文档库 最新最全的文档下载
当前位置:文档库 › 辅酶Q_10的功能研究进展

辅酶Q_10的功能研究进展

酶工程的研究进展及前景展望

酶工程的研究进展及前景展望 摘要:概述了21 世纪国际上酶工程研究的新进展和新趋势。本文意在阐述近年来酶工程在分子水平的研究进展,并对其未来前景进行了展望。简单介绍了酶工程研究的进展, 对酶工程的发展前景进行了探讨。介绍了酶工程的应用现状,并对酶工程的作用和发展做出了展望。 关键词: 酶工程; 抗体酶;酶的固定化;开发研究; 进展; Abstract:An overview of the enzyme engineering in the 21st century international research progress and new trends. This paper aims to elaborate in recent years, progress in enzyme engineering research at the molecular level, and its future prospects. Briefly introduced the progress of the study of enzyme engineering, discussed the prospects for the development of enzyme engineering. Introduced the application status of the enzyme works , and the role and development of enzyme engineering to make the outlook. Keywords:Enzyme Engineering; Antibody enzyme; Immobilization; Research and development;Progress 1 前言 跨入21 世纪,人们在20 世纪认识生命本质高度一致性的基础上,迎来了后基因组时代,将有可能从整个基因组及其全套蛋白质产物的结构- 功能机理的角度,进一步阐明生命现象的核心和本质, 并系统整合生物学的全部知识,建立起真

土壤中酶

土壤酶的研究进展 摘要:土壤酶作为土壤组分中最活跃的有机成分之一不仅可以表征土壤物质能量代谢旺盛程度,而且可以作为评价土壤肥力高低、生态环境质量优劣的一个重要生物指标,并且,在土壤生态系统的物质循环和能量流动方面扮演重要的角色。本文通过分析、总结国内外土壤酶研究进展,研究土壤酶的来源、作用及其影响因素,展望土壤酶学的发展前景,将有助于该学科研究的纵深发展与广泛利用。 关键字:土壤酶作用影响因素进展 前言 土壤酶( soil enzyme)是指土壤中的聚积酶, 包括游离酶、胞内酶和胞外酶, 其活性变化规律及与生态因子的相互作用关系研究引起众多学者的重视, 它是评价土壤质量的重要手段之一[1], 同时也是评价土壤自净能力的一个重要指标[2]。对土壤酶的研究,让我们能更好地去了解土壤酶是土壤有机体的代谢动力, 在生态系统中起着重要的作用, 以及与土壤理化性质、土壤类型、施肥、耕作以及其它农业措施的密切关系。而土壤酶活性在土壤中的表现, 在一定程度上反映了土壤所处的状况, 且对环境等外界因素引起的变化较敏感, 成为土壤生态系统变化的预警和敏感指标。 关于土壤酶的研究历史可以追溯到19世纪末,自Woods( 1898) 首次从土壤中检测出过氧化氢酶活性以来, 土壤酶研究经历了一个较长的奠定和发展时期( 关松荫, 1986) 。一般认为, 20 世纪50 年代以前为土壤酶学的奠定时期, 许多土壤学者从各种土壤中共检测出了40 余种土壤酶的活性,并发展了土壤酶活性的研究方法和理论, 土壤酶研究逐渐发展成一门介于土壤生物学和生物化学之间的一门新兴边缘交叉学科( Burns, 1978)[3]。20 世纪50~ 80 年代中期为土壤酶学迅速发展的时期。由于生物化学和土壤生物学所取得的巨大成就, 土壤酶的检测技术和方法不断改进, 一些新的土壤酶活性逐渐被检测出来。到20 世纪80 年代中期, 大约有60 种土壤酶活性被检测出来, 土壤酶学的理论和体系逐渐完善。土壤酶活性与土壤理化性质的相互关系、土壤酶的来源和性质以及土壤酶检测手段的改进等成为这段时期的研究重点[4, 5]。土壤酶活性的研究作为土壤肥力指标而受到土壤学家的普遍重视( 周礼恺, 1987) 。20 世纪80 年代中期以后为土壤酶学与林学、生态学、农学和环境科学等学科相互渗透的时期, 土壤酶学的研究已经超越了经典土壤学的研究范畴, 在几乎所有的陆地生态系统研究中, 土壤酶活性的检测似乎成了必不可少的测定指标[7, 8]。由于土壤酶活性与土壤生物、土壤理化性质和环境条件密切相关( Dick, 1996) , 因而土壤酶活性

