文档库 最新最全的文档下载
当前位置:文档库 › 线性代数电子教案LA2-2B

线性代数电子教案LA2-2B

线性代数电子教案LA2-2B
线性代数电子教案LA2-2B

6. 伴随矩阵:n n ij a A ?=)(, A det 中元素ij a 的代数余子式为ij A .

??

???????

???=nn n n n n a a a a a a a a a A 2

1

22221

11211, ?

????

?

?

?????=nn n

n

n n A A A A A A A A A A 212221212111

*

重要性质:E A A A AA )det (**==

7. 共轭矩阵:复矩阵n m ij a A ?=)(的共轭矩阵记作n m ij a A ?=)(. 算律:(1) B A B A +=+)( (2) A k A k =)( (3) B A B A =)( (4) H T

T

)()(A A A 记作

==

§2.3 逆矩阵

定义:对于n n A ?, 若有n n B ?满足E BA AB ==, 则称A 为可逆矩阵, 且B 为A 的逆矩阵, 记作B A =-1. 定理1 若n n A ?为可逆矩阵, 则A 的逆矩阵唯一. 证 设B 与C 都是A 的逆矩阵, 则有 E BA AB ==, E CA AC == C EC C BA AC B BE B =====)()( 定理2 n n A ?为可逆矩阵0det ≠?A ;

n n A ?为可逆矩阵*1d e t

1

A A A =?-. 证 必要性.已知1-A 存在,则有

0det 1det det 11≠?=?=--A A A E AA 充分性.已知0det ≠A ,则有

E A A A AA )(det *

*

==E A A

A A A A

==?det det *

* 由定义知A 为可逆矩阵,且*1det 1

A A

A =

-.

[注]0det ≠A 时, 亦称A 为非奇异矩阵; 0det =A 时, 亦称A 为奇异矩阵.

推论1 对于n n A ?, 若有n n B ?满足E AB =, 则A 可逆, 且B A =-1. 证 E AB =?≠?=?0det 1det det A B A A 可逆

B EB B A A AB A E A A =====----)()(1111

推论2 对于n n A ?, 若有n n B ?满足E BA =, 则A 可逆, 且B A =-1. 算律:

(1) A 可逆1-?A 可逆, 且A A =--11)(.

对于1-A , 取A B =, 有E A A B A ==--11.

(2) A 可逆, 0≠k kA ?可逆, 且111

)(--=A k kA .

对于kA , 取11

-=A k B , 有E AA A k kA B kA ===--11)1)(()(.

(3) n n A ?与n n B ?都可逆AB ?可逆, 且111)(---=A B AB . 对于AB , 取11--=A B C , 有

E A BB A A B AB C AB ===----1111)())(()(. (4) A 可逆T A ?可逆, 且T 11T )()(--=A A .

对于T A , 取T 1)(-=A B , 有E A A A A B A ===--T 1T 1T T )()(. (5) A 可逆A

A det 1

det 1=

?-. (6) n n A ?与n n B ?都可逆***)(A B AB =?.

证 ][)]det )(det [()()](det [)(111*---==A B B A AB AB AB ])d e t [(1-=B B ])d e t [(1-A A **A B =

负幂:A 可逆, 定义E A =0, ),2,1()(1 ==--k A A k k , 则有 l k l k A A A +=, l k l k A A =)( (k ,l 为整数)

例1 ??????????---=411112013A , ?????

??

???--==-110312101455151*1A A

例2 设n n A ?满足O E A A =--422, 求1)(-+E A . 解 O E A A =--422E E A A =--?322

E E A E A =-+?)3)((E A E A 3)(1-=+?- 应用:

(1) n 阶线性方程组求解 b x A n n =?, b A x A 10det -=?≠ (2) 求线性变换的逆变换 x A y n n ?=, y A x A 10det -=?≠ (3) 矩阵方程求解 设m m A ?可逆, n n B ?可逆, 且n m C ?已知, 则 C AX =C A X 1-=? C XB =1-=?CB X C AXB =11--=?CB A X

例3 设??

