文档库 最新最全的文档下载
当前位置:文档库 › LOTUS对抗Nogo受体-1抑制轴突生长的可能性验证

LOTUS对抗Nogo受体-1抑制轴突生长的可能性验证

LOTUS对抗Nogo受体-1抑制轴突生长的可能性验证
LOTUS对抗Nogo受体-1抑制轴突生长的可能性验证

LOTUS对抗Nogo受体-1抑制轴突生长的可能性验证

神经胶质细胞来源的神经轴突生长抑制蛋白会限制成人中枢神经系统损伤后的功能性修复。Nogo蛋白质、髓鞘相关糖蛋白、少突胶质细胞髓鞘糖蛋白和B淋巴细胞刺激因子,这4种抑制剂通常有神经元受体Nogo受体-1相互作用,从而会抑制轴突生长。

日本横滨市立大学Kohtaro Takei教授证实了外侧嗅束引导物质(LOTUS)结合NgR1,会妨碍4种NgR1配体的结合,因而减弱NgR1配体诱导的轴突生长抑制。LOTUS 使神经元有能力克服NgR1介导的轴突生长抑制,在未来,LOTUS可能会是促进神经元再生的有效内源性NgR1抑制剂。2015年1月第1期《中国神经再生研究(英文版)》杂志上。

与Nogo信号相关的分子机制示意图

Article: "LOTUS, a potent blocker of Nogo receptor-1 causing inhibition of axonal growth" by Yuji Kurihara, Kohtaro Takei (Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan)

Kurihara Y, Takei K (2015) LOTUS, a potent blocker of Nogo receptor-1 causing inhibition of axonal growth. Neural Regen Res 10(1):46-48.

欲获更多资讯:

Neural Regen Res

LOTUS, a potent blocker of Nogo receptor-1 causing inhibition of axonal growth

Glia-derived axonal growth inhibitory proteins limit functional repair following damage to the adult central nervous system (CNS). Nogo proteins, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp) and B lymphocyte stimulator (BLyS), are 4 inhibitors that commonly interact with the neuronal receptor, Nogo receptor-1 (NgR1), leading to inhibition of axonal growth. Here, Prof. Kohtaro Takei, who comes from Yokohama City University Graduate School of Medical Life Science, Japan demonstrate that lateral olfactory tract usher substance (LOTUS) binds to NgR1 and blocks the binding of all four ligands to NgR1, resulting in the suppression of axonal growth inhibition induced by these NgR1 ligands. LOTUS allows neurons to overcome NgR1-mediated axonal growth inhibition, raising the possibility that LOTUS may be useful in future therapeutic approaches as an endogenous potent inhibitor of NgR1for promoting neuronal regeneration. The relevant study has been published in the Neural Regeneration Research (Vol. 10, No. 1, 2015).

Schematic drawing of molecular mechanism associated with Nogo signaling

Article: "LOTUS, a potent blocker of Nogo receptor-1 causing inhibition of axonal growth" by Yuji Kurihara, Kohtaro Takei (Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan)

Kurihara Y, Takei K (2015) LOTUS, a potent blocker of Nogo receptor-1 causing inhibition of axonal growth. Neural Regen Res 10(1):46-48.