跨膜丝氨酸蛋白酶研究进展

跨膜丝氨酸蛋白酶研究进展 郭晓强 (解放军白求恩军医学院生物化学教研室,石家庄050081) 摘要 跨膜丝氨酸蛋白酶(T MPRSSs),又名II型跨膜丝氨酸蛋白酶(TTSPs)是一类定位于细胞膜上具有保守丝氨酸蛋白酶结构域的蛋白家族,哺乳动物中已发现二十多个成员。T MPRSSs基本结构类似,C端蛋白酶结构域在胞外,N端位于胞内,还拥有单跨膜结构域,差异之处在于主干区。T MPRSSs具有多种重要生理功能,功能异常可造成耳聋、癌症、贫血和高血压等多种疾病。本文对T MPRSSs基本特征、结构、生理功能及相关疾病进行综述。 关键词 跨膜丝氨酸蛋白酶;耳聋;癌症;贫血;高血压 中图分类号 Q55 蛋白酶是一类水解蛋白质的酶类,最早于上世纪初在胃液中发现(胃蛋白酶),至今已鉴定多个成员。最早认为蛋白酶主要通过非特异性水解蛋白质参与食物消化,然而一系列研究表明哺乳动物体内还存在一些具有底物选择性的蛋白酶,它们参与更为多样的生理过程,如细胞周期、形态建成、细胞增殖和迁移、排卵、血管生成和细胞凋亡等,功能异常可造成代谢性疾病、神经退行性疾病、心血管疾病、关节炎和癌症等的发生(Puente等.2003)。相对于传统水溶性蛋白酶,新近发现一类特殊蛋白酶———具有单跨膜结构域的丝氨酸蛋白酶,并且C端位于胞外,因此被称为II型跨膜丝氨酸蛋白酶(type II trans me mbrane serine p r oteases,TTSPs)(Hooper等. 2001),又称跨膜丝氨酸蛋白酶(trans me mbrane p r o2 tease serines,T MPRSSs),这些新成员的发现和深入研究使人们对蛋白酶有了全新的认识[1]。 一、T M PRSS结构与基本特征 自1988年发现第一个跨膜丝氨酸蛋白酶T M2 PRSS1(hep sin)(Leytus等.1988)以来,至今已在人、小鼠和大鼠中发现二十多个成员,仅人类就有十几种(表1)。T MPRSS表达具有明显组织特异性,T M2 PRSS6主要在胎儿和成年肝脏中表达(Velasco等. 2002),而T MPRSS10主要存在于心脏(Yan等. 1999),这种表达模式说明不同T MPRSS参与不同生理过程。T MPRSS家族成员在分子量上差别巨大,如人T MPRSS1包含417个氨基酸残基,而T M2 PRSS10由1042个氨基酸构成,两者相差1倍以上,但基本结构却高度相似,均含四部分,从N端到C 端依次为短细胞质结构域、跨膜结构域、主干区和丝氨酸蛋白酶结构域,后两者位于胞外,不同成员区别主要集中于主干区。 根据主干区不同,T MPRSS可被进一步分为四个亚家族:HAT/DESC、hep sin/T MPRSS、matri p tase 和corin[1]。HAT/DESC亚家族包括T MPRSS11d (HAT)和T MPRSS11e(DESC1),它们结构最为简单,主干区仅由单一SE A(sea urchin s per m p r otein, enter opep tidase,agrin)结构域构成[2](图1)。hep2 sin/T MPRSS亚家族包括T MPRSS1~5和T MPRSS13等,是包含种类最多的一个亚家族,主干区包含清道夫受体富含半胱氨酸(scavenger recep t or cys2rich, SRCR)结构域和低密度脂蛋白A类受体(l ow densi2 ty li pop r otein recep t or class A,LDLa)结构域。matri p tase亚家族包括T MPRSS14(matri p tase21)、T MPRSS6(matri p tase22)和T MPRSS7(matri p tase23),其主干区除含有SEA结构域外,还包含2个CUB (comp le ment p r otein subcomponents C1r/C1s,urchin e mbryonic gr owth fact or and bone mor phogenetic p r o2 tein1)结构域及3到4个串联重复LDLa结构域。corin亚家族目前只发现一个成员T MPRSS10(cor2 in),其结构最为复杂,主干区包含8个LDLa结构域,2个frizzled结构域和1个SRCR结构域。 图1 几个典型T MPRSS结构特点[1]

