文档库 最新最全的文档下载
当前位置:文档库 › LGMAZAK伺服刀塔原点丢失故障处理方法

LGMAZAK伺服刀塔原点丢失故障处理方法

LGMAZAK伺服刀塔原点丢失故障处理方法
LGMAZAK伺服刀塔原点丢失故障处理方法

1 LGMAZAK伺服刀塔的工作过程

LGMAZAK生产的QT200系列数控车床,其刀塔采用绝对值编码器进行位置反馈的半闭环伺服控制系统,用3.6V锂电池记忆刀塔位置数据。数控车床刀台采用伺服分度、牙盘定位的结构。刀塔的工作过程是:刀塔在不旋转时,由液压缸锁定在刀塔体上,此时分度盘相互啮合,刀具得以正确分度和定位。一旦收到数控系统发出的换刀指令,分度盘解除啮合,刀盘松开,在伺服电机带动下旋转,编码器确认刀盘到达指定刀具位置后。电机停止旋转,刀盘再度被锁紧。

2 刀塔故障现象

LGMAZAK数控车刀塔采用的伺服单元为MR—J2—100CT,该伺服单元正常启动时,伺服单元上的LED显示如图1所示。

MR—J2—]OOCT内置了各种自诊断功能,如果自诊断功能检测到故障。指示灯将显示报警分类编号和报警号,其显示顺序如图2所示。当出现第一组报警显示S1—25时,说明发生绝对位置丢失,需要回原点。此时在显示器上可以看到下列两种现象:①如果执行换刀动作,机床出现272号报警,刀盘分度超时;②仔细观察显示器上的刀具资料,LGMAZAK在显示器上有关于刀具号码的显示,出报警刀具号码为0,而且只有这一个刀号。

3 刀塔故障产生的原因

3.1 后备电池失效

和所有的伺服驱动系统一样,伺服参数需要后备电池来保存,一旦电池电压降低,而没有在规定的时间内更换电池,数据就会丢失。

3.2 外界的干扰

机床在加工过程中,特别是在换刀过程中,如果出现外界干扰将会导致数据丢失。

3.3 突然断电

如果机床在换刀过程中突然断电,再开机时就会发现没有刀号,也就是数据丢失。

3.4误操作

LGMAZAK数控车床是基于WINDOWS系统下开发的,所有的刀具资料也就是WINDOWS下的一个文件,如果操作者误操作删除了刀具资料,也会导致数据丢失。

4 故障的处理

4.1 利用操作面板和软体键来恢复原点

利用操作面板和软体键来恢复原点的处理步骤如下:

(1)在手动状态下,按“刀箱拆散”使刀塔处于松开状态。

(2)同时按“MACHINE”→“OPTION”→“MFI+TURRET MODE”,使“TuRRET MODE”菜单反转显示。

(3)按手动转动刀具让刀具编号1的位置向主轴中心线方向移动。通过目测使刀盘和刀塔底座的上面基本对正。在操作过程中最好把1号刀装上中心钻,这样便于对正位置。

(4)再次选择“TURRET MODE”,使反转解除。

(5)选择“刀箱拆散”,将刀塔锁紧,此时要确认刀塔是否能顺利锁紧。锁紧时,如果发出异常声音或者振动时,需从步骤(1)开始重新操作。

(6)再次选择“刀箱拆散”使刀塔处于松开状态。

(7)再次同时按“MFI+TURRET MODE”,使菜单反显。

(8)选中“POSlTlON SET”,然后按刀塔旋转按扭,刀塔旋转.到达最初位置时会自动停止,参考点绝对位置即可确定。

(9)执行步骤(6)。

(10)执行步骤(4)。

(11)执行步骤(5)。

(12)选择“TURRET MODE”,使反转解除。

(13)选择“刀箱拆散”,将刀塔锁紧。

(14)关NC电源,断总电源开关。

再度通电,确认刀塔转动是否正常。

4.2 利用MR—J2—100CT软件来恢复原点

利用软件设定刀塔原点,需要知道刀塔丢失的是机械原点还是电气原点。电气原点丢失是非法断电引起的机床记忆原点丢失,刀塔实际机械位置正确;机械原点丢失是刀塔实际机械位置偏离。