表皮生长因子受体及其临床应用_叶榕

?综述? 表皮生长因子受体及其临床应用 叶榕 【关键词】表皮生长因子受体;肿瘤;临床应用 【中图分类号】R730.5【文献标识码】A【文章编号】1004-5511(2008)03-0164-03 自Cohen在1962年发现表皮生长因子受体(epi-dermal growth factor receptor,EGFR)以来[1],经过近半个世纪的研究,研究者对EGFR的结构和功能有了比较全面的了解。特别是近年来,开发了针对EGFR 的靶向抑制剂,并且在肿瘤内科治疗中取得较好的疗效,使其成为研究热点之一。 1EGFR的分子生物学特性 1.1EGFR的结构与分布EGFR是具有配体介导的酪氨酸激酶活性的多功能跨膜糖蛋白,是定位于人第7号染色体短臂的原癌基因C-erbB-1的表达产物,分子量为170ku。EGFR分子分为三个区域:由619个氨基酸残基构成的伸向膜外识别并结合配体的氨基端区域,位于细胞膜中间含25个疏水氨基酸的跨膜区,以及膜内含542个氨基酸残基、具有酪氨酸激酶活性并能结合NTP的羧基端区域[2]。 除造血系统外,EGFR几乎存在于人体的所有组织中。在大鼠颌下腺主要定位在颗粒曲管上皮细胞内。在前列腺主要分布于腺体腔缘侧的细胞膜上,可见阳性的棕色颗粒,分布具有一定极性。在胃肠道组织如胃壁细胞、十二指肠粘膜上皮细胞和小肠上皮细胞上均有EGFR;在肠粘膜主要分布在刷状缘及基底膜,前者引起物质转运,后者导致细胞生长发育[3]。 1.2EGFR的活化与信号转导机制表皮生长因子(EGF)与靶细胞膜上EGFR结合后发挥生物学效应。两者的结合具有高亲和力,具有时间与温度的依赖性、饱和性和可逆性。研究显示,EGFR与核内染色体相连,可通过直接诱导特殊核蛋白的磷酸化而发挥其生理功能。EGF首先与EGFR的胞外部位结合,导致受体分子发生二聚化,促使EGFR羧基末端的三个酪氨酸残基(Tyr)自身磷酸化位点发生磷酸化,使受体酪氨酸激酶活化,从而磷酸化受体本身及下游的信号分子;磷酸化的受体通过其磷酸化酪氨酸残基可与蛋白质的SH2结构域相互作用,结合胞内信号转导分子。已知EGFR的活化可以使细胞内三磷酸肌醇和二酰基甘油增多,结果引起细胞内游离钙离子增多,激活磷酸蛋白激酶C和磷酸蛋白激酶A,从而介导各种信号转导途径,使细胞增殖和功能发生改变。诱导EGFR自身磷酸化的位点是在其羧基端1068、148、1173和氨基端一个位点的4个Tyr 残基;在体实验主要在1173Tyr残基,其他3个Tyr 残基磷酸化程度较离体少[4]。 1.3EGFR阻断剂①马鞭草醇提液(EV)可能抑制EGFR的表达;②EGF和EGFR之间存在着反向调节;③EGFR配体拮抗的单克隆抗体或EGFR选择性酪氨酸激酶抑制物可对EGFR产生阻断作用[5]。 2EGFR与肿瘤生成的关系 研究显示,在非小细胞肺癌、乳腺癌、卵巢癌、膀胱癌、结肠癌、胃癌、胰腺癌、前列腺癌及头颈部恶性肿瘤中都有EGFR的过度表达[6]。EGFR的高表达可以促进肿瘤细胞的增殖、血管生成、粘附、侵袭和转移,抑制肿瘤细胞的凋亡[7]。 2.1EGFR与肺癌的关系肺癌是目前世界上最常见的实体瘤和最普通的癌症死亡原因[8],80%肺癌的组织类型是非小细胞肺癌(NSCLC),在NSCLC患者中有80%~90%的人表达EGFR,过表达为45%~70%。研究发现,肺癌细胞以自分泌方式分泌转化生长因子a及内皮生长因子,两者与EGFR以配体方式相结合,并且EGFR的表达与肺癌患者预后、不良的肿瘤分化及肺癌细胞远处转移密切相关[9]。 2.2EGFR与乳腺癌的关系EGFR对乳腺癌的诊断和预后价值已得到肯定。Jiang等[10]应用雌激素、他莫西芬、表皮生长因子对乳腺癌MCF-7细胞进行体内、体外实验分析,认为EGFR的表达和患者 作者单位:350101福建福州,福建卫生职业技术学院医学基础部

KLF转录因子抑制轴突再生的分子机制

KLF转录因子抑制轴突再生的分子机制 转录因子(KLFs)的Kruppel-样家族的分子机制在增殖细胞中的研究比在有丝分裂后细胞中的研究更集中,如神经元。来自美国加州大学圣地亚哥分校Jeffrey L. Goldberg 教授所在团队最近发现,KLFs具有调节中枢神经系统神经元,包括视网膜神经节细胞,海马和皮层神经元内在细胞轴突生长的能力。至少有15/17 的KLF家族成员可在神经元中表达,其中至少有5种结构独特的亚科,这对决定了这一复杂的家族因子如何在神经元中调节轴突生长和再生的复杂遗传程序是很重要的。通过细节化神经系统中KLF家族的分子机制,包括结合配体和靶基因,并比较它们在神经系统之外定义的机制,我们可以更好地理解KLFs如何调控神经轴突生长和轴突再生。相关研究内容发表在2014年8月第15期《中国神经再生研究(英文版)》杂志上。 Article: “Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors" by Akintomide Apara1, Jeffrey L. Goldberg2 (1 University of Miami Miller School of Medicine, Miami, FL, USA; 2 Shiley Eye Center, University of California San Diego, La Jolla, CA, USA) Apara A, Goldberg JL. Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors. Neural Regen Res. 2014;9(15):1418-1421. 欲获更多资讯:Neural Regen Res

