文档库 最新最全的文档下载
当前位置:文档库 › 第四讲 一元二次方程与二次函数

第四讲 一元二次方程与二次函数

第四讲 一元二次方程与二次函数
第四讲 一元二次方程与二次函数

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

中考数学重难点专题讲座

第四讲 一元二次方程与二次函数

智康·刘豪

【前言】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。

第一部分 真题精讲

【例1】2010,西城,一模

已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根; ⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式; ②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;

⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,

,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.

【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函

数的考查方式。由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点(1,0)。根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

【解析】 解:(1)分两种情况:

当0m =时,原方程化为033=-x ,解得1x =, (不要遗漏) ∴当0m =,原方程有实数根.

当0≠m 时,原方程为关于x 的一元二次方程,

∵()()()2

22[31]4236930m m m m m m =----=-+=-△≥.

∴原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)

综上所述,m 取任何实数时,方程总有实数根.

(2)①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称,

∴0)1(3=-m .(关于Y 轴对称的二次函数一次项系数一定为0) ∴1=m .

∴抛物线的解析式为121-=x y .

②∵()()2

21212210y y x x x -=---=-≥,

(判断大小直接做差) ∴12y y ≥(当且仅当1x =时,等号成立).

(3)由②知,当1x =时,120y y ==.

∴1y 、2y 的图象都经过()1,0. (很重要,要对那个等号有敏锐的感觉) ∵对于x 的同一个值,132y y y ≥≥, ∴23y ax bx c =++的图象必经过()1,0. 又∵23y ax bx c =++经过()5,0-,

∴()()231545y a x x ax ax a =-+=+-. (巧妙的将表达式化成两点式,避免繁琐计算) 设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=. ∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立, ∴

320y y -≥,

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

图7

∴2(42)(25)0y ax a x a =+-+-≥. 又根据1y 、2y 的图象可得 0a >, ∴

2

4(25)(42)04a a a y a

---=最小≥.(a>0时,顶点纵坐标就是函数的最小值)

∴2(42)4(25)0a a a ---≤. ∴2(31)0a -≤. 而2(31)0a -≥. 只有013=-a ,解得13

a =. ∴抛物线的解析式为3

5343123-+=

x x y .

【例2】2010,门头沟,一模

关于x 的一元二次方程22(1)2(2)10m x m x ---+=. (1)当m 为何值时,方程有两个不相等的实数根;

(2)点()11A --,

是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的

直线,若存在,请求出直线的解析式;若不存在,请说明理由.

【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。第二问给点求解析式,比较简单。值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

【解析】:

(1)由题意得[]2

2224(1)0m m ?=---->() 解得5

4

m <

210m -≠

解得1m ≠±

当5

4

m <

且1m ≠±时,方程有两个不相等的实数根. (2)由题意得212(2)11m m -+-+=-

解得31m m =-=,

(舍) (始终牢记二次项系数不为0) 28101y x x =++ (3)抛物线的对称轴是5

8

x =

由题意得114B ??

-- ???

, (关于对称轴对称的点的性质要掌握) 1

4

x =-与抛物线有且只有一个交点B (这种情况考试中容易遗漏)

另设过点B 的直线y kx b =+(0k ≠)

把114B ??

-- ???,

代入y kx b =+,得14k b -+=-,114b k =- 1

14

y k x k =+-

281011

14

y x x y kx k ?=++?

?=+-?? 整理得21

8(10)204

x k x k +--+=

有且只有一个交点,21

(10)48(2)04

k k ?=--??-+=

解得6k =

162

y x =+

综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,1

62

y x =+

【例3】

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点. (1)求b 的值;

(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若

没有,请说明理由;

(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与

x 轴无交点,求k 的最小值.

【思路分析】 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组,

十分麻烦,计算量大,浪费时间并且可能出错。但是仔细看题,发现P,Q 纵坐标是一样的,说明他们关于抛物线的对称轴对称。而抛物线只有一个未知系数,所以轻松写出对称轴求出b 。 第二问依然是判别式问题,比较简单。第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察。考生一定要把握平移后解析式发生的变化,即左加右减(单独的x),上加下减(表达式整体)然后求出结果。

【解析】

(1)因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴

距离相等.

所以,抛物线对称轴3142

b x -+=-

=,所以,4b =. (2)由(1)可知,关于x 的一元二次方程为2

241x x ++=0.

