文档库 最新最全的文档下载
当前位置:文档库 › 感应钎焊基本原理

感应钎焊基本原理

感应钎焊基本原理

感应加热的基本原理:导体(衔接机上的线圈)通过电流时,在其周围就产生磁场。当感应加热线圈中通过交变电流时,在线圈内部和其周围就产生一个交变磁场。在感应加热时,零件就被这个交变磁场的磁力线所切割,根据电磁场理论,变化着的磁场会产生感应电动势,感应电动势在零件表面将形成封闭的电流回路,通常把这种电流称为涡流。感应加热主要是涡流在工件内部产生热量,使工件得到加热。(由于无法明确感应线圈的电流是增大还是减小,所以默认按照增大的情况作图)其中涉及楞次定律的两个磁场,一个是加热线圈感应电流产生的磁场(称感应磁场),另一个是引起感应电流的磁场(称原磁场),根据楞次定律,感应电流产生的磁场总要阻碍原磁场的磁通量的变化(此处指涉及感应强度,不涉及磁通面积)。如果加热线圈的感应电流的磁通量是增大的或者有增大趋势,则可判断感应磁场是往左边,根据楞次定律,要阻碍磁通量增大,引起感应电流的磁场应该与之相反方向,即向右,再根据右手安培定则,得到旋转电流的方向(如上图)。

高频淬火原理及工艺解析

高频淬火含义与原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、含义 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 二、原理 利用电流的集肤效应,在零件表面形成电流进而加热工件,实现心部和表面不同的热处理状态; 其中根据电流频率的不同分为工频、中频和高频。分别针对不同的淬硬深度和工件大小。高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热

零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。 产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个趋肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

直流高频电阻焊基本原理介绍

直流高频电阻焊基本原理介绍高频焊接起源于上世纪五十年代,它是利用高频电流所;接推动了直缝焊管产业的巨大发展,它是直缝焊管(E;质量的好坏,直接影响到焊管产品的整体强度,质量等;所谓高频,是相对于50Hz的交流电流频率而言的,;电流;集肤效应是指以一定频率的交流电流通过同一个导体时;分布于导体的所有截面的,它会主要向导体的表面集中;方根成正比,与频率和磁导率的平方根成反比;钢板的表面; 高频焊接起源于上世纪五十年代,它是利用高频电流所产生的集肤效应和相邻效应,将钢板和其它金属材料对接起来的新型焊接工艺。高频焊接技术的出现和成熟,直接推动了直缝焊管产业的巨大发展,它是直缝焊管(ERW)生产的关键工序。高频焊接质量的好坏,直接影响到焊管产品的整体强度,质量等级和生产速度。 1高频焊接的基本原理 所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢?集肤效应是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,

集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。邻近效应是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。 2 高频焊接设备的结构和工作原理 了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,

超声波焊接原理和应用

超声波焊接原理: 超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。 其优点是增加多倍生产率,降低成本,提高产品质量及安全生产。 超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。 新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。 超声波焊接工艺: 一、超声波焊接: 以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美。 二、铆焊法: 将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。三、埋植: 借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性: 热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接。 注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

高频电路原理与分析试题库

1、图1所示为一超外差式七管收音机电路,试简述其工作原理。(15分) 图1 解:如图所示,由B1及C1-A 组成的天线调谐回路感应出广播电台的调幅信号,选出我们所需的电台信号f1进入V1基极。本振信号调谐在高出f1一个中频(465k Hz )的f2进入V1发射极,由V1三极管进行变频(或称混频),在V1集电极回路通过B3选取出f2与f1的差频(465kHz 中频)信号。中频信号经V2和V3二级中频放大,进入V4检波管,检出音频信号经V5低频放大和由V6、V7组成变压器耦合功率放大器进行功率放大,推动扬声器发声。图中D1、D2组成1.3V±0.1V 稳压,提供变频、一中放、二中放、低放的基极电压,稳定各级工作电流,保证整机灵敏度。V4发射一基极结用作检波。R1、R4、R6、R 10分别为V1、V2、V3、V5的工作点调整电阻,R11为V6、V7功放级的工作点调整电阻,R8为中放的AGC 电阻,B3、B4、B5为中周(内置谐振电容),既是放大器的交流负载又是中频选频器,该机的灵敏度、选择性等指标靠中频放大器保证。B6、B7为音频变压器,起交流负载及阻抗匹配的作用。(“X”为各级IC 工作电流测试点). 15’ 2、 画出无线通信收发信机的原理框图,并说出各部分的功用。 答: 上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。发射部分由话筒、音频放大器、调制器、变频