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

有关影响土壤酶活性因素的分析报告

关于影响土壤酶活性因素的研究 摘要:本文对国内外土壤酶活性影响因素的研究进行了综述,总结了土壤微生物、团聚体、农药、重金属和有机物料等对土壤酶活性的影响,并对土壤纳米粒子与土壤酶活性关系的研究发展前景进行了展望。 关键词:土壤酶活性;微生物;团聚体;重金属;有机物料 Study progress on factors affecting soil enzyme activity Abstracts:In this article,the study on factors affecting soil enzyme activity in recent years was reviewed. Several aspects such as microbial,aggregation,heavy metals,organic manure and so on were included.At the same time,the effects of the soil inorganic nanometer particle (SINP) on soil enzyme activity inthe future research was forecasted. Key words:soil enzyme activity;microbial;aggregation;heavy metals;organic manure 酶是土壤组分中最活跃的有机成分之一,土壤酶和土壤微生物一起共同推动土壤的代谢过程[1]。土壤酶来源于土壤中动物、植物和微生物细胞的分泌物及其残体的分解物,其中微生物细胞是其主要来源[1,2]。土壤中广泛存在的酶类是氧化还原酶类和水解酶类,其对土壤肥力起重要作用。土壤中各有机、无机营养物质的转化速度,主要取决于转化酶、蛋白酶磷酸酶、脲酶及其他水解酶类和多酚氧化酶、硫酸盐还原酶等氧化还原酶类的酶促作用[2]。土壤酶绝大多数为吸附态,极少数为游离态,主要以物理和化学的结合形式吸附在土壤有机质和矿质颗粒上,或与腐殖物质络合共存[3]。 土壤酶活性反映了土壤中各种生物化学过程的强度和方向[4],其活性是土壤肥力评价的重要指标之一,同时也是土壤自净能力[1]评价的一个重要指标。土壤酶的活性与土壤理化特性、肥力状况和农业措施有着显著的相关性[5]。因此,研究土壤酶活性的影响因素,提高土壤酶活性,对改善土壤生态环境,提高土壤肥力有重要意义。本文对土壤酶活性影响因子的研究

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。 [关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体的蛋白酶抑制剂在机体与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体免疫系统的重要组成部分。它不仅能使侵入体的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类 目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。 1.2 Serpins Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