因为,2

4b ac =- =16-8=8>0.

所以,方程有两个不同的实数根,分别是

11x =

=-

,21x ==-. (3)由(1)可知,抛物线2241y x x =++的图象向上平移k (k 是正整数)个单位后的解

析式为2

241y x x k =+++.

若使抛物线2

241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实

数解即可.

由2

4b ac =- =168(1)k -+=88k -<0,得1k >

又k 是正整数,所以k 得最小值为2.

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

【例4】2010,昌平,一模

已知抛物线2442y ax ax a =-+-,其中a 是常数. (1)求抛物线的顶点坐标; (2)若2

5

a >

,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式. 【思路分析】本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a 提出来,里面就是一个关于X 的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X 轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给2

5

a >

,合理变换以后代入判别式,求得整点的可能取值. (1)依题意,得0a ≠,

∴2442y ax ax a =-+-

()()22

4422 2.

a x x a x =-+-=--

∴抛物线的顶点坐标为(2,2)- (2)∵抛物线与x 轴交于整数点,

∴24420ax ax a -+-=的根是整数.

∴2x ==

∵0a >,

∴2x =± ∴

2

a

是整数的完全平方数. ∵2

5

a >, ∴2

5a

<. (很多考生想不到这种变化而导致后面无从下手) ∴2

a

取1,4, 当

21a =时,2a =; 当24a =时,1

2

a = .

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

∴a 的值为2或

1

2

. ∴抛物线的解析式为2286y x x =-+或2

122

y x x =-.

【例5】2010,平谷,一模

已知:关于x 的一元二次方程()()21210m x m x -+--=(m 为实数) (1)若方程有两个不相等的实数根,求m 的取值范围;

(2)在(1)的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x 轴上的一个固定点;

(3)若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()2121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.

【思路分析】本题第一问比较简单,直接判别式≥0就可以了,依然不能遗漏的是m-1≠0。第二问则是比较常见的题型.一般来说求固定点既是求一个和未知系数无关的X,Y 的取值.对于本题来说,直接将抛物线中的m 提出,对其进行因式分解得到y=(mx-x-1)(x+1)就可以看出当x=-1时,Y=0,而这一点恰是抛物线横过的X 轴上固定点.如果想不到因式分解,由于本题固定点的特殊性(在X 轴上),也可以直接用求根公式求出两个根,标准答案既是如此,但是有些麻烦,不如直接因式分解来得快.至于第三问,又是整数根问题+平移问题,因为第二问中已求出另一根,所以直接令其为整数即可,比较简单.

解:(1)()()2

2241m m m ?=-+-= ∵方程有两个不相等的实数根, ∴

0m ≠ ∵

10m -≠, ∴m 的取值范围是0m ≠且1m ≠.

(2)证明:令0y =得()()21210m x m x -+--=.

∴(

)()

()()

222121m m m x m m ----±==

--.

()()12221

121211

m m m m x x m m m -+--++==-==---, (这样做是因为已经知道判别式是2m ,计算量比较小,

如果根号内不是完全平方就需要注意了)

∴抛物线与x 轴的交点坐标为()11001m ??-

?-??

,,,, ∴无论m 取何值,抛物线()()2121y m x m x =-+--总过定点()10-,

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

(3)∵1x =-是整数 ∴只需

1

1

m -是整数. ∵m 是整数,且01m m ≠≠,

, ∴

2m = 当2m =时,抛物线为21y x =-.

把它的图象向右平移3个单位长度,得到的抛物线解析式为 ()2

23168y x x x =--=-+

【总结】 中考中一元二次方程与二次函数几乎也是必考内容,但是考点无非也就是因式分解,判别式,对称轴,两根范围,平移以及直线与抛物线的交点问题。总体来说这类题目不难,但是需要计算认真,尤其是求根公式的应用一定要注意计算的准确性。这种题目大多包涵多个小问。第一问往往是考验判别式大于0,不要忘记二次项系数为0或者不为0的情况。第2,3问基于函数或者方程对其他知识点进行考察,考生需要熟记对称轴,顶点坐标等多个公式的直接应用。至于根与系数的关系(韦达定理)近年来中考已经尽量避免提及,虽不提倡但是应用了也不会扣分,考生还是尽量掌握为好,在实际应用中能节省大量的时间。

第二部分 发散思考

【思考1】. 2010,北京中考

已知关于x 的一元二次方程2

2410x x k ++-=有实数根,k 为正整数.