器、功率放大器和发射天线组成。接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。 低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过上变频,达到所需的发射频率,经小信号放大、高频功率放大后,由天线发射出去。 由天线接收来的信号,经放大后,再经过混频器,变成一固定中频已调波,经放大与滤波的检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。 3、对于收音机的中频放大器,其中心频率f0=465 kHz .B0.707=8kHz ,回路电容C=200 PF ,试计算回路电感和 QL 值。若电感线圈的 QO=100,问在回路上应并联多大的电阻才能满足要求。 答:回路电感为0.586mH,有载品质因数为58.125,这时需要并联236.66k Ω的电阻。 4、 图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和Ct 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 解: 022 612 0622 11244651020010100.5864465200f L f C mH πππ-===????=≈??2由()03 03 4651058.125810 L L 0.707f Q f Q B =?===?0.707由B 得: 9 003120000 0000010010171.222465102001024652158.125 1171.22237.6610058.125 L L L L L L L Q R k C C C Q Q R g g g R Q Q R R R k Q Q Q ΩωππωωΩ∑ -===≈??????=== ++=-==?≈--因为:所以:( ),t C C C ∑ =+??=?????== 33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组16051053510

高频感应加热原理与应用

高频感应加热原理与应用 您能想象的到,一根铁棒一二秒钟就可以被加热红起来吗?任何金属都可以被很快地加热到其熔化吗?这就是一种人类目前能够做到和掌握的最快捷的直接加热方法——高中频感应加热。 通常人们对物体的加热,一是利用煤、油、气等能源的燃烧产生热量;二是利用电炉等用电器将电能转换成热量。这些热量只有通过热传递的方式(热传导、热对流、热辐射),才能传递到需要加热的物体上,也才能达到加热物体的目的。由于这些加热方式,被加热的物体是通过吸收外部热量实现升温的。因此,它们都属于间接加热方式。 我们知道,热量的自然传递规律是:热量只能从高温区向低温区,高温体向低温体,高温部分向低温部分自然的传递。因此,只有当外部的热量、温度明显多于、高于被加热物体时,才能将其有效地加热。这就需要用很多的能量来建立一个比被加热物体所需要的热量多的多、温度高的多的高温区。如炉,烘箱等。 这样,不但这些热量中只有少部分能够传递到被加热体上,造成很大的能源浪费。而且加热时间长,在燃烧、加热的过程中,还会产生大量的有害性物质和气体。它们既会对被加热体造成腐蚀性的损害,又会对大气造成污染。即便是使用电炉等电能加热方式,虽然无污染,但仍然存在着效率低、成本高、加热速度慢等缺点。 科学的进步与发展,使我们今天无论是对金属物体加热还是对非金属物体加热,都可以采用高效、快速,且十分节能和环保的方式加热.这就是直接加热方式。 对于非金属物体,可采用工作频率约240MHZ及以上,能使其内部分子、原子每秒振动、磨擦上亿次之多的微波加热。 也可以采用低频感应加热,如工频50HZ等。 中频、高频感应加热,是将工频(50HZ)交流电转换成频率一般为1KHZ至上百KHZ,甚至频率更高的交流电,利用电磁感应原理,通过电感线圈转换成相同频率的磁场后,作用于处在该磁场中的金属体上。利用涡流效应,在金属物体中生成与磁场强度成正比的感生旋转电流(即涡流)。由旋转电流借助金属物体内的电阻,将其转换成热能。同时还有磁滞效应、趋肤效应、边缘效应等,也能生成少量热量,它们共同使金属物体的温度急速升高,实现快速加热的目的。 高频电流的趋肤效应,可以使金属物体中的涡流随频率的升高,而集中在金属表层环流。这样就可以通过控制工作电流的频率,实现对金属物体加热深度的控制。既能提高加工工艺,又使能量被充分地利用。当用于红冲、热煅及工件整体退火等透热时,它们需要的加热深度大,这时可以将工作频率降低;当用于表面淬火等热处理时,它们需要的加热深度小,这时则可以将工作频率升高。另一方面,对于体积较小的工件或管材、板材,选用高频加热方式,对于体积较大的工件,选用中频加热方式。 由于感应加热时间短、速度快,并且还是非接触式(加热物体不需要与感应圈接触)的加热。所以,比其它的加热方式氧化轻微,必要时易于进行气体保护。 电子技术的飞速发展,使电子元器件无论是质量方面、效能方面, 还是可靠性方面,都有了很大的进步.在体积方面也更为小型化、微型化。这为感应加热技术提供了更好的发展条件与空间。在小信号生成与处理,控制与保护,调节与显示等方面,都更多地运用了可靠性更高、稳定性更好、抗干扰能力更强的数字电路。在功率元件上,更是从耗能大、效率低、工作电压高、辐射量较大的电子管,一代代地经晶闸管、场效应管(MOSFET),发展到了IGBT(绝缘栅双极晶体管)。整机的电源利用率已经提高到百分之九十五以上(电子管电源利用率只有约百分之六十),冷却水比电子管产品节约了约百分之六十。并且可以实现24小时不间断的连续工作。这样不但可以在白天正常使用,还可以在用电低峰电费折扣期的夜间工作。 由于感应式加热,具有耗能少,用电省,加热速度快,无污染、无噪声、无需预热、不易氧化、便于气体保护、可自动控制、具备多项智能保护、安全可靠、易于操作,可不间断地连续工作等优点。