表皮生长因子受体

表皮生长因子受体(EGFR)文章来源:易瑞沙更新时间:2010-05-12 字体:[ 大] [ 小] [ 打印] 表皮生长因子受体概述 表皮生长因子受体(Epidermal Growth Factor Receptor, EGFR)是原癌基因C-erbB-1 (HER-1)的表达产物,EGFR 家族包括EGFR、C-erbB-2(HER-2)、C-erbB-3、C-erbB-4四个成员,均定位于细胞膜上。erbB-1广泛分布于除血管组织外的上皮细胞膜上;erbB-2在正常人体腔上皮、腺上皮及胚胎中均有普遍的微弱表达;erbB-3在除造血系统外的多数部位有表达;erbB-4在除肾小球及周围神经外的所有成年组织均可检测到其表达。 EGFR(epithelial growth factor receptor,表皮生长因子受体)本身具有酷氨酶激酶活性,一旦与表皮生长因子(EGF)组合可启动细胞核内的有关基因,从而促进细胞分裂增殖。胃癌、乳腺癌、膀胱癌和头颈部鳞癌的EGFR表达增高。 EGFR可分为胞外区、跨膜区和胞内区3部分,其特点如下:胞外区由氨基端的621个氨基酸构成,是配体结合区,对EGFR具有高度亲和力,对热量很稳定。跨膜区由23个氨基酸残基构成螺旋状结构的疏水区,将受体固定于胞膜上。胞内区的542个氨基酸构成3个亚区: 1.近膜亚区(约50个氨基酸)主要作为PKC和erk/MAPK(extracellular signal-regulated kinase/mitogen activated protein kinase)作用的负反馈区域; 2.随后的约250个氨基酸构成酪氨酸激酶亚区,包含SH1和src同源物1的结合位点; 3.羧基端尾部的229个氨基酸构成羧基端亚区。 迄今发现,EGFR共有6种配体:表皮生长因子(epidermal growth factor, EGF)、转化生长因子A(TGFA)、amphireguin、betacelluin(BTC)、heparin-binding EGF (HBEGF)和epiregulin(EPR)。EGFR与其配体的结合具有高亲和性、可饱和性和特异性。 表皮生长因子受体(EGFR)的功能 研究表明在许多实体肿瘤中存在EGFR的高表达或异常表达。EGFR与肿瘤细胞的增殖、血管生成、肿瘤侵袭、转移及细胞凋亡的抑制有关。其可能机制有:EGFR的高表达引起下游信号传导的增强;突变型EGFR受体或配体表达的增加导致EGFR的持续活化;自分泌环的作用增强;受体下调机制的破坏;异常信号传导通路的激活等。EGFR的过表达在恶性肿瘤的演进中起重要作用,胶质细胞、肾癌、肺癌、前列腺癌、胰腺癌、乳腺癌等组织中都有EGFR的过表达。对胶质细胞瘤的研究发现EGFR的高表达主要与其基因扩增有关。但有时EGFR表达水平的调节异常也存在于翻译及翻译后。 EGFR在肿瘤中的高表达还可能与活化后降解减少有关,一些研究指出c-Src可通过抑制受体泛素化和内吞作用而上调EGFR水平。许多肿瘤中有突变型EGFR存在,现已发现许多种EGFR突变型。突变型EGFR的作用可能包括:具有配体非依赖型受体的细胞持续活化;由于EGFR的某些结构域缺失而导致受体下调机制的破坏;异常信号传导通路的激活;细胞凋亡的抑制等。突变体的产生是由于EGFR基因的缺失、突变和重排。EGFR的配体对细胞内信号传导有很大影响。EGFR的配体通过自分泌形式激活EGFR促进细胞增殖,