固定化酶载体材料的最新研究进展

万方数据

万方数据

万方数据

万方数据

固定化酶载体材料的最新研究进展 作者:袁定重, 张秋禹, 侯振宇, 李丹, 张军平, 张和鹏, YUAN Dingzhong, ZHANG Qiuyu , HOU Zhenyu, LI Dan, ZHANG Heping, ZHANG Junping 作者单位:西北工业大学理学院应用化学系,西安,710072 刊名: 材料导报 英文刊名:MATERIALS REVIEW 年,卷(期):2006,20(1) 被引用次数:10次 参考文献(28条) 1.李伟.孙建中.周其云适于酶包埋的高分子载体材料研究进展[期刊论文]-功能高分子学报 2001(03) 2.Wilhelm Tischer.Frank Wedekind Immobilized enzyme:methods and applicatons 1999 3.Barbara.Krajewska Application of chitin-and chitosanbased materials for enzyme immobilizations:a review[外文期刊] 2004 4.Bullockc Immobilized enzymes 1995 5.Chaplin M F.Bucke C Enzyme technology 1990 6.Wiseman A Designer enzyme and cell applications in industry and in environment monitoring 1993 7.Pskin A K Therapeutic potential of immobilized enzymes 1993 8.Paul W.Sharma C P Chitosan,a drug carrier for the 21st century:a review 2000 9.安小宁.苏致兴高磁性壳聚糖微粒的制备与应用[期刊论文]-兰州大学学报(自然科学版) 2001(02) 10.Chiou Shaohua Immobilization of candida rugosa lipase on chitosan with activation of the hydroxgl groups 2004(02) 11.王斌.谢苗.曾竞华磁性壳聚糖微球固定化褐藻酸酶的研究学[期刊论文]-中国水产科学 2004(03) 12.袁春桃.蒋先明壳聚糖-g-丙烯腈固定化木瓜蛋白酶的研究[期刊论文]-应用化学 2002(09) 13.Prashanth S J.Mulimani V H Soymilk oligosaccharide hydrolysis by Aspergillus oryzae galactosidase immobilized in calcium alginate[外文期刊] 2005(3-4) 14.Patel S Stabilization of a haloophilic α-amlyase by callium alginate immobilization 1996(02) 15.Ding Liang.Yao Zihua Synthesis of macroporous polmer carrier and immobilization of papain 2003(06) 16.Li Songjun Use of chemically modified PMMA microspheres for enzyme immobilization 2004(1-3) 17.Cao Linqiu Immobilized enzyme:scence or art? 2005 18.薛屏.卢冠忠.郭杨龙青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究[期刊论文]-化学通报(印刷版) 2003(10) 19.Han Yongjin.Jordan T Watson.Galen D Catalytic activity of mesoporous silicate-immobilized chloroperoxidase[外文期刊] 2002 20.Zhang Xin.Guan Ren feng.Wu Dan qi Enzyme immobilization on amino-fuctionalized mesostructrued cellular foam surfaces,characterization and catalytic properties[外文期刊] 2005 21.谢钢.张秋禹.李铁虎磁性高分子微球[期刊论文]-高分子通报 2001(0q) 22.邱广明.孙宗华磁性高分子微球共价结合中性蛋白酶 1995(03) 23.Han Lei.Wang Wei The preparation and catalytically active characterization of papain immobilized

丝氨酸蛋白酶抑制剂的研究进展教学提纲

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,江苏常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体内,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。[关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主内环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体内的蛋白酶抑制剂在机体内与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体内免疫系统的重要组成部分。它不仅能使侵入体内的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体内环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体内的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞内蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

从毛霉中提取蛋白酶

实验一:从毛霉中提取蛋白酶及分离方案 组员:周云线周丽玲陆江妙 1 实验原理 毛霉又叫黑霉、长毛霉接合菌亚门接合菌纲毛霉目毛霉科真菌中的一个大属。以孢囊孢子和接合孢子繁殖菌丝无隔、多核、分枝状,在基物内外能广泛蔓延,无假根或匍匐菌丝,在高温、高湿度以及通风不良的条件下生长良好。毛霉常出现在酒药中,能糖化淀粉并能生成少量乙醇,产生蛋白酶,有分解大豆蛋白的能力,我国多用来做豆腐乳、豆豉。许多毛霉能产生草酸、乳酸、琥珀酸及甘油等,有的毛霉能产生脂肪酶、果胶酶、凝乳酶等。工业中利用其蛋白酶以酿制腐乳、豆豉等。皮革工业的脱毛和软化已大量利用蛋白酶,既节省时间,又改善劳动卫生条件。蛋白酶还可用于蚕丝脱胶、肉类嫩化、酒类澄清等。 酶活定义:在4 0℃, p H7.2条件下, 1分钟内水解酪蛋白产生 l微克酪氨酸所需的酶量为1个蛋白酶活力单位。蛋白酶水解络蛋白,其产物络氨酸能在碱性条件下使福林-酚试剂还原,生产钼蓝与钨蓝,在680nm下测定其吸光度,可求得蛋白酶活力。考马斯亮蓝是一种染料,在游离状态下呈红色,当它与蛋白质结合后变为青色。蛋白质-色素结合物在595nm波长下有最大光吸收,其光吸收值与蛋白质含量成正比,因此可用于蛋白质的定量测定。测定蛋白质浓度范围为0~1 000μg/mL,是一种常用的微量蛋白质快速测定方法。 蛋白质在水中的溶解度受到溶液中盐浓度的影响。一般在低盐浓度的情况下,蛋白质的溶解度随盐浓度的升高而增加,这种现象称为盐溶。而在盐浓度升高到一定浓度后,蛋白质的溶解度又随盐浓度的升高而降低,这种现象称为盐析。在蛋白质的盐析中,硫酸铵最为常用,这是由于硫酸铵在水中的溶解度最低而且温度系数小不影响酶活性,分离效果好。 2 仪器 恒温培养箱、振荡摇床、恒温振荡器、离心机、722分光光度计、pH计、恒温水浴锅 3培养基 斜面培养基PDA培养基:称取200g马铃薯,洗净去皮切成小块,加水1000mL 煮沸半个小时或高压蒸煮20分钟,纱布过滤,再加10-20g葡萄糖和17-20g琼脂,充分溶解后趁热纱布过滤,分装试管,每试管约5-10mL(视试管大小而定),121℃)灭菌20分钟左右后取出试管摆斜面,冷却后贮存备用。 固体培养基:麸皮10g,水12mL,自然pH值,适量装入250mL三角瓶中,l2l℃灭菌30min后趁热及时摇散,备用。 液体培养基:蛋白胨20g、葡萄糖10g、氯化镁2g、磷酸二氢钾2g,250mL锥