??

?

?????---=612132015A , ??????????=530212C 满足X C AX 2+=, 求X . 解 并项: C X E A =-)2( 计算:C E A X 1)2(--=

?????????????????

???--=5302121103121014551

??????????-=111703

例4 设??

??

??????---=111111111

A 满足X A X A 21*+=-, 求X .

解 并项: 1*)2(-=-A X E A 左乘A : E X A E A =-]2)det [(

计算: 4d e t =A

11)2(2

1

)24(---=-=A E A E X ????

??????=10111001141

密码问题:

1→a , 2→b ,3→c , … ,26→z

??????????=210211321A , ??????????----=-111122110

1A

action :1, 3, 20, 9, 15, 14

加密:??????????=??????????4344672031A , ????

?

?????=??????????43528114159A

发出∕接收密码:67, 44, 43, 81, 52, 43

解密:??????????=??????????-20314344671A , ???

?

??????=??????????-141594352811A

明码:1, 3, 20, 9, 15, 14表示action

§2.4 分块矩阵

?

????????

???----=300012000101

1101A ??

?

???=2221

1211A A A A ?

?

???

????

???----=3000

12000101

1101A []43

21

B B B B

=

用若干条横线与纵线将矩阵A 划分为若干个小矩阵, 称这些小矩阵 为A 的子矩阵, 以子矩阵为其元素的矩阵称为分块矩阵. 特点:同行上的子矩阵有相同的“行数”; 同列上的子矩阵有相同的“列数”.

1. 加法:??????????=?sr s r n

m A A A A A 1111, ????

?

?????=?sr s r n m B B B B B 1111

????

??????++++=+sr sr s s r r B A B A B A B A B A 11111111 要求:A 与B 同阶, 且分块方式相同. 2. 数乘:????

?

?????=?sr s r n

m kA kA kA kA kA 1111

3. 乘法:??????????=?st s t l

m A A A A A 1111, ????

?

?????=?tr t r n l B B B B B 1111

[]tj it j i tj j it i ij B A B A B B A A C ++=???

?

?

?????= 1111

????

??????=sr s r C C C C AB 1111 要求:A 的列划分方式与B 的行划分方式相同.

例1 ?????????

???-=10

11

01210010

0001A ??

????=E A O E 21 ?????

??

??

???---=02

1

11401102

10101

B ??

?

???=222111B B E B ????

??

++=222121

112111B A B B A E B AB ?????

???????---=13

11

334210210101 4. 转置:??

???

?????=?sr s r n

m A A A A A 1111, ????

?

?????=T T 1T 1T 11T

sr r s A A A A A 特点:“大转”+“小转”

5. 准对角矩阵:设1A ,2A ,s A , 都是方阵, 记

?????

?????

?

?==s s A A A A A A A

2

121),,,(d i a g

性质:(1) )det ()(det )det (det 21s A A A A = (2) A 可逆),,2,1(s i A i =?可逆

(3) ),,2,1(s i A i =可逆??????

???????

?=?----11

2

111

s A A A A

例2 ??

?

?

??=?????

?????=21120130005A O O A A ????

??????--=????

??=---320110005112111

A O

O A A 例3 设m m A ?与n n B ?都可逆, m n C ?, ?

?????=B C O A M , 求1

-M . 解 M B A M ?≠=0)det ()det (det 可逆

??

?

?

??=-43

21

1X X X X M , ??

?

???=????????????n m

E O

O E X X X X B C O A 43

21

???????=+=+==n

m

E BX CX O BX CX O AX E AX 42312

1

???????=-===----1

4

1

1

3211

B X CA B X O X A X

?

?

?

