS单点激光三角法测距系统设计

文章编号:100525630(2006)022******* 基于CM O S 单点激光三角法测距系统设计 Ξ 林小倩,林 斌,潘泰才 (浙江大学国家光学仪器工程技术研究中心,浙江杭州310027) 摘要:根据三角法测距原理,运用单片机技术对距离进行测量,设计了一套基于C M O S 的单点激光三角法测距系统。详细地介绍了系统的硬件组成和软件结构,针对测量用的光 敏传感器之标定曲线的非线性特征,提出了用逐段折线逼近该标定曲线的方法,最后给出 实验结果,并分析了各个参数对实验精度的影响。实验结果表明方案切实可行,该方法的测 量误差小于3%。 关键词:单点激光三角法;单片机;C M O S ;逐段折线逼近 中图分类号:TH 76112 文献标识码:A D istance m ea sur i ng usi ng si ngle -po i n t la ser tr i angula tion syste m design ba sed on C MOS L IN X iao 2qian ,L IN B in ,PA N T a i 2ca i (CN ERC fo r Op tical Instrum ent ,Zhejiang U niversity ,H angzhou 310027,Ch ina ) Abstract :In th is paper ,acco rding to the p rinci p le of distance m easu ring u sing triangu lati on ,a su it of distance m easu ring u sing single 2po in t laser triangu lati on system based on C M O S is designed th rough the techn ique of M CU .T he hardw are of the system and the structu re of the softw are are described in detail ,due to the non 2linear characteristic of the u sed ligh t 2sen sitive tran sducer ′s calib rati on cu rve ,the m ethod of u sing p iecew ise linear line to app rox i m ate calib rati on cu rve is given ,at last ,the resu lts of the exp eri m en t are in troduced and it is analyzed the relati on betw een every param eter and experi m en tal p recisi on .T he resu lts of the exp eri m en t p rove the feasib ility of the idea ,the m easu rem en t erro r of th is m ethod is less than 3%. Key words :single 2po in t laser triangu lati on ;M CU ;C M O S ;p iecew ise linear A pp rox i m ati on 1 引 言 激光测距技术是集光、机、电一体化的高精度测距技术,在军事、测距、测绘等领域得到广泛的应用。常用的几种测距方法中,脉冲测距方式比较适合远距离的测量,特别是在天体测量方面,虽然在目前加以改进后,可测量几米的距离,但是对激光器要求更高,造价也更高;相位测距方式也比较适合于较大距离的测量;激光干涉测距法主要是用来测量微小距离或形状变化的。现设计了一种以单片机技术为核心的低成本数字显示C M O S 单点激光三角法测距仪,利用三角法测距原理、采用激光遥感方式实现距离的非接触测量。对系统的基本原理、硬件电路、软件设计等进行了介绍,最后给出了实验结果。该系统结构简单、成本 第28卷 第2期 2006年4月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .28,N o.2 A p ril,2006 Ξ收稿日期:2005206214 作者简介:林小倩(19802),女,湖北锦门人,硕士生,主要从事光、机、电一体化技术方面的研究。

激光三角法测量物体位移

课程设计Ⅱ(论文)说明书 题目:激光三角法测量物体位移 学院:电子工程与自动化学院 专业:光信息科学与技术 学生姓名:覃荣梅 学号: 1000830303 指导教师:王新强 2014 年 1月 5 日

摘要 本课程设计基于激光三角法原理对物体较小范围内的移动进行测量。在长度、距离及三位形貌等的测试中有广泛应用。通过激光三角法两个方案直射式和斜射式的特点,结合实验条件,选择最合适的方案进行测量。本次测量最大的特点就是非接触式测距,实际中对非接触式测距一般很难知道物体到成像透镜的距离,可由成像透镜焦距以及激光光线和物体散射光线组成的三角形的边长计算出该距离。通过定标,得出透镜上成像距离与物体像移动距离间的对应关系,用此标尺作为计算移动位移的标准。移动物体采集光斑图像,用matlab软件对图像处理进行处理,计算像的移动距离,再根据几何关系推导出物体的实际移动距离。在最后计算出该方案的标准不确定度,并对方案产生的误差进行分析,提出改进意见。设计方案光路简单,方便快捷,受环境影响小而且测量精确度较高。 关键词:激光三角法;测距;定标;CCD;误差分析