(1)求k 的值;

(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;

(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线

()1

2

y x b b k =

+<与此图象有两个公共点时,b 的取值范围.

【思路分析】去年中考原题,相信有些同学已经做过了.第一问自不必说,判别式大于0加上k 为正整数的条件求k 很简单.第二问要分情况讨论当k 取何值时方程有整数根,一个个代进去看就是了,平移倒是不难,向下平移就是整个表达式减去8.但是注意第三问,函数关于对称轴的翻折,旋转问题也是比较容易在中考中出现的问题,一定要熟练掌握关于对称轴翻折之后函数哪些地方发生了变化,哪些地方没有变.然后利用画图解决问题.

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

【思考2】2009,东城,一模

已知:关于x 的一元二次方程222(23)41480x m x m m --+-+= (1)若0,m >求证:方程有两个不相等的实数根;

(2)若12<m <40的整数,且方程有两个整数根,求m 的值.

【思路分析】本题也是整根问题,但是不像上题,就三个值一个个试就可以试出来结果。本题给定一个比较大的区间,所以就需要直接用求根公式来计算.利用已知区间去求根的判别式的区间,也对解不等式做出了考察.

【思考3】2009,海淀,一模

已知: 关于x 的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax 2-bx+kc (c ≠0)的图象与x 轴一个交点的横坐标为1. (1)若方程①的根为正整数,求整数k 的值;

(2)求代数式akc

ab

b k

c +-22)(的值;

(3)求证: 关于x 的一元二次方程ax 2-bx+c=0 ②必有两个不相等的实数根.

【思路分析】本题有一定难度,属于拉分题目。第一问还好,分类讨论K 的取值即可。第二问则需要将k 用a,b 表示出来,然后代入代数式进行转化.第三问则比较繁琐,需要利用题中一次方程的根为正实数这一条件所带来的不等式,去证明二次方程根的判别式大于0.但是实际的考试过程中,考生在化简判别式的过程中想不到利用已知条件去套未知条件,从而无从下手导致失分.

【思考4】2009,顺义,一模

. 已知:关于x 的一元二次方程22(21)20x m x m m -+++-=. (1)求证:不论m 取何值,方程总有两个不相等的实数根; (2)若方程的两个实数根12x x ,满足122

11

m x x m +-=+-,求m 的值.

【思路分析】这一题第二问有些同学想到直接平方来去绝对值,然后用韦达定理进行求解,但是这样

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

的话计算量就会非常大,所以此题绕过韦达定理,直接用根的判别式写出12x x ,,

发现12x x ,都是关于m 的一次表达式, 做差之后会得到一个定值.于是问题轻松求解. 这个题目告诉我们高级方法不一定简单,有的时候最笨的办法也是最好的办法.

第三部分 思考题解析

【思考1解析】

解:(1)由题意得,168(1)0k ?=--≥. ∴3k ≤. ∵k 为正整数,

∴123k =,

,. (2)当1k =时,方程2

2410x x k ++-=有一个根为零;

当2k =时,方程2

2410x x k ++-=无整数根;

当3k =时,方程2

2410x x k ++-=有两个非零的整数根.

综上所述,1k =和2k =不合题意,舍去;3k =符合题意.

当3k =时,二次函数为2242y x x =++

2246y x x =+-.

(3)设二次函数2246y x x =+-的图象与x 轴交于

A B 、两点,则(30)A -,,(10)B ,.

依题意翻折后的图象如图所示.

当直线12y x b =

+经过A 点时,可得3

2b =; 当直线12y x b =+经过B 点时,可得1

2

b =-.

由图象可知,符合题意的(3)b b <的取值范围为1322

b -<<.

【思考2解析】

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

证明: []2

2

=2(23)-4414884m m m m ---++ ()=

0,m > 840.m ∴+>

∴方程有两个不相等的实数根。

(2

)2(23)=

(23)2

m x m --±

且m 为整数. 又∵12<m <40, 252181.m ∴<+< ∴ 5

9.

356,.2

7,24.638,.2

m m m =∴==∴==∴= ∴m=24

【思考3解析】

解:由 kx =x +2,得(k -1) x =2.

依题意 k -1≠0.

∴ 1

2

-=

k x . ∵ 方程的根为正整数,k 为整数, ∴ k -1=1或k -1=2. ∴ k 1= 2, k 2=3.