农药对土壤酶活性影响的研究进展

农药对土壤酶活性影响的研究进展 闫 雷a,李晓亮a,秦智伟b,敖斯刚a (东北农业大学a.资源与环境学院;b.园艺学院,哈尔滨 150030) 摘 要:随着农药对土壤污染的日益严重,越来越多的研究者将土壤酶作为指示剂,检测农药对土壤环境条件的影响,并根据土壤酶活性的变化来判断污染物对土壤的毒害程度,这也是从土壤生物化学角度探索环境保护的一个新内容。为此,介绍了影响土壤酶活性的环境因素,综述了农药对土壤酶活性影响的研究进展,并对今后的研究方向进行了展望,以期为土壤农药污染的进一步治理和修复提供科学依据。 关键词:农药污染;土壤;酶活性;影响 中图分类号:S154.2 文献标识码:A文章编号:1003-188X(2009)11-0223-04 0 引言 土壤酶是土壤新陈代谢的重要因素[1],土壤中所进行的生物和化学过程在酶的催化下才能完成。土壤污染条件下酶活性变化很大,土壤酶活性的改变将影响土壤养分的释放,从而影响作物的生长,所以土壤酶活性常作为土壤质量演变的生物活性指标。近年来,随着农药对土壤污染的日益严重,越来越多的研究者将土壤酶作为指示剂,检测农药对土壤环境的影响,并根据土壤酶活性的变化来判断污染物对土壤的毒害程度,这也是从土壤生物化学角度探索环境保护的一个新内容。 1 土壤酶活性的影响因素 1.1 土壤微生物 早在20世纪60年代就有人研究酶活性与土壤微生物活性之间的相互关系,如Lenhard发现微生物活性与土壤脱氢酶活性密切相关[2]。郭继勋证实了脲酶、磷酸酶和纤维素酶的活性与微生物量有较密切的关系,3种酶的活性随着生物量的增强而不断增强,二者变化基本同步[3]。Naseby通过向根际接种遗传改性微生物,发现遗传改性微生物生成的酶,对土壤的碳、磷转化具有重要作用[4]。沈宏等发现玉米生长的中、前期,土壤微生物中碳、氮与土壤过氧化氢、蔗糖 收稿日期:2009-06-06 基金项目:国家自然科学基金项目(39870469);黑龙江省博士后基金项目(LBH-Z06162);东北农业大学创新团队发展计划项 目(CXT003-1-3) 作者简介:闫 雷(1974-),女,黑龙江牡丹江人,副教授,博士,硕士生导师,(E-m ail)yan l ei h ai peng@g m ai.l co m。 通讯作者:秦智伟(1957-),男,黑龙江阿城人,教授,博士生导师, (E-m ail)qz w303@126.co m。酶、脲酶、蛋白酶活性及速效养分的相关性均达到显著或极显著水平[5]。 1.2 土壤理化性质 土壤水分、空气、温度与机械组成,一方面与微生物的活性和类型有显著的相关性,另一方面也会直接影响土壤酶活性的存在状态与强弱。一般来说,土壤湿度大,土壤酶活性高;但土壤过湿可能会造成土壤缺氧,从而影响微生物的生长[1]。温度直接影响释放酶类的微生物种群及数量,冯贵颖研究发现[6],在20 ~60 时,各土壤粘粒的脲酶吸附量随温度升高而降低。土壤中二氧化碳、氧气含量与土壤微生物的活性相关,因此对土壤酶活性有直接影响。土壤的机械组成及结构状况也能影响土壤酶活性[7]。同一类土壤的黏质土壤比轻质土壤具有较高酶活性,其原因是酶主要分布在腐殖质含量较高和微生物数量较多的细小颗粒中。因此,向矿质土中加入黏质土,能较大地增强蛋白酶、脲酶和蔗糖酶的活性。 土壤化学性质可从多方面影响土壤酶活性。首先,能在很大程度上直接影响酶的主要生成者 微生物;其次,土壤中的某些化学物质可通过激活或抑制作用来调节胞外酶的功能。另外,土壤一系列化学性质,如土壤p H值、交换性阳离子的组成与比例、盐基饱和度、腐殖质的特性以及有机 矿物质复合体的组成等,在很大程度上决定酶在土壤中的固定情况。土壤pH值越低(低于蛋白酶的等电点),粘粒吸附的酶越多。土壤有机质与土壤酶之间存在显著正相关。土壤有机物质可吸附土壤中的酶,如脲酶、二酚氧化酶、蛋白酶及水解酶等,这些物质都曾以 酶 腐殖物质复合物 的形式从土壤中被提取出来。

