文档库 最新最全的文档下载
当前位置:文档库 › 示波器_使用方法_步骤

示波器_使用方法_步骤

示波器_使用方法_步骤
示波器_使用方法_步骤

示波器

摘要:以数据采集卡为硬件基础,采用虚拟仪器技术,完成虚拟数字示波器的设计。能够具有运行停止功能,图形显示设置功能,显示模式设置功能并具有数据存储和查看存储数据等功能。实验结果表明, 该仪器能实现数字示波器的的基本功能,解决了传统测试仪器的成本高、开发周期长、数据人工记录等问题。

1.实验目的

1.理解示波器的工作原理,掌握虚拟示波器的设计方法。

2.理解示波器数据采集的原理,掌握数据采集卡的连接、测试和编程。

3.掌握较复杂的虚拟仪器的设计思想和方法,用LabVIEW实现虚拟示波器。

2. 实验要求

1.数据采集

用ELVIS实验平台,用DAQmx编程,通过数据采集卡对信号进行采集,并进行参数的设置。

2.示波器界面设计

(1)设置运行及停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。

(2)设置图形显示区:可显示两路信号,并可进行图形的上下平移、图形的纵向放大与缩小、图形的横向扩展与压缩。

(3)设置示波器的显示模式:分为单通道模式(只显示一个通道的图形),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

万联芯城https://www.wendangku.net/doc/087503912.html,作为国内优秀的电子元器件采购网,一直秉承着以良心做好良芯的服务理念,万联芯城为全国终端生产研发企业提供原装现货电子元器件产品,拥有3000平方米现代化管理仓库,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天发货,物料供应全国,欢迎广大客户咨询合作,点击进入万联芯城

(4)设置测量功能:可自动测量信号的频率、周期、幅值、占空比等参数。

(5)存储与回显功能:能存储当前的波形,回放历史波形。

(6)整体结构和界面自行设计。

3.实验设备

(1)计算机1台

(2)elvis数据采集平台1台

4. 实验内容

4.1系统结构

示波器采用RSE模式,将AO0和AO1分别与AI0和AI1相连,地接AISENSE,实现对输出信号的采集,通过虚拟示波器进而实现对所采样信号的幅值、频率等的分析。

4.2硬件模块

1.ELVIS实验平台和数据采集卡

NI ELVIS把硬件和软件组成一套完整的实验室设备,图1.1为NI ELVIS 系统结构,数据采集卡插在PC机的PCI插槽中,通过数据线连接到工作平台,工作平台上有一块原型实验卡,如图1.2示,可在上面搭建外围电路,并连接到数据采集卡。原型实验板还提供易于操作的旋钮给可变倍率电源供应系统和函数发生器,并提供方便的连接和功能的BNC接头形式和香蕉式连接器连接到函数发生器、示波器和数字万用表仪器。

图1.1 ELVIS系统

①计算机;②数据采集卡;③68针的电缆线;④NI ELVIS原型实验板;⑤NI ELVIS工作平台。

图1.2 原型实验板结构图

①AI,示波器信号列;②数字IO信号列;③LED组;④ D-SUB Connector;

⑤计时器/定时器、用户配置的I/O口、直流电源信号列;⑥ DMM(数字万用表),AO(模拟量输出),信号(函数)发生器,用户配置的I/O口,可变倍频电源,直流电源信号列;⑦电源;⑧ BNC连接器;⑨蕉型插座连接器。

在模型板上提供了正负15V和+5V的电源,可以利用这些电压连接许多常见电路。当模型板电源打开后,若有任何功率指示灯没有亮,检查连接设备的短路现象,关闭模型板的电源。数据采集卡型号:PCI6251。

(1)模拟信号输入

对于不同的示波器模拟信号,接入到数据采集卡进行模数转换,需要采用不同的接线方式,如图1.3所示。对于接地信号和浮地信号,不同的接线方式将带来不同的测量效果。为了得到正确的测量结果,需要使用正确的连线方式。

图1.3 信号源与测量系统的接线

确定正确连线方式的步骤分为两步:

步:要确定信号源种类

第二步:选择测量系统提供的合适的终端模式

NI 数采卡上提供了三种不同的终端模式:

?差分模式:在一个差分测量系统中,仪表放大器的任何一个输入都不是以系统地作为参考的,如图1.4所示,AIGND引脚以及放大器本身是以系统地作为参考的,但两个输入端均不以地作为参考。这里需要注意的是,当我们使用差分方式时,对于一个输入信号需要使用两个模拟输入通道,于是整个可用通道数就减半了,对于一个16 通道的数据采集设备,处于差分模式下的时候,只能采集8 路输入信号了,输入信号的配对规则如图所示,ACH(N)与ACH(N+8) 组成一对差分输入通道。

图1.4 差分模式

示波器差分模式可以使得放大器有效地抑制共模电压,以及任何与信号混杂在一起的共模形式噪声,有效提高测量质量。

?参考单端模式(RSE):

一个示波器参考单端测量系统以系统地作为参考,信号源的负端是被连接到AIGND 上的,也就是说它是被连到系统地上。这种连接的方式使得我们在测量时,对于每个信号只需要使用一个模拟输入通道,所以,一个16 通道的数据采集设备在使用RSE模式时,可以测量16 路信号。如果我们想要在模拟输入通道10 上测量一个信号,那么只需要将信号的正端连接到ACH10,负端连接到AIGND上。如图1.5 所示。

图1.5 参考单端模式(RSE)

此外,我们的板卡上提供了许多AIGND引脚来防止由于输入连线搭接所造成的信号间串扰。尽管RSE的连接模式能够保证通道数的使用效率,但是它无法抑制共模电压。在某些应用当中,过大的共模电压会造成测量误差甚至毁坏设备。?非参考单端模式(NRSE):