???-=----1111

B CA B O A M

课后作业:习题二 7 (1) (3) (5), 8 (2) (4), 10~14

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

山东大学网络教育《线性代数》期末考试复习题

1 专科《线性代数》 模拟题1 一 填空题 1、设A,B 是两个3阶矩阵,且det A=-2,det B=-1,则det (-212-B A )=__32_. 2、如果向量α,β是正交的,则(α,β)=_0_. 3、若矩阵A 满足 __A T =A_ ,则称A 为对称矩阵. 4、设A 是m ×n 矩阵,B 是p ×m 矩阵,则T T B A 是_p n ?_矩阵. 5、若数00=λ为矩阵A 的特征值,则齐次线性方程组AX=0必有___非零___解. 6、二次型)(.,,.........2,1n x x x f ,如果对任意一组不全为零的实数n c c c ,......2,1,0),......,(21>n c c c f 则称)(.,,.........2,1n x x x f 为___正定__ . 二 单项选择题 t n s n t m n m B A B A T T t s n m ====?? ④ ③ ② ①则必须满足做乘积 由 ____,.1逆矩阵 矩阵 ③数量矩阵 ④ ①对称矩阵 ②对角的是则有阶矩阵,若都是设___,,.2A B E BA AB n B A ==④可能有解一解 ③有无穷多解 ①可能无解 ②有唯组则该线性方程零解的齐次线性方程组只有若某个线性方程组相应.___.,.3 向量一个向量 ④任何一个没有一个向量 ③至多 ①至少一个向量 ②量线性表出。可被该向量组内其余向线性相关,则向量组内αα若向量组α____,.....4,2,1s 三 是非题 。()个线性无关的特征向量有阶实对称矩阵也是对称矩阵。()阶对称矩阵,则为若n A 、n A n A 、512 的解。()的解之和不是的解与线性相关。()αα可知ααα由α。()有对方阵B AX AX B 、AX 、B A B A B A 、===-=+=+042det det )det(,33,2,1,213 四:解线性方程组: ② ② ④ √ √ X √ X ① 0 6745 229 638 52432143 24214321====+-+-+---+-+x x x x x x x x x x x x x x

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵 数 学 模 型: 生态学:海龟种群统计数据 该模型在高等数学教学应用的目的: 1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。 2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。 3. 巩固矩阵的概念和计算。 生态学:海龟种群统计数据 管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。举例来说,可以用一个四阶段的模型来分析海龟种群的动态。 如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是 111i i d i i i d i s p s s -??-= ?-?? 种群可以存活且在次年进入下一阶段的比例是 ()11i i d i i i d i s s q s -= - 如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵

12341 2233 400000 p e e e q p L q p q p ?? ? ?= ? ??? 那么L 可以用来预测未来几年每阶段的种群数。上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。根据前面表格数据,我们模型的莱斯利矩阵是 0127790.670.73940000.000600000.810.8077L ?? ? ?= ? ??? 假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后 每阶段的种群数可以如下计算 100 0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ?????? ??? ? ??? ?=== ??? ? ??? ??????? (这里的计算进行了四舍五入)。为了得到2年后的种群数,再用矩阵L 乘一次。 2210x Lx L x == 一般来说,k 年后的种群数由公式0k k x L x =给出。为了了解更长时期的趋势,计算出x 10、 x 25和x 50,如下表所示。 这个模型预测50年后繁殖期的海龟总数下降了80%。 下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。 思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广? 参考文献 1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987 2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33, 1945.