感应加热原理及应用

感应加热原理及应用 1.电磁感应原理 1831年,英国物理学家faraday发现了电磁感应现象,并且提出了相应的理论解释。其内容为,当电路围绕的区域内存在交变的磁场时,电路两端就会感应出电动势,如果闭合就会产生感应电流。 利用高频电压或电流来加热通常有两种方法: (1)电介质加热:利用高频电压(比如微波炉加热) (2)感应加热:利用高频电流(比如密封包装) 2.电介质加热(dielectric heating) 电介质加热通常用来加热不导电材料,比如木材。同时微波炉也是利用这个原理。原理如图1: 图1 电介质加热示意图 当高频电压加在两极板层上,就会在两极之间产生交变的电场。需要加热的介质处于交变的电场中,介质中的极分子或者离子就会随着电场做同频的旋转或振动,从而产生热量,达到加热效果。 3.感应加热(induction heating) 感应加热原理为产生交变的电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。如图2: 图2 感应加热示意图 皕赫国际贸易(上海)有限公司 TEL: +86 (0)21 60896520

皕赫国际贸易(上海)有限公司 TEL: +86 (0)21 60896520 基本电磁定律: 法拉第定律:d e N dt φ= 安培定律:Hdl NI ?= 其中:BdS φ=?,0r B u u H = 如果采用MKS 制,e 的单位为V ,?的单位为Wb ,H 的单位为A/m ,B 的单位为T 。 以上定律基本阐述了电磁感应的基本性质, 集肤效应: 当交流的电流流过导体的时候,会在导体中产生感应电流(如图3),从而导致电流向导体表面扩散。也就是导体表面的电流密度会大于中心的电流密度。这也就无形中减少了导体的导电截面,从而增加了导体交流电阻,损耗增大。工程上规定从导体表面到电流密度为导体表面的1/e =0.368的距离δ为集肤深度。 在常温下可用以下公式来计算铜的集肤深度: δ= 式(1) 图3 涡流产生示意图 从以上可以看到,如果增大电流和提高频率都可以增加发热效果,是加热对象快速升温。所以感应电源通常需要输出高频大电流。 参考文献:fundalmentals of power electronics, R.W.Erickson (讲义) TPIH2500 Textbook Tetra Pak Technical Training Centre 三 感应加热电源常见框图结构和控制方法 1.感应加热电源常见框图

高频电路原理与分析

高频电路原理与分析期末复习资料 陈皓编 10级通信工程 2012年12月

1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0 =10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻? 解:(1)求L 和Q e (H )= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 题2图 12min 12max ,22(1210) 22(26010)3 3根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑ --=+? ?== ??+?? ??== ??+?