NI 的数据采集板卡上还提供了一种不同于RSE 参考单端的模式,我们称它

为NRSE,非参考单端模式,在NRSE模式下,所有的测量同RSE相类似都参考同一个参考点,但与RSE模式不同的是该参考点的电压值可以调整和变化。如图1.6所示,信号的负端被连接到AISENSE引脚上,而AISENSE 并不是以地作为参考的。于是AISENSE上的电压是浮地的。

与示波器RSE模式相类的是,NRSE 模式大程度地保留了可用的模拟通道数,但同样无法抑制共模电压。

图1.6 非参考单端模式(NRSE)

根据不同信号源来分析应该使用哪一种接线方式。对于接地信号源来说,图中列出了三种模式的优缺点。

1. 示波器差分模式(Differential):虽然该模式会使可用通道数减半,但是它具有非常好的共模电压和共模噪声抑制能力,是不错的选择。

2. 其次是参考单端(RSE),对于接地信号,参考单端是不推荐使用的终端模式,因为接地环路的电势差会造成测量误差,并将交流噪声以及直流偏移量引入到测量系统当中。除此之外,当信号源正端不小心接到 RSE 测量系统的 AIGND 上时,还会造成信号源短路以至于损坏。

3. 第三是非参考单端(NRSE),由于测量系统的负端以 AISENSE 为参考而不是直接以地作为参考,对于接地信号,NRSE 模式可以保证示波器大的可用通道数,然而它无法像差分模式那样抑制共模信号。

图对于接地信号三种模式的优点和缺点

也就是说对于接地信号的情冴,我们只有差分和 NRSE 两种模式可选,如果您的剩余

可用通道数足够多的话,首先推荐使用差分模式,如果您想尽可能多地使用模拟输入

通道,那么可以选择 NRSE 模式。

示波器对于浮地信号,三种终端模式均可以选择,他们的优缺点如图 4-9 所示,首选推荐差

分模式,在牺牲了通道数的情冴下能够提高测量的质量。其次可以使用 RSE 模式,因为该方式下,不需要连接偏置电阻。后才选择 NRSE 模式。

图对于浮地信号三种模式的优点和缺点

示波器在差分和 NRSE 模式下,需要为仪表放大器连接对地回路的偏置电阻,对于 DC 信号只需要连接负端到地,而对于 AC 信号则需要在信号输入端各连接一个偏置电阻,偏置电阻的大小取决于信号源的阻抗大小,典型值在 10 k 到 100 k 欧姆之间。

NI ELVIS 平台有6个可用的差分AI通道——ACH<0...5>,也可以配置为参数单端(RSE)或者非参考单端(NRSE)模式中。在单端参考模式下,每个信号参考AIGND。在非参考单端模式中,每个信号参考的是浮动的AISENSE线端。

如选择示波器差分输入,则ACH0+和ACH0-为通道0,ACH1+和ACH1-为通道1,以此类推。如选择参考单端(RSE)或非参考单端(NRSE)模式,则ACH0+对应AI0(通道0),ACH0对应通道AI8,ACH1+对应通道1,ACH1-对应通道9,以此类推。参考单端(RSE)模式信号的接地AIGND,非参考单端(NRSE)模式信号的接地AISENSE。

二、模拟信号输入

平台提供了AO0和AO1两个模拟输出端子。这些通道用于产生任意波形,波形的幅度、频率和相位等参数由编程控制。

使用 DAQmx 底层 VI 迚行数据采集:如图

我们看到的所有的 DAQmx 底层驱动 VI 都能在测量 I/O 选版下的 DAQmx 子选版下找到包括了 I/O 端口,创建通道,读取,写入,定时,触发等等。

下面我们依次了解一下各个底层 DAQmx VI 的详细功能

1. 创建虚拟通道函数:

示波器通过给出所需的目标通道名称以及物理通道连接,用来在程序中创建一个通道。

图 4-12 中选择了创建一个热电偶输入通道。

在 MAX 当中创建通道时迚行的相同的设置在这个函数中均会得到设置。当程序操作员需要经常更换物理通道连接设置而非其他诸如终端配置或自定义缩放设置的时候,这个创建虚拟通道 VI 就非常有用了。

示波器物理通道下拉菜单被用来指定 DAQ 板卡的设备号以及实际连接信号

的物理通道。通道属性节点是创建虚拟通道函数的功能扩展,允许您在程序当中动态改变虚拟通道的设置。举例来说,对于一组测试我们可用通过它来对一个通道设置一个自定义缩放之后在对另一组迚行测试时可以通过属性节点改变自定义缩放的值。

2. 定时设定 VI

示波器DAQmx 定时 VI 配置了任务、通道的采样定时以及采样模式,并在必要时自动创建相应的缓存。如图 4-13 所示。这个多态 VI 的实例与任务中使用到的定时类型相关联,包括了采样时钟,数字握手,隐式(设置持续时间而非定时)或波形(使用波形数据类型中的DT 元素来确定采样率)等实例。类似的定时属性节点允许您迚行高级的定时属性配置。

3. DAQmx 触发设定 VI

DAQmx 触发 VI 配置了任务、通道的触发设置。如图 4-14 所示。这个多态 VI 的实例包括了触发类型的设置,数字边沿开始触发模拟边沿开始触发,模拟窗开始触发,数字边沿参考触发,模拟边沿参考触发或是模拟窗口参考触发等等。

同样的我们会使用触发属性节点来配置更多高级的触发设置

4. DAQmx 读取 VI

DAQmx 读取 VI 从特定的任务或者通道当中读取数据,如图 4-15 所示,这个 VI 的多态实例会指出 VI 所返回的数据类型,包括示波器一次读取一个单点采样还是读取多点采样,以及从单通道读取还是从多通道中读取数据其相应的属性节点可以设置偏置波形属性以及获取当前可用采样数等数据。