目录 引言 (1) 1. 设计任务 (1) 2. 激光三角法测距基本原理 (1) 3.方案论证和选择 (2) 3.1 激光三角法测距现状 (2) 3.2 测量方案 (2) 3.3 方案比较与选择 (4) 3.4 器件选择 (6) 4. 方案验证步骤及数据记录 (6) 4.1 方案验证步骤 (6) 4.2 测量数据记录 (6) 4.2.1 测量获得成像透镜焦距 (6) 4.2.2 定标 (7) 4.2.3 移动物体测量位移 (7) 5. 测量数据处理 (8) 5.1 各个距离测量值计算 (8) 5.2 定标计算 (9) 5.3 光斑位移量计算 (10) 5.4夹角和物体实际移动位移计算 (10) 6. 误差分析及方案评价 (11) 6.1 相对误差和绝对误差计算 (11) 6.2 误差分析 (12) 6.3 设计方案评价 (12) 7. 课题分析评价 (13) 8. 课设总结 (13) 参考文献 (14) 附录1 实验器件清单 (15) 附录2 实验光路图 (16) 附录3 图像处理程序 (17) 附录4 光斑图像处理后灰度图 (18) 附录5 物体移动光斑图 (19)

激光三角法测距的基本原理

激光三角法测距传感器的设计与实现 朱尚明合肥经济技术学院机电系合肥:230052葛运建中科院合肥智能机械研究所摘要本文介绍了激光三角法测距的基本原理,利用新型位敏元件PSD设计并实现了一种高分辨率、大量程的测距传感器,并对不同条件下的测试结果进行了分析。 关键词激光三角法散射光斑位敏元件PSD 算术运算电路 近年来,电子学和光学技术的飞速发展使得光电检测已成为自动化技术领域的一个热点,在机器人传感器及工业自动检测领域中应用十分活跃[1][2]。激光三角法测距传感器就是利用光电技术对距离进行非接触测量的一种新型传感器[3][4]。该传感器具有测量速度快、抗干扰能力强、测量点小、适用范围广等优点,目前在国内外受到了越来越多的重视。 1 激光三角法测距的基本原理激光三角法测距的基本原理是基于平面三角几何,如图1—1所示。其方法是让一束激光经发射透镜准直后照射到被测物体表面上,由物体表面散射的光线通过接收透镜会聚到高分辨率的光电检测器件上,形成一个散射光斑,该散射光斑的中心位置由传感器与被测物体表面之间的距离决定。而光电检测器件输出的电信号与光斑的中心位置有关。因此,通过对光电检测器件输出的电信号进行运算处理就可获得传感器与被测物体表面之间的距离信息。为了达到精确的聚焦,发射光束和光电检测器件受光面以及接收透镜平面必须相交于一点[5]。在图1—1中,假设发射光束和接收透镜光轴之间的夹角为Η,光电检测器件的受光面和接收透镜光

轴之间的夹角为Υ,接收透镜在基准距离处的物距和像距分别为E和E′,不难推出被测物体的距离变化?和光电检测器件图1—1 ?之间的关系为 ?=E3sinΥ3?[E′3sinΗ-?3sin(Η+Υ)] =(D13?)(D2-?)式中D1=E3sinΥsin(Η+Υ) D2=E′3sinΗsin(Η+Υ) 由于式(1—1)的推导不带任何先行假设或近似,因此这一关系是严格精确的,它对任何距离的变化都成立。基于这一关系进行运算处理,便可实现激光三角法测距传感器的高分辨率和大量程

激光位移传感器的激光三角测量法原理与激光回波分析原理解析

激光位移传感器的激光三角测量法原理与激光回波分析原理解析激光位移传感器可以测量位移、厚度、振动、距离、直径等精密的几何测量。激光有直线度好的优良特性,同样激光位移传感器相对于我们已知的超声波传感器有更高的精度。但是,激光的产生装置相对比较复杂且体积较大,因此会对激光位移传感器的应用范围要求较苛刻。 激光位移传感器原理 先给大家分享一个激光位移传感器原理图,一般激光位移传感器采用的基本原理是光学三角法: 半导体激光器①被镜片②聚焦到被测物体⑥。反射光被镜片③收集,投射到CMOS阵列④上;信号处理器⑤通过三角函数计算阵列④上的光点位置得到距物体的距离。 按照测量原理,激光位移传感器分为激光三角测量法和激光回波分析法,激光三角测量法一般适用于高精度、短距离的测量,而激光回波分析法则用于远距离测量,下面分别介绍激光三角测量原理和激光回波分析原理。 1.激光位移传感器原理之激光三角测量法原理 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可独立设置检测窗口。 采取三角测量法的激光位移传感器最高线性度可达1um,分辨率更是可达到0.1um的水