第六章 表皮生长因子受体抑制常见不良反应及其处理

第六章表皮生长因子受体抑制剂常见不良反应及其处理 表皮生长因子及其受体信号通路在非小细胞肺癌(NSCLC)发生发展中发挥了重要作用,它调控肿瘤细胞增殖、生存和凋亡、血管生成、肿瘤转移等多个生物学过程,是NSCLC治疗的重要靶点之一。针对表皮生长因子受体(EGFR)的靶向药物包括小分子抑制剂(如吉非替尼和厄洛替尼)和单克隆抗体(如西妥昔单抗等)。小分子药物已作为晚期NSCLC的二、三线治疗方案广泛用于临床,EGFR单抗联合化疗一线治疗晚期NSCLC同样也取得了较好的疗效。 EGFR抑制剂(EGFR TKIs)无论是小分子药物还是单克隆抗体,均具有良好的安全性和耐受性,常见不良反应有皮肤毒性和腹泻,罕见不良反应有间质性肺炎、肝功能异常、口腔炎、脱发、口腔干燥等,无威胁患者生命的血液学毒性。与化疗毒副反应的处理措施不同,应用此类药物出现不良反应并非停药的指征,反而是肿瘤对靶向药物敏感的临床信号。许多研究发现皮疹与EGFR TKIs治疗的疗效相关,中重度皮疹患者总体生存明显优于轻度或无皮疹的患者。因此,正确处理EGFR TKIs 引起的不良反应具有十分重要的临床意义。 第一节皮肤毒性 皮肤毒性是最常报道的不良反应,发生率在2/3左右,常见反应包括痤疮样皮疹、甲沟炎及甲裂、毛发改变、皮肤干燥、超敏反应、粘膜炎等(表1)。EGFR TKIs的皮肤毒性/皮疹不属于过敏反应,而是皮肤EGFR受到抑制的结果。正常上皮和滤泡角细胞存在EGFR表达,EGFR在上皮细胞增殖分化等方面发挥重要作用,它可以剌激表皮细胞生长,抑制其分化,保护细胞抵抗紫外线相关损伤,抑制炎症并加速创面愈合。有证据提示EGFR表达或活性改变可伴有上皮异常增生和分化;皮肤毒性的机制还包括上皮角化过度和滤泡阻塞或炎症性反应。 表1 EGFR TKIs相关性皮肤毒性反应 EGFR TKIs引起的皮疹通常为痤疮样皮疹,呈丘疹脓疱样改变。皮疹的发生率随研究和药物而异,在BR.21研究中,皮疹发生率为79%,多为轻中度,3级和4级皮疹发生率分别为8%和1%。单抗皮疹发生率相对较高,在FLEX研究中,接受西妥昔单抗治疗的患者痤疮样重度皮疹的发生率