4.3软件程序

(1)软件功能说明与程序流程图

(1) 示波器设置运行停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。

(2)设置图形显示区:可显示两路信号,并可进行图形的上下平移、图形的纵向放大与缩小、图形的横向扩展与压缩。

(3)设置示波器的显示模式:分为单通道模式(只显示一个通道的图形),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

(4)设置测量功能:可自动测量信号的频率、周期、幅值、占空比等参数。

(5) 示波器存储与回显功能:能存储当前的波形,回放历史波形。

程序流程图如下所示:

(2)连续电压模拟输出VI

先创建虚拟通道,设置物理输入通道,输入接线端配置(实验用RSE );连

接采样时钟,设置采样模式(实验选择连续采样)、示波器采样率和采样源;开始任务,调用DAQmx 读取VI ,实现信号的采集。

(2)程序模块说明

1.运行及停止

利用while 循环控制。

2.图形显示模块

示波器利用波形图的属性节点-XY标尺-全部元素控制参量实现横纵放缩,利用加一常数量实现上下平移。

3.示波器显示模块

运用条件结构实现模式的选择

4.测量模块

直接利用示波器单频测量与信号的时间与瞬态特性测量控件测量。

5.存储回显模块

6.清屏模块

6.总程序后面板框图

5. 实验数据及结果分析通道一显示

通道二显示

泰克示波器的使用方法-1

示波器的使用方法 示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。 (一)面板装置 SR-8型双踪示波器的面板图如图5-12所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。 1.显示部分主要控制件为: (1)电源开关。 (2)电源指示灯。 (3)辉度调整光点亮度。 (4)聚焦调整光点或波形清晰度。 (5)辅助聚焦配合“聚焦”旋钮调节清晰度。 (6)标尺亮度调节坐标片上刻度线亮度。 (7)寻迹当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。 (8)标准信号输出 1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y 轴输入灵敏度和X轴扫描速度。 2.Y轴插件部分 (1)显示方式选择开关用以转换两个Y轴前置放大器Y A与YB 工作状态的控制件,具有五种不同作用的显示方式:

“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通Y A或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电 子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。 “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通Y A和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。 “Y A”、“YB ”:显示方式开关置于“Y A ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“Y A”或“YB ”通道的信号波形。 “Y A + YB”:显示方式开关置于“Y A + YB ”时,电子开关不工作,Y A与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。 (2)“DC-⊥-AC” Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。 (3)“微调V/div” 灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。 (4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。 (5)“↑↓ ” Y轴位移电位器,用以调节波形的垂直位置。 (6)“极性、拉Y A” Y A通道的极性转换按拉式开关。拉出时Y A 通道信号倒相显示,即显示方式(Y A+ YB )时,显示图像为YB - Y A。 (7)“内触发、拉YB ” 触发源选择开关。在按的位置上(常态)扫描触发信号分别

示波器的使用实验报告思考题

示波器的使用实验报告思考题 《示波器的使用》的评分标准和参考答案 注:思考题参考答案见附件 思考题参考答案 1、观察方波波形,如果扫描频率是方波的二倍看到什么图形?如果扫描频率是 方波的2/3看到什么图形? 答:如果扫描频率是方波的二倍,那么看到的时半个方波,如果扫描频率是方波 的2/3则看到3/2个方波。 2、用李萨如图形测频率实验时,屏幕上图形在时刻转动,为什么? 答:是x和y轴的信号不同步造成的,也就是两个信号的初相位不一致导致的。

3、如果示波器的扫描频率远大于或小于Y么波形?(试先从扫描频率等于正弦信号频率的2(或1/23(或 1/3)……倍考虑,然后推广到n(或1/n 答:如果示波器的扫描频率远大于Y2个、3个、 4个...nY轴正弦波信号的频率时,将看到1/2、1/3、1/4 4、如果示波器是好的,但当Y直亮线,试问,应调哪几个旋钮? 答:证明xx输入信号,或者是否将扫描置于x-y档。 示波器的使用 【实验简介】 示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。从而把原来非常抽象的、看不见的电变化过程

转换成在屏幕上看得见的真实图像。在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。正确使用示波器是进行电子测量的前提。 第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。 Karl Ferdinand Braun生平简介 1909年的诺贝尔物理奖得主Karl Ferdinand Braun于1897年发明世界上第一 台阴极射线管示波器,至今许多德国人仍称CRT为布朗管(Braun Tube)。 【实验目的】 图8-1 Karl Ferdinand Braun

示波器_使用方法_步骤

示波器 摘要:以数据采集卡为硬件基础,采用虚拟仪器技术,完成虚拟数字示波器的设计。能够具有运行停止功能,图形显示设置功能,显示模式设置功能并具有数据存储和查看存储数据等功能。实验结果表明, 该仪器能实现数字示波器的的基本功能,解决了传统测试仪器的成本高、开发周期长、数据人工记录等问题。 1.实验目的 1.理解示波器的工作原理,掌握虚拟示波器的设计方法。 2.理解示波器数据采集的原理,掌握数据采集卡的连接、测试和编程。 3.掌握较复杂的虚拟仪器的设计思想和方法,用LabVIEW实现虚拟示波器。 2. 实验要求 1.数据采集 用ELVIS实验平台,用DAQmx编程,通过数据采集卡对信号进行采集,并进行参数的设置。 2.示波器界面设计 (1)设置运行及停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。 (2)设置图形显示区:可显示两路信号,并可进行图形的上下平移、图形的纵向放大与缩小、图形的横向扩展与压缩。 (3)设置示波器的显示模式:分为单通道模式(只显示一个通道的图形),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

万联芯城https://www.wendangku.net/doc/087503912.html,作为国内优秀的电子元器件采购网,一直秉承着以良心做好良芯的服务理念,万联芯城为全国终端生产研发企业提供原装现货电子元器件产品,拥有3000平方米现代化管理仓库,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天发货,物料供应全国,欢迎广大客户咨询合作,点击进入万联芯城