4.2.1 电气原点设定

电气原点设定步骤如下:

(1)在HOME模式下点刀箱拆散,使之红色反衬显示。

(2)将鼠标置于位置画面左下角,调出Windows(开始]菜单.按顺序选择[程序]→(MR—J2一CT SetupSoftware3→CMR-J2-CT Setup Sohware3。

(3)打开CMR-J2-CT Setup Software3软件画面。

(4)选择轴:数控车床[Setup-Axis]→(Axisselect)→ (TURRET3(刀塔)。

(5)选择Operation下拉菜单中的CJ093方式。

(6)点击Absolute position initial set(A)前方框,将该项目击活。

(7)单击[Origin—Set]后,点击[Normal Rot(.G](正转),直到Initial set菜单下出现[Completion]。

(8)点击(End3关闭CTest—operation3画面,点击(File]→[End]退出(MR-J2-CT SETUP S—W)软件,刀盘电气原点记忆完成。

(9)刀箱锁紧,关闭机床电源及主电源。

(10)机床重新启动,确认画面显示刀号是否与实际刀号一致,如不一致,将1号刀位旋转到当前刀位,然后重复上述步骤。

4.2.2 机械原点调整

机械原点调整步骤如下:

(1)首先将刀塔移至-470位置,选择-镗刀座为当前刀位,在主轴上架千分表测量主轴中心与该镗刀座中心孔的偏差,并确认偏差方向.确定需要电机旋转的方向。

(2)在HOME模式下点刀箱拆散,使之红色反衬显示。

(3)将鼠标置于位置画面左下角,调出Windows[开始]菜单,按顺序选择(程序)→[MR-J2-CT SetupSoftware]→(MR-J2-CT Setup Software)。

(4)打开(MR-j2-CT Setup Software3软件画面。

(5)选择轴:数控车床(Setup-Axis]→(Axisselect)→(TURRET](刀塔)。

(6)点击[Test-operation]-[OK]进入Testoperation画面。

(7)选择Operation下拉菜单中的[STEP]方式,选择Step mode feed下拉菜单中的[1/lO003或[1/1003或C1/103或C13,设定刀盘分度单位。

(8)点击CNormal Rot.(G)](正转)或[ReverseRot.(R))(反转)按钮,转动刀盘直到正确位置。

(9)点击(End3关闭(Test-operation]画面,点击[File]→[End]退出[MR-J2-CT SETUP S—W]软件,刀盘机械原点调整完成。

(10)刀箱锁紧,用千分表确认镗刀座与主轴中心偏差。

(11)松开刀塔端面12颗螺栓,用橡皮锤向偏差调整方向敲打刀塔,可以将(2)、(3)、(10)、(11)步骤结合,重复操作。直至测量偏差值到要求范围内。

(12)按照电气原点设定顺序重新设定原点。

(13)断电重启,设定完毕。

需要注意的是如果只是电气原点丢失,可直接设定电气原点,切记不要调整机械原点。

5 结语

LGMAZAK数控车床刀塔原点丢失故障是维修中常见的故障。以上两种方法可以任意选取一种进行故障的排除,只有熟练掌握才能给维修带来方便。

MAZAK 刀库原点设定

Tool Magazine Home Position Adjustment(M640M) (刀库原点调整M640M 系统,) The magazine servomotor is controlled by MR-J2-CT driver which can adjust the zero point (PK1) position by changing the position data. The procedure below describes how to set it using the ORIGIN SET in the zero-point adjustment. (刀库伺服电机使是被通过改变位置数据能调整零点位置的MR-J2驱动器控制, 下面描述的是在原点调整中怎样‘原点设定’) 1. Set the PLC parameter R2107 bit F to "1", and turn off the power. (The magazine home return becomes validated.) (更改参数R2107 位F为‘1’,开关机两次)(刀库原点回归有效) 2. Make sure that the tool shifter is either in the magazine side or the ATC side. (确认刀具转换机构位置,刀库侧或换刀手臂侧) 3. Turn on the power and select the magazine pocket PK1. (选择‘1’号刀袋在换刀位置) 4. Press the MACHINE MENU key while the CNC is in the manual mode to display the machine menu, and then press the MAGAZINE SET.MENU key in the machine menu. (手动模式按下MACHINE 菜单后选择MAGZINE SET. MENU) 5. Press the ORIGIN MODE menu key while holding the MF1 key pressed. (同时按下MF1和ORIGI MODE 菜单)