髓鞘相关抑制因子在中枢神经系统轴突再生中的作用

髓鞘相关抑制因子在中枢神经系统轴突再生中的作用 王养华△(综述),许卫红※(审校) (福建医科大学附属第一医院脊柱外科,福州350004) 中图分类号:R651 文献标识码:A 文章编号:1006-2084(2012)09-1312-03 摘要:成熟哺乳动物中枢神经系统损伤后轴突的再生是极其有限的。中枢神经再生困难之一是其内在的髓鞘相关抑制因子(MAIs)的存在,Nogo-A蛋白、髓鞘相关糖蛋白、少突胶质细胞髓鞘糖蛋白是三个经典的MAIs。这三个分子由少突胶质细胞产生,并通过Nogo受体和配对免疫球蛋白样受体B共同的神经受体激活小GTP酶Ras同源基因家族成员(Rho),进而活化的RhoA激活Rho相关激酶抑制中枢神经系统轴突的再生。现就MAIs在中枢神经系统轴突再生中的作用予以综述,并探讨其可能的治疗措施以促进中枢神经轴突再生和功能恢复。 关键词:轴突再生;抑制因子;受体 Role of Myelin-as s oc iate d Inhibit ors in t he Cent ral Nervous System Axonal Re generation WANG Yang-hua,XU Wei-hong.(Department of Spinal Surger y,the Fir st Affiliated Hos pital of Fujian Medical Uni-ver sity,Fuzhou350004,China) Abst rac t:The r egeneration of the rear ax le axon of the central ner vous system of mature mammals is ex-tremely limited after damage.C entr al ner ve regener ation is difficult because of its inherent myelin-a ssocia ted inhibitors(MAIs).Nogo-A pr otein,my elin-associated gly copr otein,oligodendrocy tes myelin glycoprotein pro-tein are three classical MAIs.The three molecules a re all produced by oligodendrocy tes,and through the Nogo r eceptors and pair immunoglobulin-like r eceptor B a ctivate sm all GTP enzyme Ras homology g ene family m ember s(Rho),and the a ctivated RhoA a ctivates Rho r elated kina se,thus inhibites the neur ite regenera tion of the central nervous system.H ere is to make a review on the r ole of MAIs in the central ner vous system ax-onal r egeneration,explor ing possible treatments to promote the regener ation and function recov ery. Key words:Axona l r egeneration;Inhibitory factor;Receptor 人们发现抑制性因子在中枢神经系统再生过程 中发挥了重要作用。研究表明,髓鞘来源的抑制因 子可能是中枢神经抑制因素中最重要的,已经确定 的髓鞘相关抑制因子(m yelin-associated inhibitors, M AIs)包括N ogo-A蛋白、髓鞘相关糖蛋白(m yelin- a ssociated glycopr otein,M AG)和少突胶质细胞髓鞘糖 蛋白(oligodendrocytes myelin glycoprotein protein, O Mgp)[1]。现重点讨论M AIS对中枢神经的抑制作 用,特别强调Nogo-N ogo受体轴在中枢神经系统轴突 生长中的作用。 1 MAIs M AIs是中枢神经系统的髓鞘成分少突胶质细胞 表达的蛋白质。MAIs抑制体外和体内轴突的生长, M AIs包括Nogo-A蛋白、M AG、OM gp。这三者与神经 元Nogo受体1(N gR1)互相作用,也表现出了对第二轴 突生长抑制受体即配对免疫球蛋白样受体B(pair im- munoglobulin-like r eceptor B,PirB)的亲和力,它们与受 体结合后激活下游信号转导通路,抑制轴突的再生[2]。 2 Nogo-A 在中枢神经系统髓鞘的抑制成分中,Nogo-A蛋 白是其中一个最具M AIs特点的抑制因子,主要在 少突胶质细胞表达。Nogo分为3个亚型:Nogo-A、 N ogo-B和Nogo-C。Nogo-A蛋白的两个抑制部分已被 确定[3]:①Nogo-66是与神经元细胞膜上的NgR1互 相作用的66个氨基酸片段,相邻的24个氨基酸序 列,虽然本身不起抑制作用,但是可促进Nogo-66结合NgR1的亲和力。N ogo-66也可以直接与PirB结合。 ②N ogo-A蛋白的氨基-N ogo 序列通过另一个独立的机制扰乱神经功能。Nogo蛋白的另外两个Nogo亚型(N ogo-B 和N ogo-C)含有N ogo-A中抑制性的N ogo-66环,缺乏氨基-N ogo序列。N ogo-A在中枢神经系统表达,不在外周神经系统表达,这意味着N ogo-A 在中枢神经系统再生的抑制中可能占有重要地位。研究发现,脊髓损伤后Nogo-A在 神经元的表达逐渐升高,导致神经再生困难[4];而沉默Nogo基因可以介导轴突再生以促进脱髓鞘疾病的功能恢复[5]。即使是Nogo基因最小的突变在锥体束切断术后也促进了轴突的生长[6]。此外,抗Nogo-A抗体促进中枢神经系统损伤后轴突生长及功能恢复。目前最新研究抗Nogo-A抗体已经发展到脊髓损伤的临床试验阶段[7]。研究已表明,Nogo-A 先使生长锥塌陷从而在体外抑制突起生长,并在使用基因缺失的、中和抗体、体内的药物拮抗剂的哺乳类动物脊髓损伤模型中抑制轴突再生[8]。大量实验数据表明Nogo-A在体内的作用,在小鼠、大鼠、灵长类动物急性脊髓损伤模型中观察到恢复表型[9]。 3 MAG MAG属于免疫球蛋白超家族的成员,是一种细胞表面蛋白。虽然M AG同时表达于中枢神经系统和周围神经系统的神经胶质细胞,但是在周围神经系统髓鞘快速清除,而在有中枢神经系统清除较慢,伤后可能只在中枢神经系统留下M AG以抑制轴突在体内再生[10]。MAG在中枢神经系统有两个功能:维持髓鞘的完整性和抑制中枢神经系统轴突再生。MAG在体外可以明显地抑制突起的生长,引起生长锥的塌陷,抑制包括神经节细胞在内的多种神经元突起的生长,通过免疫耗竭MAG后,可明显减少髓鞘对轴突生长的抑制作用。但是,在MAG基因缺失小鼠模型中并没有观察到促进中枢神经系统髓鞘的轴突生长以及脊髓损伤小鼠模型沉默,M AG的表达