(2)解:依题意,二次函数y =ax 2-bx +kc 的图象经过点(1,0), ∴ 0 =a -b +kc , kc = b -a .

∴2

22222222a ab ab

b a ab b a b a ab b a b ak

c ab b kc -+-+-=-+--=+-)()()(

=.12

2

-=--a

ab ab a (3)证明:方程②的判别式为 Δ=(-b )2-4ac = b 2-4ac . 由a ≠0, c ≠0, 得ac ≠0.

合并自:https://www.wendangku.net/doc/0a7652141.html, (奥数)、https://www.wendangku.net/doc/0a7652141.html, (中考)、https://www.wendangku.net/doc/0a7652141.html, (高考)、https://www.wendangku.net/doc/0a7652141.html, (作文)、

https://www.wendangku.net/doc/0a7652141.html, (英语)、 https://www.wendangku.net/doc/0a7652141.html, (幼教)、https://www.wendangku.net/doc/0a7652141.html, 、https://www.wendangku.net/doc/0a7652141.html, 等站

https://www.wendangku.net/doc/0a7652141.html, E 度教育网

( i ) 若ac <0, 则-4ac >0. 故Δ=b 2-4ac >0. 此时方程②有两个不相等的实数

根.

( ii ) 证法一: 若ac >0, 由(2)知a -b +kc =0, 故 b =a +kc .

Δ=b 2-4ac = (a +kc )2-4ac =a 2+2kac +(kc )2-4ac = a 2-2kac +(kc )2+4kac -4ac =(a -kc )2+4ac (k -1). ∵ 方程kx =x +2的根为正实数, ∴ 方程(k -1) x =2的根为正实数. 由 x >0, 2>0, 得 k -1>0. ∴ 4ac (k -1)>0. ∵ (a -kc )2≥0,

∴Δ=(a -kc )2+4ac (k -1)>0. 此时方程②有两个不相等的实数根. 证法二: 若ac >0,

∵ 抛物线y =ax 2-bx +kc 与x 轴有交点, ∴ Δ1=(-b )2-4akc =b 2-4akc ≥0. (b 2-4ac )-( b 2-4akc )=4ac (k -1).

由证法一知 k -1>0,

∴ b 2-4ac > b 2-4akc ≥0.

∴ Δ= b 2-4ac >0. 此时方程②有两个不相等的实数根. 综上, 方程②有两个不相等的实数根.

【思考4解析】

(1)[]2

2

(21)4(2)m m m ?=-+-+- -

22

441448m m m m =++--+

90=>

∴不论m 取何值,方程总有两个不相等实数根 (2

)由原方程可得12(21)(21)3

22

m m x ++±=

=

, ∴ 1221x m x m =+=-, -- ∴ 123x x -=

又∵ 12211m x x m +-=+- ∴ 2

311

m m +=+-

∴ 4m = -

经检验:4m =符合题意.

m 的值为4.

二次函数与实际问题

实际问题与二次函数 一、利用函数求图形面积的最值问题 一、 围成图形面积的最值 1、 只围二边的矩形的面积最值问题 例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗 圃。 (1) 设矩形的一边长为 米),面积为y (平方米),求y 关 于x 的函数关系式; (2) 当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得:x x x x y 18)18(2 +-=-=; 又∵180,0180<x<x >x >∴? ??- (2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时,81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 2、 只围三边的矩形的面积最值 例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为( 250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 2521)250(2+-=-=中,a=2 1-<0,∴y 有最大值, 即当25)21(2252=-?-=-=a b x 时,2625)2 1(42504422max =-?-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2 625平方米。 3、 围成正方形的面积最值 例3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. (1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x ) cm

最新一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次 方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关 于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系 数;c 叫做常数项。 3.一元二次方程的解法 (1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平 方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平 方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项 的系数的一半的平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方 法。一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的 系数为b ,常数项的系数为c (4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单 易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的 是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形 式 4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元 二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?” 来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等的实数根;

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程知识点归纳与复习

一元二次方程专题 知识点1:一元二次方程的概念及一般形式 1、方程(1)3x-1=0;(2) 2310x -=;(3) 2130x x + =;(4) 221(1)(2)x x x -=--; (5) 2(52)(37)15x x x +-=;(6) 232x y x +=.其中一元二次方程的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、将下列方程化为一元二次方程的一般形式,并指出方程的二次项系数、一次项系数和常数项。 (1)2(5)3x x x --=- (2)(21)(5)6x x x -+= 知识点2:用直接开平方法解一元二次方程 3、用直接看平方法解一元二次方程: (1)2169x = (2)2450x -= (3)24(21)360x --= (4)(21)40x +-= 知识点3:用配方法解一元二次方程