FANUC数控机床机械原点的设置与回零常见故障分析诊断

FANUC数控机床机械原点的设置及回零常见故障分析 当前大多数数控机床均采用通过减速档块的方式回零,但谊方式在日常使用中故障率却艰高,有时甚至出现机械原点的丢失。本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对该类数控机床常见回零故障的各种形式式进行了分析与总结。 机械原点是机床生产厂家在生产机床时任机床上设置的一个物理位置,可以使控制系统和机床能够同步,从而建立起一个用于测量机床运动坐标的起始位置点,通常也是程序坐标的参考点。大多数数控机床在开机后都需要回零即回机械原点的操作。本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对此类数控机床常见回零故障的各种形武进行了分析与总结。 1 机械原点设置 1.1 机械原点丢失的原因 台中精机生产的VCENTER-70加工中心采用增量编码器作为机床位置的检测装置。系统断电后,工件坐标系的坐标值就会失去记忆,尽管靠电池能够维持坐标值的记忆,但只是记忆机床断电前的坐标值而不是机床的实际位置,所以机床首次开机后要进行返回参考点操作。而当系统断电遇到电池没电或特殊情况失电时,就会造成机械原点的丢失.从而使机床回参考点失败而无法正常工作。此时机床会产生。#306 n轴电池电压0#的报警信息,并且还会产生机械坐标丢失报警。#300第n轴原点复位要求”(n代指X、Y、Z)。 1.2 机械原点的设置 在通常情况下,设置数控机床机械原点的方法主要有以下两种:1)手动使X、Y、Z三轴超程印利用三轴的极限位置选择机械原点。2)利用各坐标轴的伺服检溯反馈系统提供相应基准脉冲来选择机床参考点即机械原点。由于第一种方法是机床厂家通常建议的也是较为简便和实用的方法.因此本文在此详细介绍第1种做法。以X轴为例,设置步骤如下: (1)将机床操作面板上的方式选择开关设定为MDI方式。 (2)按下机床MDI面板上的功能键[OFS/SET]数次,进入设定画面。 (3)将写参数中的0改为1,由此,系统进入了参数可写状态。此时机床出现。SWO 100参数写入开关处于打开”的报警信息。忽略这条报警信息,设置完参数后改回为0即可。 (4)按下功能键lsYSTEM】,进入系统参数键面。通过参数搜索找到参数1815(如表l 所示)通常情况下,X轴的#4APZ或#5 APC会显示为0,若不为0就将其设定为0。 (5)找到参数1320,此参数为存储各轴正向行程的坐标值。将其X轴的正向行程设定为最大值999999。目的是让X轴的正向软限位位置值大于其正向硬限位的位置值。 (6)将方式选择开关打到手轮方式,然后摇动手轮使工作台碰及X轴的正向限位档块,此时机床会出现“#500+X过行程”报警。

840D刀库管理设定步骤

刀库管理设定步骤 本文叙述了使用Siemens 840D HMI ADVANCE的刀库管理功能时,初始设定刀库的具体信息,产生PLC数据文件的方法。以凸轮24把刀的刀库为例。 1.建立新刀库 选择[New],输入Name:CAM_24 选择Type:Chain magazine 输入Locations:24 输入Number of lines:1 选择[OK]

2.建立Buffer 选择[New],输入Name:SPDL 选择Type:Spindle 选择[OK] 选择[New],输入Name:GP_1 选择Type:Gripper 选择[OK]