示波器的使用方法详解

* 声明 鼎阳科技有限公司,版权所有。 未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容。 ⅠSDS1000系列数字存储示波器简介 SDS1000 系列数字示波器体积小巧、操作灵活;采用彩色TFT-LCD及弹出式菜单显示,实现了它的易用性,大大提高了用户的工作效率。此外,SDS1000 系列性能优异、功能强大、价格实惠。具有较高的性价比。SDS1000 实时采样率最高 2GSa/s 、存储深度最高 2Mpts, 完全满足捕捉速度快、复杂信号的市场需求;支持USB设备存储,用户还可通过U盘或LAN 口对软件进行升级,最大程度地满足了用户的需求;所有型号产品都支持PictBridge 直接打印,满足最广泛的打印需求。 SDS1000系列有二十一种型号: [ SDS1000C系列 ]: SDS1102C、SDS1062C、SDS1042C、SDS1022C [ SDS1000D系列 ]:SDS1102D、SDS1062D、SDS1042D、SDS1022D [ SDS1000CM系列 ]: SDS1152CM、SDS1102CM、SDS1062CM [ SDS1000CE系列 ]: SDS1302CE、SDS1202CE、SDS1102CE、SDS1062CE [ SDS1000CF系列 ]: SDS1304CF、SDS1204CF、SDS1104CF、SDS1064CF [ SDS1000CN系列 ]:SDS1202CN、SDS1102CN ●超薄外观设计、体积小巧、桌面空间占用少、携带更方便 ●彩色TFT-LCD显示,波形显示更清晰、稳定 ●丰富的触发功能:边沿、脉冲、视频、斜率、交替 ●独特的数字滤波与波形录制功能 ●Pass/Fail功能,可对模板信号进行定制 ●3种光标模式、32 种自动测量种类

示波器的初级使用方法教程

示波器的使用方法教程 ST-16示波器的使用 示波器是有着极其广泛用途的测量仪器之一〃借助示波器能形象地观察波形的瞬变过程,还可以测量电压。电流、周期和相位,检查放大器的失真情况等〃示波器的型号很多,它的基本使用方法是差不多的〃下面以通用ST一16型示波器为例,介绍示波器的使用方法。 面板上旋钮或开关的功能 图1是ST一16型示波器的面板图。 示波器是以数字座标为基础来显示波形的〃通常以X轴表示时间,Y轴表示幅度〃因而在图1中,面板下半部以中线为界,左面的旋钮全用于Y轴,右面的旋钮全用于X 轴。面板上半部分为显示屏。显示屏的右边有三个旋钮是调屏幕用的〃所有的旋钮,开关功能见表1。其中8、10,14,16号旋钮不需经常调,做成内藏式。

显示屏读数方法 在显示屏上,水平方向X轴有10格刻度,垂直方向Y轴有8格刻度〃这里的一格刻度读做一标度,用div表示〃根据被测波形垂直方向(或水平方向)所占有的标度数,乘以垂直输入灵敏度开关所在档位的V/div数(或水平方向t/div),得出的积便是测量结果。Y轴使用10:1衰减探头的话还需再乘10。 例如图2中测电压峰—峰值时,V/div档用0〃1V/div,输入端用了10 : l 衰减探头,则Vp-p=0〃1V/div×3〃6div×10=3〃6V,t/div档为2ms/div,则波形的周期:T=2ms/div×4div=8ms。 使用前的准备 示波器用于旋钮与开关比较多,初次使用往往会感到无从着手。初学者可按表2方式进行调节。表2位置对示波器久藏复用或会使用者也适用。

使用前的校准 示波器的测试精度与电源电压有关,当电网电压偏离时,会产生较大的测量误差〃因此在使用前必须对垂直和水平系统进行校准。校准方法步骤如下: 1〃接通电源,指示灯有红光显示,稍等片刻,逆时针调节辉度旋钮,并适当调准聚焦,屏幕上就显示出不同步的校准信号方波。 2〃将触发电平调离“自动”位置,逆时针方向旋转旋钮使方波波形同步为止。并适当调节水平移位(11)和垂直移位(5)。 3〃分别调节垂直输入部分增益校准旋钮(10)和水平扫描部分的扫描校准旋钮(14),使屏幕显示的标准方波的垂直幅度为5div,水平宽度为10div,如图3所示,ST一16示波器便可正常工作了。 示波器演示和测量举例 一,用ST一16示波器演示半波整流工作原理: 首先将垂直输入灵敏度选择开关(以下简写V/div)拨到每格0〃5V档,扫描时间转换开关(s/div)拨至每格5ms档,输入耦合开关拨至AC档,将输入探头的两端与电源变压器次级相接,见图4,这时屏幕显示如图5(a)所示的交流电压波形。 如果将探头移到二极管的负端处,这时屏幕上显示图5(b)所示的半波脉冲电压波形〃接上容量较大的电解电容器C进行滤波,调节一下触发电平旋钮(15),在示波器屏幕上可看到较为平稳的直流电压波形,见图5(c)。电容C的容量越大,脉冲成分越小,电压越平稳。

示波器实验报告

一仪器的原理及结构 1.示波器 示波器是一种用途广泛的电子测量仪器。利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等,数字示波器还可以测量信号的频谱特性。实验室拥有的主要是模拟示波器,数字示波器虽有自动测试功能,给操作带来方便,但显示的波形是量化的不够细腻,观察波形没有模拟示波器清晰,特别是观察含有干扰信号的波形时有一定的困难。模拟示波器的组成包括示波管、水平/垂直部分、触发部分及电源等组成。 (1)电子示波管 如图1所示,主要由电子枪、偏转系统、荧光屏三部分组成。电子枪包括灯丝、阴极、栅极和阳极。偏转系统包括Y轴偏转板和X轴偏转板两部分,偏转板上电压形成的电场力将电子枪图 1 示波管结构图 发射出来的电子束,按照偏转板上电压的大小作出相应的偏移。荧光屏是位于示波管顶端涂有荧光物质的透明玻璃屏,当电子枪发射出来的电子束轰击到屏时,荧光屏被击中的点上会发光,显示出曲线或波形。 (2)水平/垂直部分 示波器的水平部分产生扫描电压,使电子在水平方向上偏转,形成时间轴;垂直部分处理被测信号,在荧光屏上还原出被测信号的电压波形。 (3)示波器的使用 ①寻找扫描光迹,将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:适当调节亮度旋钮;触发方式开关置“自动”;适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。 ②双踪示波器一般有五种工作方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一