脊髓损伤后髓磷脂抑制分子及作用机制的研究进展

龙源期刊网 https://www.wendangku.net/doc/0c8047680.html, 脊髓损伤后髓磷脂抑制分子及作用机制的研究进展 作者:屈一鸣冯大雄肖百敏叶飞朱宗波 来源:《中国现代医生》2011年第19期 [摘要] 脊髓损伤(SCI)常导致损伤平面以下运动、感觉以及括约肌永久性功能障碍。尽管国内外学者对此进行了不懈的探索,但是如何治愈SCI迄今仍是一全球性的医学难题。脊髓损伤后轴突不能再生的主要原因包括髓磷脂相关抑制分子的存在、含抑制分子的胶质瘢痕形成、硫酸软骨素蛋白多糖等。其中,髓磷脂相关神经生长抑制因子对中枢神经再生抑制起着关键作用,其相关抑制因子主要包括三种髓磷脂源性生长抑制蛋白:髓磷脂相关糖蛋白、少突 胶质细胞髓磷脂糖蛋白、Nogo-A。所有这些生长抑制因子都结合共同抑制蛋白受体—Nogo-66(NgR)受体复合体,激活远端的Rho信号途径。激活Rho与其下游的效应器蛋白-Rho蛋白激酶Ⅱ(ROCKⅡ),激活的ROCKⅡ作用于多种蛋白质底物而产生级联瀑布信号传递,调节生长锥内细胞骨架的重组,改变神经的生长方向,影响肌球蛋白的收缩等,引起轴突生长锥 的回缩及塌陷,介导脊髓损伤后轴突的再生抑制。本文简要综述SCI后几类髓磷脂相关抑制分子及其通过Rho-ROCKⅡ信号途径传递及机制的研究进展。 [关键词] 脊髓损伤;髓磷脂抑制分子; Rho-ROCKⅡ; [中图分类号] R651.2 [文献标识码] B[文章编号] 1673-9701(2011)19-25-03 脊髓损伤(spinal cord injury,SCI)后,由于多种原因导致的轴突再生困难常引起永久性的神经功能缺损[1],一直是治疗难点。近年研究发现,SCI后修复困难的原因包括SCI后再生能力的下降、胶质瘢痕的屏障作用、神经营养因子的缺乏及髓鞘产生的轴突再生抑制因子等[2]。SCI后的轴突再生抑制分子大致可分为3类:髓磷脂相关抑制物、胶质瘢痕起源的抑制物、斥性轴突导向分子(repulsive axon guidance molecules,RGM)。本文主要针对SCI后髓磷脂相关抑制分子及其作用机制做一简要综述。 1 髓磷脂相关抑制因子及其生物学特性 中枢神经系统内的髓鞘是由少突胶质细胞生成一种脂蛋白,包绕神经元轴突绝缘以保证电信号传导并保护轴突。髓磷脂相关抑制因子已被证实是早期轴突再生失败的主要原因。目前发现的抑制分子包括有Nogo-A、髓磷脂相关糖蛋白(myelin-associated glycoprotein,MAG)、少突胶质细胞髓磷脂糖蛋白(oligodendrocyte myelin glycoprotein,OMgp)等[3]。髓磷脂抑制因子在SCI后少突胶质细胞表达量明显增加,与Nogo受体(Nogo receptor,NgR)及复合物

动物生理学

神经生长因子概述及研究进展 摘要神经生长因子是一种对神经生长、分化起到营养作用的肽类,其作用有:a . 神经生长因子引起神经解剖结构和功能变化,促进神经末梢合成和释放递质,有助于组织重构的形成;b . 神经生长因子能够增强变应原特异性抗体的表达,促进肥大细胞、嗜酸性粒细胞、淋巴细胞等在组织聚集,诱导其释放炎症介质,改变免疫应答平衡状态;c . 神经生长因子可能启动肾上腺髓质细胞冗余性,使其向神经细胞转变,导致髓质细胞内分泌功能削弱,使肾上腺素合成、释放和再摄取功能障碍,最终导致循环中肾上腺素达不到维持组织舒张状态所需水平。G-蛋白Rab3a对神经生长抑制因子抑制神经元细胞生长具有很重要的影响。神经生长因子对于启动神经-内分泌- 免疫网络功能失衡的作用也非常重要。 关键词神经生长因子;抑制因子受体;神经再生;抗肿瘤作用 一、神经生长因子概念,结构,功能及生物学效应[1] 1.1 神经因子的概念,结构神经生长因子nerve growth factor 略称NGF。NGF包含α、β、γ三个亚单位,活性区是β亚单位,由两个118个氨基酸组成的单链通过非共价键结合而成的二聚体,与人体NGF的结构具有高度的同源性,生物效应也无明显的种间特异性。αNGF亚基功能尚不清楚;γ亚基具有蛋白酶活性;β亚基具有生物活性的NGF[1]。 1.2 神经生长因子的功能神经生长因子是具有神经元营养和