4、用配方法解方程2250x x --=时,原方程变形为 ( ) A 、2(1)6x += B 、2(1)6x -= C 、2(2)9x += D 、2(2)9x -= 5、用配方法解一元二次方程: (1)22410x x -+= (2)2213x x += 知识点4:用公式法解一元二次方程 6、用公式法解一元二次方程: (1)2410x x +-= (2)2441018x x x ++=- 知识点5:根的判别式(24b ac -)的应用 7、若关于x 的一元二次方程2210mx x --=有两个不相等的实数根,则实数m 的取值范围是 ( ) A 、m>-1 B 、m>-1且m ≠0 C 、m<1 D 、m<1且m ≠0 8、已知a 、b 、c 分别是三角形ABC 的三边,其中a=1,c=4,且关于x 的方程240x x b -+=有两个相等的实数根,试判断三角形ABC 的形状。 4、 已知关于x 的一元二次方程2223840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围. 知识点6:用分解因式法解一元二次方程 9、用分解因式法解一元二次方程 (1)230x x += (2)2(3)4(3)0x x x -+-=

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

初三数学一元二次方程与二次函数测试题

初三数学第二次月考 班级 姓名 学号 一.选择题(每小题3分,共24分) 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3.抛物线3)2(2+-=x y 的对称轴是( ) 4.关于的一元二次方程有实数根,则( ) (A)<0 (B)>0 (C)≥0 (D)≤0 1. A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2 =x 5.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位, 所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 7. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___ 象限( ) A. 一 B. 二 C. 三 D. 四 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次 函数y=ax 2+bx 的图象只可能是( )

二.填空题(每小题4分,共32分) 2. 9.若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________. 10. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________. 11. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析 式为_____________. 12.已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的 根的情况是______________________. 13..若关于的方程 的根是整数,则k 的值可以是______.(只要求写出一个) 14.已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________. 15.已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次 函数的解析式:_____________________. 16.如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点 的坐标是________________. O x y A B 1 1 三.解答题 1.用适当的方法解方程: (1)(2x-1)2-7=3(x+1); (2)(2x+1)(x-4)=5;

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

一元二次方程、二次函数知识点总结

一元二次方程重要知识点 1. 一元二次方程的定义及一般形式:)0(2≠++=a c bx ax y (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次) 的方程,叫做一元二次方程。 (2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。其中a 为二次项系数,b 为 一次项系数,c 为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。 2. 一元二次方程的解法 (1)配方法:将方程整理成(x+p)2 =q ,方程的根是x=-p ±q 注:x 2系数是1和不是1时配方注意事项;x 2系数是负数时配方注意事项。 (2)公式法:242b b ac x a -±-=(240b ac -≥) (3)因式分解:十字相乘法:0)(2=+++pq x q p x 0))((=++?q x p x 3.一元二次方程根的判别(2 4b ac ?=-) (1)△>0,方程有两个不相等的实数根 (2)△=0,方程有一个实数根或者两个相等的实数根 (3)△<0,方程没有实数根,方程无解 4.韦达定理(根与系数关系) 一元二次方程ax 2+bx+c =0,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系: 1x +2x =b a -; 1x .2x =c a 5.一元二次方程的应用 ①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元; ③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式 ④“解”就是求出说列方程的解; ⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程 二次函数重要知识点 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 注意 :和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零. 2. 平移规律:

人教版 21章 一元二次方程知识点总结

21章 一元二次方程知识点 一、一元二次方程 1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未 知数的最高次数是2的方程叫做一元二次方程。 注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于0 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。 (2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。 (3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。 二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当2 =x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等) 三、一元二次方程的解法 1、直接开平方法: 直接开平方法理论依据:平方根的定义。 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 三种类型:(1)()02≥=a a x 的解是a x ±=;