示波器实验报告

篇一:示波器的原理与使用实验报告 大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 200767025实验台号实验时间 2008 年 11 月 18 日,第13周,星期二第5-6 节 实验名称示波器的原理与使用 教师评语 实验目的与要求: (1)了解示波器的工作原理 (2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备: yb4320g 双踪示波器, ee1641b型函数信号发生器 实验原理和内容: 1. 示波器基本结构 示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。 示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。 电子枪的作用是释放并加速电子束。其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。通 过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。偏转系统由x、y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。 荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。不同荧光粉的发光颜色与余辉时间都不同。 放大和衰减系统用于对不同大小的输入信号进行适当的缩放,使其幅度适合于观测。 扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。扫描开始的时间由触发系统控制。 2. 示波器的显示波形的原理 如果只在竖直偏转板加上交变电压而x偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示: 如果在y偏转板和x偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示: 3. 扫描同步 为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。当某些因素改变致使周期发生变化时,使用扫描同步功能,能够使扫描起点自动跟踪外界信号变化,从而稳定地显示波形。 步骤与操作方法: 1. 示波器测量信号的电压和频率 对于一个稳定显示的正弦电压波形,电压和频率可以由以下方法读出 up?p?a?h, f?(b?l)?1 其中a为垂直偏转因数(电压偏转因数) (从示波器面板的衰减器开关上可以直接读出)单位为v/div或mv/div; h为输入信号的峰-峰高度,单位div; b为扫描时间系数,从主扫描时间系数选择开关上可以直接读出,单

示波器使用方法步骤

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器的使用方法: 示波器,“人”如其名,就是显示波形的机器,它还被誉为“电子工程师的眼睛”。它的核心功能就是为了把被测信号的实际波形显示在屏幕上,以供工程师查找定位问题或评估系统性能等等。它的发展同样经历了模拟和数字两个时代 数字示波器,更准确的名称是数字存储示波器,即DSO(Digital Storage Oscilloscope)。这个“存储”不是指它可以把波形存储到U盘等介质上,而是针对于模拟示波器的即时显示特性而言的。模拟示波器靠的是阴极射线管(CRT,即俗称的电子枪)发射出电子束,而这束电子在根据被测信号所形成的磁场下发生偏转,从而在荧屏上反映出被测信号的波形,这个过程是即时地,中间没有任何的存储过程的。而数字示波器的原理却是这样的:首先示波器利用前端ADC对被测信号进行快速的采样,这个采样速度通常都可以达到每秒几百M到几G次,是相当快的;而示波器的后端显示部件是液晶屏,液晶屏的刷新速率一般只有几十到一百多Hz;如此,前端采样的数据就不可能实时的反应到屏幕上,于是就诞生了存储这个环节:示波器把前端采样来的数据暂时保存在内部的存储器中,而显示刷新的时候再来这个存储器中读取数据,用这级存储环节解决前端采样和后端显示之间的速度差异。

很多人在第一次见到示波器的时候,可能会被他面板上众多的按钮唬住,再加上示波器一般身价都比较高,所以对使用它就产生了一种畏惧情绪。这是不必要的,因为示波器虽然看起来很复杂,但实际上要使用它的核心功能——显示波形,并不复杂,只要三四个步骤就能搞定了,而现在示波器的复杂都是因为附加了很多辅助功能造成的,这些辅助功能自然都有它们的价值,熟练灵活的应用它们可以起到事半功倍的效果。作为初学者,我们先不管这些,我们只把它最核心的、最基本的功能应用起来即可。

数字示波器的实验内容和主要步骤

一、实验仪器图片参照 1、函数信号发生器图片 2、数字示波器图片 TDS2002数字示波器

TDS1001B数字示波器 二、实验内容介绍 实验内容一: 熟悉数字示波器面板各功能键 实验内容二: 1.简单测量正弦信号的频率、周期及峰—峰值 1)选择输出信号为正弦信号,按下“DEFAULT SETUP”按钮,再按下“AUTO SET”按钮,综合使用仪器按钮,使得数字示波器的屏幕正好显示3个周期的正弦波。 2)按下数字示波器的“CH1 MENU”按钮,此时屏幕出现的菜单对应“探棒”选择“1 X ”档; 3)使用数字示波器的“MEASURE”按钮,选择测量类型,测量出此3个周期的频率、周期及峰—峰值。 4)如此完成了一次测量,重复步骤3),共完成此3个周期信号频率、周期及峰—峰值的8次测量,并写出各物理量仪器的示值误差。 2.使用软件打印此3个周期的正弦信号。 使用软件打印出前一步骤所对应的3个周期正弦信号。 注意:TDS2002型数字示波器使用的是“WaveStar”软件;TDS1001型数字示波器使用的是“NI Signal Express Tektronix Edition”软件 记录下“使用软件打印正弦波信号图形”的详细操作步骤。