山东省济南市山东建筑大学电气工程及其自动化2007-2008.1.A卷+答案

线性代数 一、单项选择题(每小题3分,共18分) 1、设矩阵333223???C B A ,,,则下列运算可行的是 【 】 .A AC , .B CB , .C ABC .D B A + 2、设, A B 为n 阶方阵,E 为n 阶单位矩阵, 则下列等式成立的是 【 】 . A ()()22 B A B A B A -=+- .B ()()E A E A E A -=+-2 .C BA AB = .D ()E B A E B A ++=+ 3、设方阵A 有特征值1、2,a 是与1 对应的特征向量,b 是与2对应的特征向量,下列判断正确的是 【 】 .A a 与b 线性无关 .B b a +是A 的特征向量 .C a 与b 线性相关 .D a 与b 正交 4、设4阶方阵A 的行列式为2,则A 的伴随矩阵*A 的行列式为 【 】 (A) 2; (B) 4; (C) 8; (D) 1 5、112012()2, 1012a A a r A a -?? ? =-= ? ?-?? 若矩阵的秩则的值为 【 】 (A)0(B)0 -1(C)-1 (D) 1 1 -或 或 6、A 与B 为同阶方阵,如果A 与B 具有相同的特征值,则 【 】 (A) A 与B 相似;(B) A 与B 合同;(C) A B =; (D) A B = 二、填空题(每小题3分,共18分) 7、0200003000045000 D =,则_______D =. 8、设3阶矩阵A ,且矩阵行列式3=A ,则矩阵行列式=A 2 . 9、设矩阵a a a a a a a a A a a a a a a a a ?? ? ? = ? ? ?? ? ,则A 的非零特征值为____________. 10、若方阵A 有一个特征值是1,则E A -= . 11、n 维向量空间的子空间121220(,, ,)0n n n x x x W x x x x x ??+++=?? ? =???++=???? ? 的维数是____ 12、设(,)E i j 表示由n 阶单位矩阵第i 行与第j 行互换得到的初等矩阵,则 E 1[(,)]E i j -=_________.

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

山东建筑大学专升本学生学籍管理细则

山东建筑大学函授专升本学生学籍管理细则 为了全面贯彻执行党的教育方针,维护正常的教育教学秩序和生活秩序,树立勤奋、严谨、求实、创新的学风,不断提高教育和教学质量,保障学生的合法权益,促进学生的全面发展,依据中华人民共和国教育部《普通高等学院学生管理规定》,结合实际情况,制定本细则。 第一章注册与缴费 函授专升本学历的性质:专科学生经全国统一的成人高考专升本入学考试并被录取后参加相应专业本科课程的学习,修完该本科专业的全部课程,成绩合格,可获得国家教育部电子注册的本科毕业证书,如符合学位授予条件,可申请学位。 函授方式的成人专升本学历教育与全日制普通高等院校教育同属国民教育 系列,其学历国家承认,教育部电子注册,电子注册信息均可在教育部高等教育学生信息网站上查询。 第一条学生应缴的各项费用应在每学年第一学期开学前一次缴清,特殊情况应提出申请和完成补缴手续。 第二章学制、学习年限与学分 在籍专科生函授专升本课程班的学习方式:函授是以自学为主,面授为辅的一种学习形式。浙江建院与山东建筑大学联合举办的函授专升本课程班,专科毕业前可以修完“专升本”专业教学计划的所有课程。平时学生根据自己的情况安排自学,自学中碰到问题可与任课教师联系,面授和考试原则上安排在晚上、双休日等业余时间,不影响正常专科教学,面授结束后进行课程考试,课程考试由我校自行组织。课程成绩由山东建筑大学统一建立学籍成绩档案,专科毕业时修完所有课程且成绩合格者先发给专升本课程班结业证书。 在籍专科生函授专升本正式学籍的取得与毕业文凭发放:函授专升本属国家学历教育,参加课程班并结业的学生专科毕业当年须凭专科毕业证书报名参加全国统一的成人高考专升本入学考试并被录取后才能取得山东建筑大学专升本正式学籍(如当年因成绩原因未被正式录取可于次年再次报考),并按取得正式学籍的时间顺延3年换发毕业证书。未经成人高考或无法取得正式学籍,不能换发毕业证书。 第三章纪律与考勤

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

山大2017春季班期末考试 线性代数二(答案)