3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为 4650.51 5.928()40 e z e Q kH =≈?= (2)每个回路允许最大的Q e 为 4650.5123.710 e e Q =≈?= 4.图示为一电容抽头的并联振荡回路。谐振频率f 0 =1MHz ,C 1 =400 pf ,C 2= 100 pF 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

感应加热基本原理

那么,感应加热实际上是如何工作的呢?感应加热是通过在一个导体中产生电流来工作的。它是这样的: 首先,一个铜线圈(通常是螺线管,但不完全),在它部有一个大的,时变的电流,这个电流通过加在线圈上的时变电压产生(通常是通过施加正弦波的形式)。 然后此电流会创建一个随时间变化的磁场(对于螺线圈来说,l NI H =),这将产生一个时变的磁通(H B μ=)。 如果一个导体放在磁场中,那么它周围就会产生电压。(BA dt d E == φφ ,) 。 如果导体是个闭环,感应电压会在导体的外部产生循环的电流。 jX R V I jX R I V += +=)....( 由于这是一个交流系统,肯定会有阻抗的补偿:如果是直流系统,磁通变化率(dt d φ)将会是0,所以就不会有感应电流产生。 最后,这个产生的电流会在工件中产生R I 2的损失,可以有效地使这种加热途径成为一种电阻加热方法,albeit with the current flowing at right angles to that of direct resistance heating (也就是围绕着钢坯而不是顺沿着钢坯)。 通过考虑在管状金属薄片中的电流流量,已经知道了感应加热工作的基本原理,我们将要观察的是当感应加热一个固体工件时的感应电流。 这个问题的答案是一个相当复杂的数学问题,并且深入的研究它会很浪费时间。因此,我将提供一个简单的描述,来告诉你磁场以及电流是怎么样在要加热的材料上工作的,之后便是解析答案。这种方法就避免了矢量积分,贝塞尔函数等复杂问题。 为了避免讨论磁通的返回路径和最终影响,我们把一个半无限大的平板作为加热对象,只是通过在它上面的无限大的电流2-diamentional sheet 来加热它。这个图表示的是无限部分中有限的一部分。代表工作头的电流层左右(x 方向)、前后(z 方向)无限延伸。在y 方向上没有占用所有的空间。 代表工件的半无限大的平板在z 方向和x 方向上也是无限延伸的,但在y 方向上是从0到负无穷。 为了观察电流的去向,我们可以把这个同性质的平板分割成一系列的薄片。 先考虑顶层。它有一个随时间变化的磁场,作用在它上面的是)cos(?0 t H ω。

焊接原理

焊接原理 一、锡焊、是将表面清洁的焊件与焊料加热到一定温度,焊料熔化并湿润焊件表面,在其界面上发 生金属扩散并形成结合层,从而实现金属的焊接;焊件表面的清洁,焊件的加热是达到其扩散的基本条件。 二、焊接的工具与材料 工具: 1、电烙铁(常用的是直热式) 2、调温及恒温烙铁(不受电源电压、环境温度的影响;升温时间快;烙铁不会过热) 3、吸锡器 工具的选用:烙铁头的温度的高低,可以用热电偶或表面温度计测量,一般可根据助焊剂发烟状态粗略估计,温度低,冒烟小。 焊件及工作性质烙铁头温度(室温220V)选用烙铁 一般印刷电路,安装导线20W内热式,30W外热式, 恒温式 集成电路250℃---400℃20W 内热式,恒温式 焊片,电位器,2-8W电阻,大电解功率管350℃---450℃ 35-50W内热式,调温式 50-75W外热式 8W以上大电阻,φ2以上导线等较大的元器件400℃---550℃ 100W内热式,150-200W外 热式 金属板550℃---630℃300W以上外热式观察法估计烙铁温度 观 察 时 间 烟细长,持续时 间长,>20S 烟稍大,持续时 间10-15S 烟大,持续时间 短,约7-8S 烟很大,持续时 间短,3-5S 估计温度小于200℃230-250℃300-350℃大于350 焊接达不锡焊温度PCB及小型焊点导线焊接、预热 等较大焊点 粗导线、板材及 大焊点 注意:烙铁通电后一定要立刻蘸上松香,否则表面会生成难镀锡的氧化层。