附一:采用计算机中的“WaveStar”软件打印图形 1)打开“WaveStar”软件,点击左边界面“Local”选项的“+”,弹出“Tek TDS 1000 Series”选项; 2) 点击“Tek TDS 1000 Series”选项的“+”,然后点击“Data”选项的“+”; 3)将“Waveforms”选项打开; 4)这时点击“File”→“New Datesheet”→“YTsheet”,点击“OK”; 5)击中界面左边“Waveforms”的“CH1”,并拖动到“YTsheet”工作表里; 6)这时点击“Edit”→“New Annotation”,出现一个注释框,在注释框里输入注释信息(比如图形名称、姓名、学号、班级等); 7)在图上右击,选择“Print Datasheet…”→“OK”(或者:选择打印图标“Print Datasheet”),这个时候就会在打印机上打印出图形。 附二:采用计算机“NI Signal Express Tektronix Edition”软件打印图形 1) 打开“NI Signal Express Tektronix Edition”软件,出现一个跳动界面,在界面的右下角选择“Cancel”; 2)单击“Add Step”→“Tektronix”→“Acquire Signals”; 3)由于我们今天用的数字示波器型号是“Tektronix TDS 1001B”(也就是标在数字示 波器面板左上角上),于是我们选择“Tek TDS1000B”; 4)这时“Step Setup”框里显示图形,选择“Data View”对话框,在界面上右击,选择“Add Signal”→“TDS1001B(CH1)”,出现波形; 5)右击界面,选择“Properties…”,选择“Scale”窗口,在“Name”框里输入注释信息(比如图形名称、姓名、学号、班级等); 6)在图上右击,选择“Export”→“Print Display”,这个时候就会在打印机上打印出图形。 实验内容三:光标测量(手动测量)方波信号的周期、电压最大值和电压最小值 1)选择输出信号为矩形信号(方波信号),自行调整,使得数字示波器屏幕上显示的只有2个周期左右。 2)按下数字示波器的“CH1 MENU”按钮,此时屏幕出现的菜单对应“探棒”选择“1 X”档; 3)按下“CURSOR”按钮,查看光标菜单。“类型”由“关闭”选择“电压”或“时间”,“信源”选择“CH 1”(若你的信号接入“CH 2”接口,此时“信源”

示波器的使用方法

示波器的使用 【实验目的】 1.了解示波器的结构和示波器的示波原理; 2.掌握示波器的使用方法,学会用示波器观察各种信号的波形; 3.学会用示波器测量直流、正弦交流信号电压; 4.观察利萨如图,学会测量正弦信号频率的方法。 【实验仪器】 YB4320/20A/40双踪示波器,函数信号发生器,电池、万用电表。 图1实验仪器实物图 【实验原理】 示波器是一种能观察各种电信号波形并可测量其电压、频率等的电子测量仪器。示波器还能对一些能转化成电信号的非电量进行观测,因而它还是一种应用非常广泛的、通用的电子显示器。 1.示波器的基本结构 示波器的型号很多,但其基本结构类似。示波器主要是由示波管、X轴与Y轴衰减器和放大器、锯齿波发生器、整步电路、和电源等几步分组成。其框图如图2所示。

图2示波器原理框图 (1)示波管 示波管由电子枪、偏转板、显示屏组成。 电子枪:由灯丝H、阴极K、控制栅极G、第一阳极A1、第二阳极A2组成。灯丝通电发热,使阴极受热后发射大量电子并经栅极孔出射。这束发散的电子经圆筒状的第一阳极A1和第二阳极A2所产生的电场加速后会聚于荧光屏上一点,称为聚焦。A1与K之间的电压通常为几百伏特,可用电位器W2调节,A1与K 之间的电压除有加速电子的作用外,主要是达到聚焦电子的目的,所以A1称为聚焦阳极。W2即为示波器面板上的聚焦旋钮。A2与K之间的电压为1千多伏以上,可通过电位器W3调节,A2与K之间的电压除了有聚焦电子的作用外,主要是达到加速电子的作用,因其对电子的加速作用比A1大得多,故称A2为加速阳极。在有的示波器面板上设有W3,并称其为辅助聚焦旋钮。 在栅极G与阳极K之间加了一负电压即U K﹥U G,调节电位器W1可改变它们之间的电势差。如果G、K间的负电压的绝对值越小,通过G的电子就越多,电子束打到荧光屏上的光点就越亮,调节W1可调节光点的亮度。W1在示波器面板上为“辉度”旋钮。 偏转板:水平(X轴)偏转板由D1、D2组成,垂直(Y轴)偏转板由D3、、D4组成。偏转板加上电压后可改变电子束的运动方向,从而可改变电子束在荧光屏上产生的亮点的位置。电子束偏转的距离与偏转板两极板间的电势差成正比。 显示屏:显示屏是在示波器底部玻璃内涂上一层荧光物质,高速电子打在上面就会发荧光,单位时间打在上面的电子越多,电子的速度越大光点的辉度就越大。荧光屏上的发光能持续一段时间称为余辉时间。按余辉的长短,示波器分为长、中、短余辉三种。 (2)X轴与Y轴衰减器和放大器 示波管偏转板的灵敏度较低(约为0.1~1mm/V)当输入信号电压不大时,荧光屏上的光点偏移很小而无法观测。因而要对信号电压放大后再加到偏转板上,为此在示波器中设置了X轴与Y轴放大器。当输入信号电压很大时,放大器无法正常工作,使输入信号发生畸变,甚至使仪器损坏,因此在放大器前级设置有衰减器。X轴与Y轴衰减器和放大器配合使用,以满足对各种信号观测的要求。

大物实验示波器的使用实验报告

大物实验示波器的使用实验报告 篇一:模拟示波器的使用实验报告 模拟示波器的使用 ·实验目的 1. 了解示波器的基本原理及基本使用方法; 2. 掌握用示波器观察一路不同型电压信号的方法; 3. 掌握观察利萨如图形的方法,了解利萨如图形测量未知正弦信号的频率的方法. ·实验原理 1. 示波器显示波形原理 若在示波器CH1或CH2端加上正弦波,在示波器的X偏转板加上锯齿波,当锯齿波电压的变化周期与正弦波电压成整数倍时时,可以显示完整的周期的正弦波形; 若在示波器CH1和CH2同时加上正弦波,在示波器的X 偏转板上加上示波器的锯齿波,则在荧光屏上将的到两个正弦波,即为双踪显示. 同理可得双踪显示的方波. 2. 利用利萨如图测正弦电压的频率基本原理 将被测正弦信号1加到y偏转板,将参考正弦信号2加到x偏转板,当两者的频率之比是整数时,在荧光屏上将出现利萨如图. 对稳定不动的图形分别做水平直线和竖直直线与图形