(2)()()02≥=+n n m x 的解是m n x -±=; (3)()()0,02≥≠=+c m c n mx 且的解是m n c x -±= 。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 (一)用配方法解二次项系数为1的一元二次方程 用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式 (2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这 个数; (3) 把原方程变为()n m x =+2的形式。 (4) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。 (二)用配方法解二次项系数不是1的一元二次方程 当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤: (1)把一元二次方程化成一般形式 (2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数; (3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为()n m x =+2的形式; (4)若0≥n ,用直接开平方法或因式分解法解变形后的方程。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式:

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

一元二次方程与二次函数专题

二次函数与一元二次方程专题 一、知识要点: 二次函数图象与x 轴交点情况: 二、经典例题: 1.y=(m-2)22-m x +x -3=0是关于x 的二次函数,则m 的值是 2.(1)关于x 的二次函数y=22(1)1a x x a -++-经过坐标原点,则=a (2)二次函数y=2 (0)ax bx c a ++≠与x 轴两交点的横坐标分别为1和1-,则=++c b a ,=+-c b a (3)等腰ABC △三边的长都是二次函数y=x 2-5x+6与x 轴两交点的横坐标,则周长是 . 3.求下列二次函数与x 轴交点坐标. (1)2222y x mx m n =-+- (2)2()2y m n x nx m n =++-+ (0≠+n m ) 4.已知:关于x 的二次函数y=269kx x -+与x 轴有两个交点,则k . 5.已知关于x 的二次函数2 3y x m x m =-+()- 求证:该函数与x 轴必有两个交点.

6.若关于x 的二次函数y=x 2-x+m 和y=(m-1)x 2-2x+1都与x 轴有两个交点,求m 的整数值. 7.当k 为何整数时,关于x 的二次函数y=kx 2-4x +4和y=x 2-4kx +4k 2-4k -5都与x 轴交于整数点. 8.已知:m 为整数,且二次函数y=x 2-3x +m +2与x 轴正半轴有两个交点,求m 值. 9.已知:抛物线21y (32)22mx m x m =-+++开口向上. (1)求证:该二次函数与x 轴必有两个交点; (2)设抛物线与x 轴交点为A (1x ,0),B (2x ,0)(A 在B 左侧).若2y 是关于m 的函数,且2212y x x =-, 求这个函数的解析式; (3)若AB=3,求抛物线的解析式.

实际问题与二次函数练习题及答案

12999数学网 https://www.wendangku.net/doc/0a7652141.html, 26.3 实际问题与二次函数 1. 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货 员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x ,y 和z (单位:万元,x 、y 、z 都是整数)。(1)请用含x 的代数式分别表示y 和z ;(2)若商场预计每日的总利润为C (万元),且C 满足19≤C ≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员? 2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大? 3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y 随时间t 的变化规律有如下关系(04黄冈) (1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目? 224100(010)240(1020) 7380(2040)t t t y t t t ?-++<≤??=<≤??-+<≤??

一元二次方程知识点归纳

一元二次方程知识点 知识点一:一元二次方程及其解法关键点拨及对应举例 1.一元二次方程的相关概念 (1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方 程. (2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次 项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常 数项. 例:方程20 a ax+=是关于x 的一元二次方程,则方程的根为- 1. 2 .一元二 次方程的解法 (1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方 求解. ( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解 法求解. ( 3 )公式法:一元二次方程ax2+bx+c=0的求根公式为 x= 24 2 b b ac a -±-(b2-4ac≥0). (4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶 数时,也可以考虑用配方法. 解一元二次方程时,注意 观察,先特殊后一般,即先 考虑能否用直接开平方法和 因式分解法,不能用这两种方 法解时,再用公式法. 例:把方程x2+6x+3=0变 形为(x+h)2=k的形式后, h=-3,k=6. 知识点二:一元二次方程根的判别式及根与系数的关系 3 .根的判别式 (1)当Δ=24 b ac -0时,原方程有两个不相等的实数根. (2)当Δ=24 b ac -0时,原方程有两个相等的实数根. (3)当Δ=24 b ac -0时,原方程没有实数根. 例:方程2210 x x +-=的判 别式等于8,故该方程有两个不相 等的实数根;方程2230 x x ++= 的判别式等于-8,故该方程没有实 数根. * 4.根与系数的关系 (1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)有两 个根分别为x1、x2,则x1+x2= ;x1x2= 。注意运用根与系数 关系的前提条件是△≥0. (2)解题策略:已知一元二次方程,求关于方程两根的代数式 的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与 系数的关系求解. 与一元二次方程两根相关代数 式的常见变形: x12+x22=(x1+x2)2-2x1x2, (x1+1)(x2+1)=x1x2+(x1+x2)+1, 12 1212 11x x x x x x + += 等. 失分点警示 在运用根与系数关系解题时, 注意前提条件时△=b2-4ac≥0.a≠0 知识点三:一元二次方程的应用 4(1)解题步骤:①审题;②设未知数;③列一元二次方程; ④解一元二次方程;⑤检验根是否有意义;⑥作答. 运用一元二次方程解决实际问题时,方程一般有两个实