三、焊料 1、一般电子产品装配中主要使用锡铅焊料。成分一般是含锡量为60%-65%锡铅合金。 2、焊剂一般是优质松香添加一定活化剂。 四、手工锡焊基本操作 1、焊接操作姿势 一般烙铁离开鼻子的距离应不小于30CM,通常以40CM时为宜,因为烟气对人体有害。 电烙铁拿法有三种:A,反握法,适于大功率烙铁的操作;B,正握法,适于中等功率的烙铁或带弯头的电烙铁的操作;C,握笔法,焊件时多采用的一种方法。 使用烙铁一定要稳妥放在烙铁架上,并注意导线等物不要碰烙铁头。 2、焊接五步 A、准备施焊:准备好锡丝和烙铁,特别强调烙铁头要保持干净,即可以沾上烛焊锡;(俗 称吃锡) B、加热焊件:将烙铁接触焊点,注意先要保持烙铁加热焊件各部分,例如PCB板上引脚 和焊盘都使之受热,其次要注意让烙铁头的扁平部分(较大部分)接触较大的焊件, 烙铁头的侧面或边缘部分接触较小的焊件,以保持焊件均匀受热; C、熔化焊料:当焊件加热到能熔化焊料的温度后将锡丝置于焊点,焊料开始熔化并湿润 焊点; D、移开焊锡:当熔化一定量的焊锡后交将锡线移开; E、移开烙铁:当焊锡完全湿润焊点后移开烙铁,注意移开烙铁的方向应该是大约45度的 方向; 这一过程,对一般焊点大约2-3秒。 3、手工焊锡要点: A、掌握好加热时间:锡焊时可以采用不同的加热速度,在大多数情况下延长加热时间对 电子产品装配都是有害的,一般为2-3秒;这是因为: 1)焊点的结合层由于长时间加热会超过合适的厚度引起焊点性能劣化; 2)塑料等材料受热过多会变形、老化; 3)元器件受热后性能变化甚至失效; 4)焊点表面由于助焊剂挥发,失去保护而氧化。 B、保持合适的温度:一般经验是烙铁头温度比焊料熔化温度高50℃较为适宜。 C、用烙铁头对焊点施力是有害的:烙铁头把热量传给焊点主要靠增加接触面积,用烙铁 头对焊点加力对加热是无用的,很多情况下会造成焊件的损伤。 4、锡焊操作要领 A、焊件表面处理 手工烙铁焊接中遇到的焊件都要进行表面的清理工作,去除焊接面上的锈迹,油污,

高频感应加热电源工作原理

高频感应加热电源工作原理【大比特导读】高频感应加热电源在工作原理方面,也与普通的加热电源有 着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 感应加热电源的研发在最近几年呈现出专业化和快速的趋势,高频感应加热电源凭借着加热速度快、加热均匀等优势,被广泛的应用在工业及生活领域。高频感应加热电源在工作原理方面,也与普通的加热电源有着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 高频感应加热电源与普通的感应加热模块一样,也是采用了导体磁束加热的模式。用交流电流流向被卷曲成环状的导体,这种导体通常情况下会采用铜管这种材料,由此产生磁束。将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生涡电流,也就是大家所熟悉的旋转电流,于是感应电流在涡电流的影响下产生发热,用这样的加热方式就是感应加热。由此,对金属等被加热物体在无需直接接触的状态下就能获得加热效果。 此时,窝电流将会在线圈接近的物体上集中,感应加热表现出在物体的表面上较强里边较弱的特点,用这样的原理来对被加热体的必要的地方集中加热,达到瞬间加热的效果,从而提高生产效率和工作量等。 当然了,使用高频感应加热电源进行加热的成功与否,直接取决于感应线圈设置是否合理,以及加热体的大小、形状、间距等等。感应线圈是要做到均匀加热、加热效果好,并且要有强度和准确度。感应线圈是一般用一圈或数圈的铜管来做,一般采用水冷的方式对线圈进行冷却。 结语: 高频感应加热电源的感应线圈是高效加热的关键所在,而无需直接触碰就可以快速加热 的优势,也让这个感应加热电源的家族新成员迅速获得了生产商的认可。