相切,设水平线上及竖直线上的切点数之比可得两信号的频率之比 ·实验内容及步骤 1. 连接实验仪器电路,设置好函数信号发生器、示波器. 2. 用示波器观察一路电压信号 (1) 在示波器CH1和YCH2分别加上500Hz和500Hz的正弦波,调节示波器至波形稳定,记录在坐标纸上. (2) 在示波器CH1和YCH2分别加上500Hz和500Hz的方波,调节示波器至波形稳定,记录在坐标纸上. (3) 分别计算两者的相对误差 3. 用示波器观察李萨如图形 若在示波器CH1和CH2同时加上正弦波,开至X-Y档,调节两输入端的频率比值分别为1:3,1:2,2:3,1:1,3:2,2:1,微调输入信号的频率至图象稳定,记录在坐标纸上. ·实验记录 (见坐标纸) ·误差分析 观察电压信号时 正弦波1:频率相对误差?f?fA?f’A测 fA A?V’A测

示波器的使用实验报告

物理实验报告 一、【实验名称】 示波器的使用 二、【实验目的】 1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法 2.掌握用示波器观察电信号波形的方法 3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路 三、【实验原理】 双踪示波器包括两部分,由示波管和控制示波管的控制电路构成 1.示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。 双踪示波器原理 2.双踪示波器的原理 双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等; 其中,电子开关使两个待测电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示Y CH1信号波形,忽而显示Y CH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的

起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。(看到稳定波形的条件:只有一个信号同步) 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。操作时,使用“电平旋钮”,改变触发电势高度,当待测电压达到触发电平时,开始扫描,直到一个扫描周期结束。但如果触发电势超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 3.示波器显示波形原理 如果在示波器的Y CH1或Y CH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期相等时,则在荧光屏上显示出完整的正弦波形。 4.李萨如图形的基本原理 如果在示波器的Y偏转板上加上正弦波,在X偏转板上加上另一正弦波,则当两正弦波信号的频率比为简单整数比时,在荧光屏上将得到李萨如图形。 四、【仪器用具】: 信号发生器、双踪示波头、探头 五、【实验内容】 几种李萨如图形 n x n y分别代表图形在水平或垂直方向的切点数量 =3/4 nx/n y=1/2 n x/n y=1/3 n x/n y=2/3 n x/n y 1.观察正弦波形 a.打开示波器 b.开通CH1及相应信号发生器fx=100Hz c.得到大小合适稳定的正弦波 2.测正弦波电压,测正弦波的周期 a.调节波形上下移动键,使得fx=100Hz,改变一次v/div,再记录dy b.调整波形左右移动键,使得改变一次t/div,再记录dx

《示波器的的原理和使用》物理实验报告

《示波器的的原理和使用》物理实验报告 一、实验目的及要求: 了解示波器的基本工作原理。 学习示波器、函数信号发生器的使用方法。 学习用示波器观察信号波形和利用示波器测量信号频率的方法。 二、实验原理: 1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。 2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 3) 示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧

光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y 轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。 4) 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N,竖直方向最多可得的交点数为N,则x和y方向输入的两正弦波的频率之比为 f:f=N:N。 三、实验仪器: 示波器、函数信号发生器。 四、实验操作的主要步骤: (一) 示波器的使用与调节 1) 将各控制旋钮置于相关位置。 2) 接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状态。 3) 经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、

示波器基本使用方法

示波器基本使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

示波器基本使用方法 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

示波器实验报告

示波器实验报告 不少朋友都不会写示波器实验报告,那么,今天,给大家介绍的是示波器实验报告,希望对大家有帮助。 示波器实验报告 【实验题目】示波器的原理和使用 【实验目的】 1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。 2.学会使用示波器观测电信号波形和电压副值以及频率。 3.学会使用示波器观察李萨如图并测频率。 【实验原理】 1.示波器都包括几个基本组成部分: 示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。 2.李萨如图形的原理: 如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。 如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。 【实验仪器】

示波器×1,信号发生器×2,信号线×2。 【实验内容】 1.基础操作: 了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。 明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。 2.观测李萨如图形: 向CH1、CH2分别输入两个信号源的正弦波,"扫描时间"的"粗调"旋钮置于"X-Y"方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。 设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值frime;y进行比较,一一求出它们的相对误差。 【实验数据】 【实验结果】 【误差分析】

示波器使用简易说明

实验1.2常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器等的主要性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法 二、实验仪器 1、函数信号发生器EE1641C 2、DS1062E-EDU数字示波器 3、高级电路实验箱 三、实验原理 初步了解示波器面板和用户界面 1. 前面板:DS1000E-EDU系列数字示波器向用户提供简单而功能明晰的前面板, 以进行基本的操作。面板上包括旋钮和功能按键。旋钮的功能与其它示波器类似。显示屏右侧的一列 5 个灰色按键为菜单操作键(自上而下定义为1 号至 5 号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

电压参数的自动测量 DS1000E-EDU, DS1000D-EDU 系列数字示波器可自动测量的电压参数包括峰峰值、最大值、最小值、平均值、均方根值、顶端值、低端值。下图表述了各个电压参数的物理意义。 电压参数示意图 峰峰值(Vpp):波形最高点至最低点的电压值。 ?最大值(Vmax):波形最高点至GND(地)的电压值。