促突起生长双重生物学功能的一种神经细胞生长调节因子,它对中枢及周围神经元的发育、分化、生长、再生和功能特性的表达均具有重要的调控作用。中枢神经系统与周围神经系统最大区别之一在于神经元损伤后难于再生修复,这也是困扰神经科学基础与临床研究的世界性难题。早在1985年,Schwab等人[2]就提出了关于中枢神经再生抑制的两条假设:其一,中枢神经元神经突再生能力与其周围微环境密切相关,周围神经系统环境要比中枢神经系统环境更适合神经突再生;其二,成熟的中枢神经系统中很可能存在神经突再生抑制因子。其作用机制:NGF与受体结合,通过受体介导的内吞机制产生内在化,形成由轴膜包绕、含有NGF、并保持其生物活性的小泡,经轴突沿微管逆行转运至胞体,经酪氨酸蛋白激酶、脂酰肌醇钙、内源性环腺苷酸等第二信使体系的转导,启动一系列级联反应,对靶细胞的某些结构或功能蛋白基因表达进行调控而发挥其生物效应。 1.3 神经生长因子的生物效应神经损伤后,NGF受体增加,反映在损伤修复过程中对NGF的需求。靶区NGF的水平也明显升高。神经生长因子的神经保护作用:当NGF的效应神经元受到损伤时,例如切断轴突、药物损害,甚至缺血、缺氧等,神经元将发生一系列的病理改变,包括死亡,实验研究证实NGF通过:(1)抑制毒性氨基酸的释放;(2)抑制钙离子超载;(3)抑制超氧自由基的释放;(4)抑制细胞凋亡等机制而明显减轻或防止这些继发性病理损害的发生。神经生长因子的神经营养作用:在胚胎发育的一定时期内,NGF 为效应神经元生存所必须。体外实验证实,如果培养液中不加NGF,

微流控系统对神经元轴突生长和再生研究的意义

微流控系统对神经元轴突生长和再生研究的意义 成年哺乳动物中枢神经系统受损会导致持久性神经功能缺失并且其功能的恢复很有限。在过去的10年里,科学家们不断加大科研力度进行神经再生研究并以实现功能恢复为终极目标。许多研究都集中在防止进一步神经损伤或病理损伤后功能连接的修复。相比于周围神经系统,成人中枢神经系统难以再生的主要原因有两个基本方面:环境抑制的影响和成年中枢神经系统神经元生长能力的减弱。由于以往研究已证实损伤的中枢神经系统轴突可长入周围神经移植物中,科学家们已经鉴别出多个中枢神经系统轴突生长抑制因子,它们主要与中枢神经系统髓磷脂的退变(如Nogo,MAG,OMGP),以及胶质瘢痕(如硫酸软骨素蛋白聚糖CSPGs)有关。然而,这些胞外抑制性信号的单独阻断往往不足以使多数受伤的轴突实现长距离再生,同时成熟中枢神经系统神经元的固有再生能力也是决定轴突再生长一个重要因素。来自美国德克萨斯州A&M大学的Jianrong Li 教授提出联合治疗策略增强神经元的生长能力并在此期间克服环境抑制因素,这给更好的轴突再生和神经修复指明了方向。相关研究内容发表在2014年10月第19期《中国神经再生研究(英文版)》杂志上。 条块分割的神经元培养平台轴突分离示意图 Article: "Microfluidic systems for axonal growth and regeneration research " by Sunja Kim1,3, Jaewon Park2,3, Arum Han2,3, Jianrong Li1,3 (1 Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA ; 2 Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA; 3 Institution for Neuroscience, Texas A&M University, College Station, Texas, USA) Kim S, Park J, Han A, Li J. Microfluidic systems for axonal growth and regeneration research. Neural Regen Res. 2014;9(19):1703-1705. 欲获更多资讯:Neural Regen Res

轴突导向因子的研究进展

目的:观察局灶性脑梗死大鼠皮质轴突生长导向因子-1 ( netrin-1,Ntn1)和臂板蛋白3a( semaphorin-3a,sema3a)的表达及电针干预对其表达的影响。探索Ntn1与sema3a在电针对脑梗后神经可塑性影响中的作用。 方法:将135只雄性Sprague-Dawle(SD)大鼠分为正常组(n=15)、模型组(n=60)及电针组(n=60)。利用线栓法制作大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)模型,并行longa评分。2,3,5—氯化三苯基四氮唑(TTC)染色与苏木精—伊红染色法(hematoxylin-eosinstaining,HE)染色确定造模成功。电针选穴“内关”( PC6),“足三里”( ST36),刺激参数为疏密波,频率80~100Hz,强度以保持针刺局部轻微颤抖为度,留针30 min。电刺激在大鼠麻醉苏醒后90 min 进行。分别在术后1d、3d、7d、14d时,对术后大鼠进行神经功能评分(modified neurologic severity scores,mNSS),利用免疫组化检测缺血侧大脑脑皮质中Ntn1、sema3a、神经丝蛋白200( NF200)分布和表达,免疫印迹法检测缺血侧大脑皮质Ntn1 和sema3a 的蛋白表达。 结果:免疫组化结果显示在各个时相点大鼠脑皮质均表达Ntn1 和sema3a,主要集中在细胞质阳性表达。Westernblot 检测结果显示,与正常组相比,模型组Ntn1 蛋白的表达水平在脑梗死后1d即开始明显上升(P<0.01),3d时呈上升趋势( P< 0.01),7d时达峰值(P<0.01),14d时仍显著高于基础水平(P