酶固定化技术研究进展

酶固定化技术研究进展 选题说明 酶作为一种生物催化剂,具有高催化效率,高选择性,催化反应条件温和,清洁无污染等特点,其卓越的催化效能,令普通无机催化剂难以望其项背,因此酶的工业化使用一直是广受社会关注的课题,但天然酶稳定性差、易失活、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。此外,分离和提纯酶以及其一次性使用也大大增加了其作为催化剂的成本,严重限制了酶的工业推广。在此条件下,固定化酶的概念和技术得以提出和发展,并成为近些年酶工程研究的重点。酶的固定化,是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应,并可回收及重复使用的一类技术。通过固定化,可以解决天然酶的局限性,实现酶的广泛运用。 基于对于酶的工业化使用和固定化酶的兴趣,我通过互联网和数据库信息检索的方式对酶的固定化技术发展状况进行了初步探索,并对目前的研究成果进行了简要的概括。希望能使大家对这一领域有所认识。 检索过程说明 1,检索工具和数据库 1.1,百度搜索引擎 1.2,Google搜索引擎 1.3,中国期刊全文数据库 1.4,万方数据系统 1.5,重庆维普中文科技期刊数据库 2,检索过程简述

首先,我选择了使用百度和Google搜索引擎进行关键词检索,都得到了浩繁的搜索结果,所的信息主要是百科简介和企业广告信息,介绍较为浅显陈旧,可利用性较差,但可以用于简单的信息了解,在搜素过程中,尝试使用了布尔检索规则如“固定化酶and应用”、高级检索和结果中检索的检索方式,以减小数据量。也尝试了Google学术搜索,得到了很多有用信息。运用维普中文科技期刊数据库搜素“题名或关键词”为“固定化酶”的相关资料得到655条,搜素“题名或关键词”为“固定化酶应用”的相关资料得到72条,检索关键词搜素“题名或关键词”为“固定化酶研究”的相关资料得到4条. 万方数据系统搜索主题词"固定化酶",得到相关资料1024条,搜索“固定化酶技术应用”得到相关资料23条.。中国期刊全文数据库中检索“固定化酶技术”得到相关资料2604条,搜索“固定化酶技术应用”得到相关资料742条 关键词 酶固定化载体制备研究应用 酶固定化技术研究进展 提要: 固定化酶有许多优点,尤其是稳定性和可重复使用性使其在许多领域得到广泛应用。固定化酶技术是一门交叉学科技术。目前已得到长足的发展。本文重点介绍了固定化酶制备的传统方法和近些年出现的一些新方法,同时对酶在一些性能优良的栽体上的固定进行了综述。 正文: 一,传统的酶固定化方法