最小值(Vmin):波形最低点至GND(地)的电压值。 幅值(Vamp):波形顶端至底端的电压值。? 顶端值(Vtop):波形平顶至GND(地)的电压值。 底端值(Vbase):波形平底至GND(地)的电压值。 过冲(Overshoot):波形最大值与顶端值之差与幅值的比值。 预冲(Preshoot):波形最小值与底端值之差与幅值的比值。 平均值(Average):单位时间内信号的平均幅值。 均方根值(Vrms):即有效值。依据交流信号在单位时间内所换算产生的能量,对应于产生等值能量的直流电压,即均方根值。 2、函数信号发生器 函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20VP-P。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。 函数信号发生器作为信号源,它的输出端不允许短路。 例一:测量简单信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1. 欲迅速显示该信号,请按如下步骤操作: (1) 将探头菜单衰减系数设定为1X,并将探头上的开关设定为1X。 (2) 将通道1的探头连接到电路被测点。 (3) 按下AUTO(自动设置)按键。 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作:

示波器图文教程_非常详细讲解

看到论坛有很多新手在问示波器怎么用,苦苦寻找示波器的教程.....以前用的大多是那种很大台笨重的模拟示波十M的价格都要好几千,小弟我也买不起,所以至今是只见过猪走路,没吃过猪肉。现在都是数字时代了,现0M的不到两千MB可买得一台了,小巧、彩色、而且可说像傻瓜式的,操作非常方便面,只需测量时按下上面了。 其实示波器在实际维修运用中,用得最多的就是测量晶阵、时钟频率、检修PWM电路及一些关键信号的捕捉,今天闲来没事就简单给大家演示一下示波器实际维修的运用及所测到的波形。 主演:安泰信ADS1102C 配角:我是刚来的 首先先请主演先登场吧 第一:检修不触发故障主板时,可以用示波器测32.768和25M(NF的板)晶振是否起振,非常直观,非常准确,万用表测晶振的两脚的压差不是也可以判断其好坏吗?没错,但是我要告诉你你只对了一半,有压差只能初步判也经常碰到有压差但不起振的故障,在没示波器下最好的方法就是代换一个。但如果我们有示波器,测其晶振两且下面标有对应的频率数值没有偏移,那么晶振肯定是好的。如图为实测32.768的波形

第二:在检修能上电不亮机故障时,首先就是测量主板各大供电是否正常,而如今的主板的供电方式大多彩用了来检测PWM控制电路是否正常工作,也是比万用表更准确更直观,正常工作时的波形为脉冲方波。如:如图为方波,表明CPU电路正常工作

表明内存供电电路正常

桥供电正常

第三:对于主板不亮故障,如以上测完主板供电都正常情况下,就要检测主板各时钟是否正常了。这时示波器的常准确的测出该点的时钟频率的数值,正常为一个正弦波。万用表测也行,一般33M为1.6V左右,66M为0.6左右,只是个大概判断,当然没示波器来的准确。 如图为实测的33M频率波形(测量点可用打值卡上测,或在PCI槽B16测到)

示波器的实验报告(共7篇)

一、名称:电子示波器的使用二、目的: 2.学会使用常用信号发生器;掌握用示波器观察电信号波形的方法。 3.学会用示波器测量电信号电压、周期和频率等电参量。 三、器材: 2、ee1641b型函数信号发生器/计数器。 四、原理: 1、示波器的基本结构: y输入 外触发x输入 2、示波管(crt)结构简介: 3、电子放大系统: 竖直放大器、水平放大器 (2)触发电路:形成触发信号。 #内触发方式时,触发信号由被测信号产生,满足同步要求。 #外触发方式时,触发信号由外部输入信号产生。 5、波形显示原理: 只在竖直偏转板上加正弦电压的情形 示波器显示正弦波原 理 只在水平偏转板上加一锯齿波电压的情形 五、步骤: 1、熟悉示波器的信号发声器面板各旋钮的作用,并将各开关置于指定位 3、将信号发生器输出的频率为500hz和1000hz的正弦信号接入示波器, 通过调整相应的灵敏度开关和扫描速度选择开关,使波形不超出屏幕范围,显示2~3个周期的波形。 4、将time/div顺时针旋到底至" x-y"位置,分别调节y1通道和y2 六、记录: 七、预习思考: 1、示波器上观察到的正弦波形和李萨如图形实际上分别是哪两个波形的合成 答:正弦波形:是两组磁场使电子受力改变运动状态,然后将不同电子打到荧光屏上不同的位置而形成的; 2、用示波器观察待测信号波形和用示波器观察李萨如图形时,示波器的工作方式有什么不同 3、当开启示波器的电源开关后,在屏上长时间不出现扫描线或点时,应如何调节各旋钮

八、操作后思考题 1、如果y轴信号的频率x比x轴信号的频率y大很多,示波器上看到什么情形相反又会看到什么情形 答:因为 y / x=nx / ny ,当x /y=1:1时,示波器上是一个圆柱,当x /y=2:1时,示波器上是一个横向的8,当x /y=3:1时,示波器上是三个横向的圆。所以y如果越大的话,横向圆的数量就越多。 篇二:示波器的原理与使用实验报告 大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 5 实验台号实验时间 2008 年 11 月 18 日,第13周,星期二第 5-6 节 实验名称示波器的原理与使用 教师评语 实验目的与要求: (1)了解示波器的工作原理 (2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差 主要仪器设备: yb4320g 双踪示波器, ee1641b型函数信号发生器 实验原理和内容: 1. 示波器基本结构 电子枪的作用是释放并加速电子束。 过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。 荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。 扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。 如果只在竖直偏转板加上交变电压而x偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示: 如果在y偏转板和x偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示: 3. 扫描同步 为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。 步骤与操作方法: 1.示波器测量信号的电压和频率 对于一个稳定显示的正弦电压波形,电压和频率可以由以下方法读出 uppah, f(bl)1 其中a为垂直偏转因数(电压偏转因数)

相关文档