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

一元二次方程与二次函数的应用题精选题

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分 5000(1-x )2= 4050 ………………………………………3分 解得:x 1=10% x 2= 19 10 (不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分 方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵< ∴选方案①更优惠. ……………………………………………8分 2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。根据题意,得 2 150(1)216 x += 解得10.220%x ==,2 2.2x =-(不合题意,舍去)。 答:该市汽车拥有量的年平均增长率为20%。 (2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为21690%y ?+万辆,2011年底全市的汽车拥有量为(21690%)90%y y ?+?+万辆。根据题意得 (21690%)90%231.96y y ?+?+≤ 解得30y ≤ 答:该市每年新增汽车数量最多不能超过30万辆。

一元二次方程知识点整理

一元二次方程 一、本节学习指导 本节中我们要注意一元二次方程成立的条件,填空题最青睐这简单而又易忽视的知识。其次就是根与系数的关系(韦达定理)、判别式,求根公式,这些需要我们重点记忆。本节有配套学习视频。 二、知识要点 1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。一元二次方程的标准式:ax2+bx+c=0 (a≠0) 其中:ax2叫做二次项,bx叫做一次项,c叫做常数项 a是二次项系数,b是一次项系数 2、一元二次方程根的判别式(二次项系数不为0): “△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac △=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2 △=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2 △=b2-4ac<0 <====> 方程没有实数根。 注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<0 3、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。 ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有: 因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,

所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。 注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。 5、一元二次方程的求根公式: 注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。 三、经验之谈: 对于韦达定理的文字描述希望同学们能理解,试着把二次项系数化1来观察一下。求根公式也要牢记于心,使用很广泛。

《实际问题与二次函数》教学设计

实际问题与二次函数(教学设计) 162 团中学高文君 第1课时如何获得最大利润 【学情分析】 学生已经学习了二次函数的概念、图象和性质。这些内容为学习二次函数的应用提供知识支持,又学习了列代数式,列方程解应用题,这些应用性质的内容为本节课的学习提供了建模能力的基础,但是作为建立二次函数模型区解决实际问题,带有很强的综合性、灵活性, 对学生的要求较高。 【教学目标】 1. 能够分析和确定实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值; 2. 经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系; 3. 通过实际问题的解决,逐步领会二次函数的应用价值和实际意义;通过小组合作,交流讨论和探索,建立合作和探索意识,激发学习的兴趣和欲望。 【教学重难点】 1. 探究利用二次函数的最大值(或最小值)解决实际问题的方法; 2. 如何将实际问题转化为二次函数的问题。 【教学方法】启发引导,小组讨论 【教学过程】一【复习旧知,引入新课】 1 . 二次函数y ax 2 bx c的图象是一条_______________ ,它的对称轴是__________ ,顶点坐标 是. 当a>0时,抛物线开口向,有最点,函数有最______________________________ 值,是 _______ ;当a<0时,抛物线开口向,有最 ____________ 点,函数有最 _______ 值, 2.二次函数y 2x2 8x 9的对称轴是____________ ,顶点坐标是—」当x= _______ 时,函数有最 值,是 _____ 。 【设计意图】在前几节课的学习中,我们已经学习了二次函数的图象和性质,这节课首先复习二次函数的相关内容,唤起学生对二次函数的记忆。 二、【试一试,我能行】 问题.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。如何定价才能使利润最大? 1、本题中的变量是什么? 2、学生对商品利润问题的理解:每件的利润=售价一进价 总利润=每件的利润X卖出的总件数 总利润=销售额一进货额 3 、学生对两个变量的理解。 师生共同分析:(1)销售额为多少?(2)进货额为多少? (3)利润y与每件涨价x元的函数关系式是什么? (4)变量x的取值范围如何确定? (5)如何求解最值? 设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先确定y与x的函数关系式。涨

相关文档
相关文档 最新文档