线性代数二 一.单选题. 1. 若)541()1(l k N -55 443211a a a a a l k 是五阶行列式ij a 的一项,则k 、l 的值及该项符号为( A ). (A )2=k ,3=l ,符号为负; (B) 2=k ,3=l 符号为正; (C) 3=k ,2=l ,符号为负; (D) 1=k ,2=l ,符号为正. 2. 下列行列式( A )的值必为零. (A) n 阶行列式中,零元素个数多于n n -2个; (B) n 阶行列式中,零元素个数小于n n -2个; (C) n 阶行列式中,零元素个数多于n 个; (D) n 阶行列式中,零元素的个数小于n 个. 3. 设A ,B 均为n 阶方阵,若()()2 2B A B A B A -=-+,则必有( D ). (A )I A =; (B)O B =; (C)B A =; (D)BA AB =. 4. 设A 与B 均为n n ?矩阵,则必有( C ). (A )B A B A +=+;(B )BA AB =;(C )BA AB =;(D )()111 ---+=+B A B A . 5. 如果向量β可由向量组s ααα,....,,21线性表出,则( D ) (A) 存在一组不全为零的数s k k k ,....,,21,使等式 s s k k k αααβ+++=....2211成立 (B) 存在一组全为零的数s k k k ,....,,21,使等式 s s k k k α ααβ+++=....2211成立 (C) 对β的线性表示式不唯一 (D) 向量组s αααβ,....,,,21线性相关 6. 齐次线性方程组0=Ax 有非零解的充要条件是( C ) (A)系数矩阵A 的任意两个列向量线性相关 (B) 系数矩阵A 的任意两个列向量线性无关 (C )必有一列向量是其余向量的线性组合 (D)任一列向量都是其余向量的线性组合 7. 设n 阶矩阵A 的一个特征值为λ,则(λA -1)2+I 必有特征值( C ) (a)λ2+1 (b)λ2-1 (c)2 (d)-2 8. 已知 ???? ? ??-=00000 123a A 与对角矩阵相似,则a =( A ) (a) 0 ; (b) -1 ; (c) 1 ; (d) 2 9. 设A ,B ,C 均为n 阶方阵,下面( D )不是运算律. (A )()A B C C B A ++=++)( ; (B )BC AC C B A +=+)(; (C ))()(BC A C AB =; (D )B AC C AB )()(=. 10. 下列矩阵( B )不是初等矩阵.

山东建筑大学线性代数试卷及答案

· ··········································································································装 订 线·································································································· 山 东 建 筑 大 学 试 卷 共 4 页 第 1 页 班级 _________ 姓名 _________学号 ______________

) · ··········································································································装 订 线··································································································

订线 ································································································· ·

···········································································································装订 线 ································································································· ·

土木工程线性代数山东大学网络教育考试模拟题及答案

09年11月期末本科《线性代数》参考解答 线性代数模拟题1 一.单选题. 1.下列( )是4级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D) 2341. 答:A 2. 如果133 32 31 232221 131211 ==a a a a a a a a a D ,33 32 3131 23222121 13 1211111324324324a a a a a a a a a a a a D ---=,那么=1D ( ). (A ) 8; (B) 12-; (C) 24; (D) 24-. 答:D 3. 设A 与B 均为n n ?矩阵,满足O AB =,则必有( ). 答:C (A )O A =或O B =; (B )O B A =+; (C )0=A 或0=B ; (D ) 0=+B A . 4. 设A 为n 阶方阵)3(≥n ,而*A 是A 的伴随矩阵,又k 为常数,且1,0±≠k ,则 必 有 ()* kA 等于 ( ). 答:B (A )*kA ; (B )*1A k n -; (C )*A k n ; (D )*1A k -. 5.向量组s ααα,....,,21线性相关的充要条件是( ) 答:C (A )s ααα,....,,21中有一零向量 (B) s ααα,....,,21中任意两个向量的分量成比例 (C) s ααα,....,,21中有一个向量是其余向量的线性组合 (D) s ααα,....,,21中任意一个向量都是其余向量的线性组合 6. 已知21,ββ是非齐次方程组b Ax =的两个不同解,21,αα是0=Ax 的基础