选择[New],输入Name:GP_2 选择Type:Gripper 选择[OK] 3.分配Buffer 分别选择GP_1/Gp_2 选择Assign to spindle:SPDL,然后选择竖直软键[Assign spindle]

分别选择SPDL/GP_1/Gp_2 选择Magazine:CAM_24 4.选择竖直软键[Assign magazine] 建立Loc.Type. 选择[New],输入Name:POT 选择Form type:Rectangle 选择Hight:2 Wight:2 选择[OK]

选择< Name:POT 选择竖直软键[Generate hierarchy] 5.建立刀库配置 选择[New],输入Name:POT_24 选择Tool search:Shortest path 选择Location search:Current location forward,然后选择[OK]

LG马扎克数控车床刀塔原点设置

LGMAZAK伺服刀塔原点丢失故障处理方法 4.1 利用操作面板和软体键来恢复原点 利用操作面板和软体键来恢复原点的处理步骤如下: (1)在手动状态下,按“刀箱拆散”使刀塔处于松开状态。 (2)同时按“MACHINE”→“OPTION”→“MFI+TURRET MODE”,使“TuRRET MODE”菜单反转显示。 (3)按手动转动刀具让刀具编号1的位置向主轴中心线方向移动。通过目测使刀盘和刀塔底座的上面基本对正。在操作过程中最好把1号刀装上中心钻,这样便于对正位置。 (4)再次选择“TURRET MODE”,使反转解除。 (5)选择“刀箱拆散”,将刀塔锁紧,此时要确认刀塔是否能顺利锁紧。锁紧时,如果发出异常声音或者振动时,需从步骤(1)开始重新操作。 (6)再次选择“刀箱拆散”使刀塔处于松开状态。 (7)再次同时按“MFI+TURRET MODE”,使菜单反显。 (8)选中“POSlTlON SET”,然后按刀塔旋转按扭,刀塔旋转.到达最初位置时会自动停止,参考点绝对位置即可确定。 (9)执行步骤(6)。 (10)执行步骤(4)。 (11)执行步骤(5)。 (12)选择“TURRET MODE”,使反转解除。 (13)选择“刀箱拆散”,将刀塔锁紧。 (14)关NC电源,断总电源开关。 再度通电,确认刀塔转动是否正常。 4.2 利用MR—J2—100CT软件来恢复原点 利用软件设定刀塔原点,需要知道刀塔丢失的是机械原点还是电气原点。电气原点丢失是非法断电引起的机床记忆原点丢失,刀塔实际机械位置正确;机械原点丢失是刀塔实际机械位置偏离。 4.2.1 电气原点设定 电气原点设定步骤如下: (1)在HOME模式下点刀箱拆散,使之红色反衬显示。 (2)将鼠标置于位置画面左下角,调出Windows(开始]菜单.按顺序选择[程序]→(MR—J2