毛霉制腐乳

毛霉制腐乳 1腐乳的发现 早在公元5世纪的北魏古籍中,就有关于腐乳生产工艺的记载“于豆腐加盐成熟后为腐乳”。 明李晔的《蓬栊夜话》亦云:“黟(移)县人喜于夏秋间醢腐,令变色生毛随拭之,俟稍干……” 千百年来,腐乳一直受到人们的喜爱。这是因为经过微生物的发酵,豆腐中的蛋白质被分解成小分子的肽和氨基酸,味道鲜美,易于消化吸收,而腐乳本身又便于保存。腐乳品种多样,如红豆腐乳、糟腐乳、醉方、玫瑰红腐乳、辣腐乳、臭腐乳、麻辣腐乳等。品种虽多,但酿造原理相同。 2制腐乳的原因——其意想不到的功用 发酵豆制品营养丰富,易于消化,在发酵过程中生成大量的低聚肽类,具有抗衰老、防癌症、降血脂、调节胰岛素等多种生理保健功能,对身体健康十分有利。 具有降低血液中胆固醇浓度、减少患冠心病危险的功能。发酵豆制品中含有丰富的苷元型异黄酮,它是大豆和豆腐中原有的异黄酮经发酵转化的,但比原有的异黄酮功能性更强,且更易吸收。60克豆豉、60克豆酱或100克腐乳就含有50毫克的高活性异黄酮,达到美国食品与药物管理局推荐预防冠心病的每日摄取量。 具有降血压功能。国外已经用大豆蛋白化学分解的办法生产降血压肽的保健食品,我们的实验发现中国的传统豆豉、腐乳就含有高活性的降血压肽。其实大豆在发酵时,微生物要首先把大豆蛋白分解为更小的分子,这就是所谓的肽。 具有预防骨质疏松症功能。发酵豆制品中的大豆异黄酮能提高成骨细胞活性,促进胰岛素样生长因子的产生,从而防止骨质疏松症。日本的营养调查发现:每天喝豆酱汤或吃发酵豆制品的人,骨质疏松症患病率明显降低,尤其是老人和妇女。 豆腐中含有的抗氧化成分,如维生素E、异黄酮等酚类物质,以及一些肽类,使豆腐具有清除自由基的能力,而经过发酵制得的腐乳清除自由基能力比豆腐高5~10倍,比番茄、葡萄等果蔬还高10多倍。 豆豉含有大量能溶解血栓的纳豆激酶,还富含一些能产生大量B族维生素和抗菌素的细菌,被称为是最有效的防治老年心血管疾病、保持血管健康的食品。 发酵豆制品具有防治老年性痴呆症的功效。人体产生的乙酰胆碱酯酶是分解神经末端传达物质的酶,现代医学认为它的存在与老年痴呆症发病有关。笔者在和日本专家的共同研究中发现,我国腐乳具有明显乙酰胆碱酯酶抑制活性。也就是说,发酵的腐乳,对防治老年性痴呆症有效。 3毛霉制腐乳 3.1原理 毛霉是一种丝状真菌,广泛分布于土壤、空气中,也常见于水果、蔬菜、各类淀粉食物、谷物上,引起霉腐变质。它的菌丝可分为直立菌丝和匍匐菌丝。繁殖方式为孢子生殖,新陈代谢类型为异养需氧型。应用于腐乳等发酵工艺。 毛霉在腐乳制作中的作用:在豆腐的发酵过程中,毛霉等微生物产生的蛋白酶能将豆腐的蛋白质分解成小分子的肽和氨基酸,脂肪酶可将脂肪水解为甘油和脂肪酸。 传统腐乳的生产中,豆腐块上生长的毛霉来自空气中的毛霉孢子,而现代的腐乳生产是在无菌条件下,将优良毛霉菌种直接接种在豆腐上,这样可以避免其他菌种的污染,保证产品质量。 豆腐乳是我国独特的传统发酵食品,是用豆腐发酵制成。民间老法生产豆腐乳均为自然发酵,现代酿造厂多采用蛋白酶活性高的鲁氏毛霉或根霉发酵。豆腐坯上接种毛霉,经过培

最新固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展摘要:本文主要从分析酶单独应用中的不足、酶的固定化载体、固定化方法等方面介绍了固定化酶制备中的研究进展情况,并且从医药、食品、环保、化学工业、能源等方面其在其中的新应用出发,对固定化酶在新领域中的应用作了综述,给固定化酶研究的发展前景进行了展望,并且指出了今后酶固定化研究的主要方向是多酶的固定化及制备高活性、高负载、高稳定性的固定化酶。 关键字:酶;酶的固定化;载体;酶固定化应用领域 酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。固定化酶(immobilized enzyme)这个术语是在1971 年酶工程会议上被推荐使用的。随着固定化技术的发展,出现固定化菌体。1973年,日本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸酶,由反丁烯二酸连续生产L-天门冬氨酸。固定化酶技术为这些问题的解决提供了有效的手段,从而成为酶工程领域中最为活跃的研究方向之一。本文将从酶生