激光三角测距系统

激光测距三角系统 1.激光三角法基本原理 在被测物体表面上方,用一束激光以一定的角度照射,激光在物体表面发生反射或者散射,在另一个角度用成像系统对激光反射或散射光进行汇聚成像,被测物体上激光照射所产生的光斑的位置变化,光反射或散射的角度也会变化,用光学系统对光线进行汇聚,光斑成像在CCD或者PSD位置传感器上,沿激光方向当被测物体发生移动时,位置传感器上的成像光斑就会发生移动,其位移对应物体移动距离,从而间接的实现激光测量。由于入射和反射光构成一个三角形,对光斑位移的计算,几何三角和激光器运用其中,所以这种方法被称为激光三角测量法。 2.系统组成 图1 光学系统结构图 光学器件:AL0650P2尾纤型激光器 A414-光纤准直器 650BP35-OD3T0E02窄带滤光片 DLB-10-25PM的双胶合透镜 系统软硬件设计: 电路部分以AVR单片机为核心的硬件电路,包括线阵CCD驱动电路、CCD信号处理电路,以及以单片机为核心的测量、显示电路,基本满足系统测量精度和在

线检测的要求。 图2 系统硬件框图 软件模块包括单片机对线阵CCD的驱动、信号数据二值化、单片机采集处理和发送程序,控制LCD显示测量结果。主程序的结构为: (1)开始,LCD液晶显示屏点亮,初始化单片机和显示器。 (2)等待外部按键的幵始命令。 (3)开始命令发出后,执行CCD驱动程序、脉冲计数填充和采集程序 (4)关闭计数器,控制LCD显示数据。 3.系统CCD 本系统为微位移检测装置,即通过测量被测物体在CCD上成像的像点移动来测量物体的位移,所以选用线阵CCD。考虑到测量系统应该要满足实时测量要求,并且有较好的动态范围,所以要求系统至少1kHz的响应频率,要求CCD有较好的转移速率,最终选定了 TCD1206SUP。其驱动波形如下,本系统采用ATmegal6单片机最小系统对CCD进行驱动,另外单片机在小数据处理和LCD控制方面也足以胜任。 图3 TCD1206SUP驱动脉冲波形图 4.信号处理电路

基于PSD的激光三角测距法原理、系统和精度分析

激光三角测距法原理、系统和精度分析 目录 1 三角测距方式 (2) 2 激光三角法原理分析 (4) 3 激光三角法距离计算 (5) 4 激光三角法精度分析 (6) 5 系统探测能力的影响因素 (9) 5.1 PSD接收光功率对系统探测能力的影响 (9) 5.2光能质心对探测能力的影响 (16) 5.3像点弥散斑对系统探测能力的影响 (19) 激光三角法作为目前一种非常重要的非接触式测量方法,广泛运用于物体位移、厚度和三维面形等方面的测量。激光三角法利用一束激光经光学系统调节后照射到被测物体表面,形成一小光斑,经过被测物体表面散射后通过接收物镜聚焦成像在光电探测器的接收面上。被测点的位移信息由该光点在探测器的光接收面上所形成的像点位置决定。当被测物体移动时,光斑相对于接收物镜的位置发生变化,相应的其像点在光探测器接收面上的位置也将发生改变,根据其像点位置的变化和测量系统的结构参数可求出被测点的位移信息。由于入射光线和反射光线构成一个三角形,所以该方法被称为激光三角法。

1 三角测距方式 系统三角结构方式初步选定采用直入射法垂直接收屏方式。 对于本系统,接收物镜面几乎与散射光光轴垂直,接收物镜光轴与入射光光轴的夹角θ角非常小,计算出只有约1.14度,在一般的机械零件加工和安装调试过程中这么小的角度是很难实现的,而且此时接收物镜也很难在普通光学支架上定位,故将垂直接收方式的结构设计为以下形式: 图1 改进型垂直接收屏方式原理图 改进型方式中,接收物镜光轴平行于入射光轴,并与物面散射光光轴成θ角,接收物镜与光电探测器接收面平行。 光束i垂直入射到移动物面上并与接收物镜的主光轴相交于位于M平面上的O点,称M平面为零参考平面,O点在像屏上的像点是O’点。移动物面上的A点和参考平面上的O点经过漫反射和半漫反射后通过透镜分别成像在光电传感器P上的A’点和O’点。A点相对于零参考平面M的位移量记为?,A点的位移计算公式为:

激光扫描三角法测量精度因素的分析与研究

计量学报980209 计量学报 ACTA METROLOGICA SINICA 1998年 第19卷 第2期 No.2 Vol.19 1998 科技期刊 周利民 胡德洲 卢秉恒 摘要 对激光扫描三角法在用于三维非接触测量中的精度影响因素进行了较全面的分析与研究,并提出了 该方法在提高测量精度方面应采取的措施,特别是基于神经网络的多维拟合标定方法可大大提高测量的精度, 给出了实验研究的结果。 关键词: 激光扫描 三角法 精度因素 三维测量 人工神经网络 1 引言 在非接触三维形貌测量中,基于激光的三角法由于其系统结构简单、测量速度快、且具有实时处理能力, 所以被广泛采用。在三角法的测量中,既有采用单点扫描的逐点测量法;也有将点变为一条光线的线光条测量 法,这种方法一次可测得一条线上的三维信息;还有采用多条光线的结构光测量法,该方法也属于全场测量 法。线光条的测量法也可认为是结构光测量法中一种最简单的情况,该方法是七十年代初由Will和Pennington首 先提出的〔1,2〕,随后,Popplestone 、Agin和Binford等人采用光条提取物面三维信息〔3,4〕。八十年代初, Potmesil、Tio和McPherson等人分别采用激光或白光作为投影光源,形成点、线或光栅的投影,再用摄象机摄取 投射在物体上光线的漫反射光,通过三角法得到物体的三维形貌〔5-7〕。八十年代中后期,该方法有了进一步 的发展,特别是在物与象的标定上有了较大进步〔8,9〕,使该方法进入实用,并有采用三角法的测头产品上市。 进入九十年代,随着反求工程和快速成型制造技术的迅速发展,对三维物体形貌进行快速精密测量的需求越来 越大。从工业中非接触三维形貌测量方法的应用来看,漫反射光接收的三角法是使用最为广泛的方法。目前, 对该方法的研究主要集中在精度的提高上。本文针对激光扫描的三角法,对测量过程中精度的影响因素进行了 较详细的分析,并提出了提高精度的方法。 2 精度影响因素分析 2.1 物与象对应关系的影响 对于三维物体表面点的位置和象平面上反映该点的坐标之间是一个三维到两维的变换。从图1可以看到,来 自物点的散射光通过透视中心,落在象平面上,这是一种从物点到象点的透视变换。图中P i 、P c和P0三个共线 点之间的关系为: 图1 物与象的对应关系 k(P i-P c)=P c-P0 (1) k=-(f-y0)/f为两线段之比,将式(1)展开可写为: file:///E|/qk/jlxb98/980209.htm(第 1/6 页)2010-3-23 0:55:04

激光测距方法综述

激光测距方法综述 引言 激光测距就是通过激光往返的时间来测定距离。由于激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列特点:激光有小的光束发散角,即所谓的方向性好或准直性好;激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光;激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。因而采用激光器做光源的测距仪也就有一些优于其他测距仪的特点:测量精度高、分辨率高、抗干扰能力强、体积小、重量轻。因此广泛应用于军事、科学技术、生产、建设等各个方面。 一、激光测距的国内外现状 1960年,世界上第一台红宝石激光器诞生,激光所具有的单色性好、方向性强和高亮度性引起了人们的普遍关注。随后科学家和工程师们就提出了激光测距、激光雷达、激光制导研制的构想,并开展了大量研究工作。作为激光雷达的原型,激光测距仪以其体积小巧,性能优越等优点迅速取代了传统的光学测距仪,成为光学测距主导产品。最突出发展的是卫星测距机。1961年,美国已成功开发出世界上第一台红宝石激光测距系统。1969年,美国的坦克火控系统中的首次使用激光测距系统。同年,科学家们利用激光测距系统精确测量出地球测试点和月球反射器间的距离。 二极管激光测距仪的研究起始于在20世纪60年代末,80年代中期开始陆续解决了激光装置、光学系统和信号处理电路的关键技术,在20世纪80年代后期进入应用研究阶段,并开发了各种不同用途的射频模组原型,20世纪90年代中期,各种成熟的产品不断涌现。 国外大学、研究机构和公司都进行了对脉冲半导体激光测距系统的研究。Schwartz Electro-Optics公司为美国的国家数据中心研制了激光波长测量装置,开发了无人海浪测量站,并为美国联邦政府的公路总局开发了激光自动感应车辆行驶速度和高度的测量系统,提高了交通效率;还开发了军用直升机激光防碰撞报警装置。EXXON公司研制了用于海洋石油勘探开发的激光二极管角度测距系统。1992年,美国亚特兰大激光公司研制了警方使用的手持式人眼安全激光二极管测距仪,用于测量车辆的距离和速度。在1996年下半年,美国Bushnell 公司开发了400米的400型LD激光测距仪Yaddaga400,1997被评为世界上100个重大科技成果之一,同年,他们推出了测距能力为800米的800型激光测距机。美国Lecia公司也研制了小型LD测距仪,测量距离为0.2~30m。自1995年以来对人眼安全的半导体激光测距技术的发展十分迅速,推出了波长为800~900nm范围内、峰值功率为KW、脉冲宽度20~50ns、测量距离10m~1km非合作目标激光测距系统。 目前国际上脉冲式激光测距的系统研究主要向着髙精度、远距离、发射脉冲窄、测距范围广等方向进行。在这种研究方向的指引下,国际上对激光测距研究的技术水平有了很大提高:Leica公司所生产的测距望远镜,其测距的范围从10m~ 1.2km,其测距精度小于±lm,Bushnell公司的激光测距仪的测量范围从15m~1.5km,加拿大NEWCON公司生产的LRM2500CI

相关文档
相关文档 最新文档