高频感应加热的原理【详解】

高频感应加热的原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 高频感应加热机的主要用途为:金属热处理、金属淬火、金属退火、金属回火、金属透热、金属的钎焊、银焊、铜焊、金属热型、金属熔炼、金属埋植塑料等。 高频感应加热机是目前对金属、非金属材料加热效率*、速度*快,低耗节能环保型的感应加 热设备。高频机全称“高频感应加热机”,又名高频加热机、高频感应加热设备、高频感应 加热装置、高频加热电源、高频电源、高频焊接机、高周波感应加热机、高周波感应加热器 (焊接器)等,另外还有中频感应加热设备、超高频感应加热设备等。应用范围十分广泛。 高频感应加热机的原理 感应加热是利用导体在高频磁场作用下产生的感应电流(涡流损耗)以及导体内磁场的作用 (磁滞损耗)引起导体自身发热而进行加热的。 当金属导体处在一个高频交变电场中,根据法拉第电磁感应定律,将在金属导体内产生感应 电动势,由于导体的电阻很小,从而产生强大的感应电流。由焦耳—楞次定律可知,交变 磁场将使导体中电流趋向导体表面流通,引起集肤效应,舜间电流的密度与频率成正比,频 率越高,感应电流密度集中于导体的表面,即集肤效应就越严重,有效的导电面积减少,电 阻增大,从而使导体迅速升温。 导体有电流通过时,在其周围就同时产生磁场,高频电流流向被绕制成环状或其它形状的电 感线圈(通常是用紫铜管制作)。由此在线圈内产生极性瞬间变化的强磁束,将被加热的金属 物质放置在感应线圈内,磁束就会贯通整个被加热物质,在被加热物质内部与加热电流相反 的方向产生很大的涡流,由于被加热金属物质的电阻产生焦耳热,使金属物质自身的温度迅

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理 焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。 1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和

焊接机理完整版

焊接机理完整版 焊接机理完整版 润湿:在焊接过程中,我们把熔融的焊料在被焊金属表面上形成均匀、平滑、连续并且付着牢固的合金的过程,称之为焊料在母材表面的润湿。 润湿力:在焊接过程中,将由于清洁的熔融焊料与被焊金属之间接触而导致润湿的原子之间相互吸引的力成为润湿力。 焊料的润湿与润湿力 在自然界中有很多这方面的例子,举例来说,在清洁的玻璃板上滴一滴水,水滴可在玻璃板上完全铺开,这时可以说水对玻璃板完全润湿;如果滴的是一滴油,则油滴会形成一球块,发生有限铺开,此时可以说油滴在玻璃板上能润湿;若滴一滴水银,则水银将形成一个球体在玻璃板上滚动,这时说明水银对玻璃不润湿。焊料对母材的润湿与铺展也是一样的道理,当焊料不加助焊剂在焊盘上熔化时,焊料呈球状在焊盘上滚动,也就是焊料的内聚力大于焊料对焊盘的附着力,此时焊料不润湿焊盘;当加助焊剂时,焊料将在焊盘上铺开,也就是说此时焊料的内聚力小于焊料对焊盘的附着力,所以焊料才得以在焊盘上润湿和铺展。 熔化的焊料要润湿固体金属表面所具备的条件有两条: 1、液态焊料与母材之间应能互相溶解,即两种原子之间有良好的亲和力。 2、焊料和母材表面必须“清洁”。 这是指焊料与母材两者表面没有氧化层,更不会有污染。母材金属表面氧化物的存在会严重影响液态焊料对基体金属表面的润湿性,这是因为氧化膜的熔点一般都比较高,在焊接温度下为固态,会阻碍液态焊料与基体金属表面的直接接触,使液态焊料凝聚成球状,即形成不润湿状态。 表面张力:表面张力是化学中一个基本概念,表面化学是研究不同相共同存在的系统体系,在这个体系中不同相总是存在着界面,由于相界面分子与体相内分子之间作用力有着不同,故导致相界面总是趋于最小化.(能量守恒定率)

高频淬火原理与应用

高频淬火原理及应用 线圈通以高频电流,产生高频磁场,在铁磁性材料中产生感生电流,由于趋肤效应,感生电流聚积于材料的表面产生热,达到相变温度。激冷达到淬火目的。 感应加热与其它加热炉传导、对流或辐射使工件到达加热温度相比,它具有完全不同的加热原理。其基本原理是:把加热材料(即工件)置于通有交流电流的线圈内,由于交变磁场的作用工件内部会产生感应电势,在感生电势的作用下工件内会产生涡流,依靠这些涡流的能量达到加热目的。 通过热高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小

词语解释 感应加热频率的选择:根据热处理及加热深度的要求选择频率,频率越高加热的深度越浅。 一、高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 二、中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。 三、工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径300mm以上,如轧辊等)的表面淬火。 感应加热淬火表层淬硬层的深度,取决于交流电的频率,一般是频率高加热深度浅,淬硬层深度也就浅。频率f与加热深度δ的关系,有如下经验公式:δ=20/√f(20°C);δ=500/√f(800°C)。 式中:f为频率,单位为Hz;δ为加热深度,单位为毫米(mm)。 感应加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以感应加热设备在金属表面热处理中得到了广泛应用。 感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。

激光焊接基本原理讲解

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

相关文档