生长激素受体基因及其多态性研究进展

生长激素受体基因及其多态性研究进展 生长激素(growth hormone,GH)是一种由脑垂体前叶嗜酸性细胞分泌由191个氨基酸组成的单链亲水球蛋白,对机体的生长发育起重要作用。生长激素受体( growth hormone receptor,GHR) 是GH发挥作用的生理基础, GH必须与靶细胞表面的GHR 结合,诱导GHR 分子同源二聚化,然后激活细胞内一系列信号传导[1]。当体内GH水平低于或等于生理激素浓度时, GH 与GHR 以1:2 相结合。在超生理激素浓度下,激素饱和了所有受体分子形成1:1 的复合物,阻止了受体二聚化和信号传递。当GH 水平增高而GHR基因表达没有增加时,不仅GH作用不能完全发挥,而且可能因为GH过剩而产生负反馈调节,影响其他生理功能[2]。 GHR基因的多态性可能导致GHR在不同个体中的表达水平或是功能上的差异,进而影响GH 生物学效应的发挥。GHR 基因突变的类型多种多样,包括无义突变、错义突变、框义突变、剪接突变和缺失等。其突变的位点主要见于外显子3~7 ,9 ,10 ,故多导致GHR细胞外区功能缺陷, 也可引起细胞内信号转导障碍, 导致IGF-1的分泌变化, 主要影响软骨的生长, 造成生长障碍。此外,GHR基因的多态性还与某些肿瘤的发病风险相关。 1、GHR基因结构 生长激素受体是一个由单一基因编码含620 个氨基酸的跨膜糖蛋白,是促乳素/生长激素/细胞因子/促红细胞生成素( GH/PRL/cytokine/hemopoietin) 受体超家族成员之一[3]。分子遗传学研究表明, 人类生长激素受体基因定位于第5号染色体近端短臂上p12~p13.1 , GHR基因一个重要特征就存在几个5′端不翻译区(5′untranslated-regions , 5′UTRs) , 它们选择性地参与转录, 是导致GHR 分子多态性的重要原因之一。GHR基因含10 个外显子(外显子1-10),长约87 kb。其中外显子1、2编码5’不翻译区(5’UTR)最后11bp的氨基酸残基、18个氨基酸残基的信号肽和胞外结合区起始5个氨基酸残基;外显子3~7 编码细胞外结构域, 外显子8 编码胞外结构域最后3个氨基酸残基、1 个24 个氨基酸残基的跨膜结构域和胞内区开始的4个氨基酸残基,外显子9~10 编码细胞内结构域和3’UTR [4,5 ]。 2、功能分区: 人GHR cDNA 共编码638个氨基酸,其中包括18个氨基酸的信号肽( - 18~0位)。成熟的人GHR分子是一个含620个氨基酸的单链糖蛋白,分为3个区:胞外区、跨膜区和胞内区,在胞外区,N端246个氨基酸含5个保守的糖基化位点, 构成激素结合结构域,其特定位置上有7个半胱氨酸残基,其中有6个形成二硫键,起着维持GHR胞外区段特定空间结构的作用。在胞外区近细胞膜的位置上有WSXWS样基序(WSXWS-like motif ,WSXWS),即由Trp-Ser-Xxx-Trp-Ser等5个氨基酸残基组成的保守序列(其中Xxx代表任意氨基酸) ,这一结构可能在GH与GHR结合过程中起关键作用[6]。第247~270 位为强疏水性氨基酸构成的跨膜区(transmembrane domain ,TMD),有专家认为[7],GHR的二聚化是由受体的跨膜区(TMD)介导的,GH与之结合后,引起GHR二聚物构象的改变,进而激活下游的信号转导。C 端350个氨基酸位于胞内构成信号转导结构域[8]。在胞内区,人们发现了两段保守序列(序列框1 ,2) ,其中靠近细胞膜的序列框1 (Box 1) 编码8个氨基酸残基,以脯氨酸残基为主,是GHR与酪氨酸激酶(janus kinase 2 , JAK2) 结合的一个位点;序列框2 (Box 2) 则编码15个氨基酸残基,如果这两段保守序列编码的某一个氨基酸残基发生突变,GH将失去促进生长的作用。由此表明Box 1、Box 2在GHR介导的信号转导过程中起着关键作用。 3、GHR的基因多态性 单核苷酸多态性(single nucleotide polymorphism,SNP)是指出现在基因组DNA分子的特定位置的单个核苷酸的置换,包括单个碱基的转换、颠换以及单碱基的插入和缺失,是人类可遗传变异中最常见的一种。由于其在染色体上的分布具有相对均一性而密度又远高于 1

相关文档