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

山东大学专升本网络教育《线性代数》模拟题与答案

山东大学网络教育线性代数模拟题 (A) 一.单选题 . 1.下列( A )是 4 级偶排列. (A ) 4321; (B) 4123; (C) 1324; (D) 2341. 2. 如果 a 11 a 12 a 13 4a 11 2a 11 3a 12 a 13 D a a a 1, 21 22 23 D 4a 2a 3a a , 1 21 21 22 23 a 31 a 32 a 33 4a 31 2a 31 3a 32 a 33 那么 D (D ). 1 (A ) 8; (B) 12 ; (C) 24; (D) 24 . 3. 设 A 与 B 均为 n n 矩阵,满足 AB O ,则必有( C ). (A ) A O 或 B O ;(B ) A B O ; (C ) A 0 或 B 0;(D ) A B 0 . 4. 设 A 为 n 阶方阵 (n 3) ,而 * A 是 A 的伴随矩阵, 又 k 为常数,且k 0, 1,则必有 kA * 等于( B ). (A ) * kA ;(B ) k n 1 A * ;(C ) k n * A 1 A ; (D ) k * . 5.向量组 1 , 2 ,...., s 线性相关的充要条件是( C ) (A ) 1, 2 ,...., 中有一零向量 s (B) 1 , 2 ,...., s 中任意两个向量的分量成比例 (C) 1 , 2 ,...., s 中有一个向量是其余向量的线性组合 (D) 1 , 2 ,...., s 中任意一个向量都是其余向量的线性组合 6. 已知 1 , 2 是非齐次方程组 Ax b 的两个不同解, 1 , 2 是 Ax 0的基础解系, k 1 ,k 2 为任意常数,则 Ax b 的通解为( B ) (A) 1 2 k 1 k ( ) ; (B) 1 2 1 2 2 k 1 k 1 2 ( ) 1 2 1 2 2 (C) 1 2 k 1 k ( ) ; (D) 1 2 1 2 2 k 1 k ( 1 2 1 2 ) 1 2 2 7. λ=2 是 A 的特征值,则( A 2/3) 2/3) - 1 的一个特征值是( B ) (a)4/3 (b)3/4 (c)1/2 (d)1/4 8. 若四阶矩阵 A 与 B 相似,矩阵 A 的特征值为 1/2,1/3,1/4,1/5 ,则行列式 |B -1 -I|=(B)

山东省济南市山东建筑大学电气工程及其自动化07-08代数B+答案

2007-2008学年第二学期线性代数试题(B 卷) 一、单项选择题(每小题4分,本大题共20分) 1. 行列式0 010213 21=A 的值为( ) (A) 1 ; (B) 2 ; (C) 0 ; (D) -6. 2. 设A ,B 为n 阶方阵,则下列式子成立的是( ) (A )||||||B A B A +=+; (B )111)(---+=+B A B A ; (C )||||||B A AB ?=; (D )BA AB =. 3.当=λ( )时,方程组?? ? ??-=---=+=-+4 )3)(2)(1(2212332321λλλλx x x x x x 有唯一解. (A) 1; (B) 2; (C) 3; (D) 4. 4.设1ξ,2ξ是矩阵A 的属于特征值λ的特征向量,则以下结论正确的是( ) (A)12ξξ+是λ对应的特征向量; (B) 22ξ是λ对应的特征向量; (C) 1ξ,2ξ一定线性相关; (D) 1ξ,2ξ一定线性无关. 5. 设A 是正交矩阵,则下列结论错误的是( ) (A) 2||A 必为1; (B) |A|必为1; (C) 1A -=T A ; (D) A 的行(列)向量组是正交单位向量组. 二、填空题(每小题4分,本大题共20分) 1. 设矩阵200020002A ?? ? = ? ??? ,则行列式12A -= . 2.矩阵??? ? ??-θθθθcos sin sin cos 的逆矩阵为 . 3、若n 元齐次线性方程组的系数矩阵A 的秩为r ,且n r <,则方程组的基础解 系中有 个解. 4.设3阶矩阵A 的特征值为1,3,5,则A 的行列式|A |等于 . 5.当t 满足 时,二次型 22 1212 12(,)2f x x x x tx x =++是正定的.

相关文档
相关文档 最新文档