物催化剂固定化载体、固定化方法和技术及固定化酶的应用等几个方面出发,归纳和综述这些方面近年来的研究进展。 1酶固定化的传统方法 关键在于选择适当的固定化方法和必要的载体以及稳定性研究、改进。 1.1 吸附法 吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等载体上的固定方式。显著特点是:工艺简便及条件温和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶失活后可重新活化,载体也可再生。但要求载体的比表面积要求较大,有活泼的表面。 1.2包埋法 包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。这个方法比较简便,酶分子仅仅是被包埋起来,生物活性被破坏的程度低,但此法对大分子底物不适用。 1)网格型 将酶或包埋在凝胶细微网格中,制成一定形状的固定化酶,称为网格型包埋法。也称为凝胶包埋法。 2)微囊型 把酶包埋在由高分子聚合物制成的小球内,制成固定化酶。由于形成的酶小球直径一般只有几微米至几百微米,所以也称为微囊化法。

毛霉蛋白酶的催化特性及动力学研究

毛霉是腐乳发酵生产的主要菌种,在腐乳生产工艺中其主要作用是分泌蛋白酶水解豆腐胚内的大豆蛋白。腐乳成品中的蛋白质主要是以多肽的形式存在的,具有相当高的水解程度,并且已经从中分离出多种具有生理活性的多肽[1-2]。而对众多腐乳产品的感官分析也表明,腐乳产品通常不具有一般蛋白水解物所特有的苦味。综合以上 结果来看,毛霉蛋白酶在解决大豆蛋白水解率低、水解物的苦味等难题方面具有很大的潜力。毛霉虽然在发酵工业中的应用有着悠久的历史,但是对这类菌种胞外蛋白酶系的研究却并未完全开展。仅有极少数学者对该菌种的发酵产酶特性及粗酶的催化、水解特性进行过探讨[3-5]。然而,毛霉由于长期受到高蛋白环境条件的驯化, Catalytic and kinetic properties of one protease from Mucor PAN Jin-quan (Life Science and Technology School,Zhanjiang Normal University,Zhanjiang 524048)Abstract:One protease was purified from extracellular of Actinomucor elegans AS3.2778and its catalytic and kinetic properties were also investigated.The results show that the purified protease was one alkaline serine protease,which has relatively higher activity at pH8.5~9.5and 60℃,and is stable at pH6.0~9.0at <45℃.At 40℃,the kinetics of casein hydrolysis by the protease fit the Mchaelis-Mentonequation:V=22.8S S+8.857,and the energy of activation (Ea)of this hydrolysis reaction below 45℃is 44.09kJ.The protease was unstable at 50℃,and the kinetics of deactivation fit the model:a=exp(-0.218t). Key words:Actinomucor elegans;protease;catalytic properties;kinetics 潘进权 (湛江师范学院生命科学与技术学院,湛江524048) 摘要:从雅致放射毛霉胞外分离纯化出一蛋白酶组分,以酪蛋白为底物对其催化特性及动力学 进行了分析。结果表明:该蛋白酶组分是一种碱性丝氨酸蛋白酶;在pH8.5~9.5、60℃具有最大催化活性,在pH6~9和低于45℃具有很好的稳定性;在40℃该蛋白酶水解酪蛋白的反应符合米氏方程:V=22.8S S+8.857;在4~45℃的范围内,该蛋白酶水解酪蛋白反应的活化能Ea 为44.09 kJ ;该蛋白酶在50℃不稳定,其热失活规律符合一级指数衰减动力学模型:a=exp(-0.218t)。关键词:雅致放射毛霉;蛋白酶;催化特性;动力学 中图分类号:TS 201.2 文献标志码:A 文章编号:1005-9989(2010)11-0036-05 毛霉蛋白酶的催化特性及 动力学研究 收稿日期:2010-03-13 基金项目:广东省自然科学基金项目(9452404801001943)。 作者简介:潘进权(1978—),男,博士,讲师,主要从事酶与发酵工程相关领域的研究工作。 ·36 ·

相关文档