伺服电机回零

EVOC,SOKON, 华北工控,硕控智能,蓝天,四维,首控工控,艾雷斯 研华工控机,华北工控机,研祥工控机 leetro乐创 伺服电机原点复归 1.原点搜索是原点没有建立的情况下执行。 2.原点返回是原点已经建立的情况下,返回到原点位置。 原点信号又伺服驱动器给出,原点附近信号由传感器指定 如果使用绝对脉冲, 那么每次发送的脉冲量, 都是相对与这个原点来说的原点输入信号没有限定由谁给定, Z相信号给定也是可以的. 不过建立原点有3种模式, 可以选择只使用原点输入信号来建立原点 第一次上电, 先用建立原点.当后面的动作远离了这个原点,想返回去的时候, 选择原点返回 实找零的方法有很多种,可根据所要求的精度及实际要求来选择。可以伺服电机自身完成 (有些品牌伺服电机有完整的回原点功能),也可通过上位机配合伺服完成,但回原点的 原理基本上常见的有以下几种。 一、伺服电机寻找原点时,当碰到原点开关时,马上减速停止,以此点为原点。这种回原 点方法无论你是选择机械式的接近开关,还是光感应开关,回原的精度都不高,就如一网 友所说,受温度和电源波动等等的影响,信号的反应时间会每次有差别,再加上从回原点 的高速突然减速停止过程,可以百分百地说,就算排除机械原因,每次回的原点差别在丝 级以上。 二、回原点时直接寻找编码器的Z相信号,当有Z相信号时,马上减速停止。这种回原方 法一般只应用在旋转轴,且回原速度不高,精度也不高。 三、此种回原方法是最精准的,主要应用在数控机床上:电机先以第一段高速去找原点开 关,有原点开关信号时,电机马上以第二段速度寻找电机的Z相信号,第一个Z相信号一定是在原点档块上(所以你可以注意到,其实高档的数控机床及中心机的原点档块都是机 械式而不会是感应式的,且其长度一定大于电机一圈转换为直线距离的长度)。找到第一 个Z相信号后,此时有两种方试,一种是档块前回原点,一种是档块后回原点(档块前回 原点较安全,欧系多用,档块后回原点工作行程会较长,日系多用)。以档块后回原为例, 找到档块上第一个Z相信号后,电机会继续往同一方向转动寻找脱离档块后的第一个Z相信号。一般这就算真正原点,但因为有时会出现此点正好在原点档块动作的中间状态,易 发生误动作,且再加上其它工艺需求,可再设定一偏移量;此时,这点才是真正的机械原 点。此种回原方法是最精准的,且重复回原精度高。 1)伺服电机原点复归是伺服找原点,而非plc找原点, 2)原点复归一般有三个传感器,分别是前后两个极限限位开关,一个近原点开关。有的伺服驱动器只接一个近原点传感器。这些传感器都是接到伺服驱动器上面。 3)plc等上位机只是给伺服驱动器指令,原点复归,定位,速度等指令进入伺服驱动器后,伺服驱动器根据上位机的信号自动进行相关操作。像编码器就是接到伺服驱动器上面的。编码器的数值也是进入伺服驱动器的。 4)原点复归有多种方式,可以在伺服驱动器上面设置。根据设置,可以闭合伺服驱动器端子上的相关触点,也可以通过上位机通信的方式,给伺服驱动器回原点的命令信号。5)伺服回原点的过程。伺服驱动器接收到plc发出的回原点指令后,根据伺服驱动器中 设置的回原点方式,向一个方向,或者两个方向运动遇到近原点传感器后,变到一个很低 的速度,也就是爬行速度,然后等待z相信号,z相信号接收到后,伺服自动停止。原点

小巨人加工中心换刀原点调整作业指导

VTC-160A & 200B & 200C系列ATC原点调整作业指导书 一、刀库原点确认: 1、在手动状态下,按下 MACHINE 菜单键,出现以下菜单 按下F0 菜单键,出现以下菜单,按下 刀库回零点菜单键, 观察刀库中处于换刀位置的刀袋号是否为1号刀位。 如果正确,则继续进行换刀原点的调整。 二、ATC换刀原点调整: 1、所需治具:1-1 主轴治具 1-2 机械手治具 1-3 检棒:

2、操作步骤: 2-1 将主轴端面安装定位键拆下:(如图4所示) 2-2 主轴定向后,将主轴治具安装于主轴: 2-3 将机械手治具安装于刀库机械手上: 2-3 将Z 轴升到安全高度,以避免与机械手发生干涉; 2-4 调整Y 轴换刀原点参数: ① 在手动状态下,按下 MACHINE 菜单键,出现以下菜单 ②按下 F0 菜单键,出现以下菜单, ④按下 机械手52度 菜单键, 直到 机械手52度 菜单键反转变为紫红色, 机械手处于如下图示位置(如图5所示): ⑤ 将检棒从机械手治具中穿过,穿入主轴治具孔内; 如果穿入困难则依据以下步骤调整:

a 、拧松刀库固定螺栓(如图6所示)调整刀库位置; b 、用手轮调整Y 轴位置,直到检棒能顺利穿入主轴治具孔内。 拧紧刀库定位安装螺栓,确认刀库与刀库底座间配合紧密(如图7所示), 确认检棒能轻松从主轴治具和机械手治具中轻松出入。 ⑥ 将位置画面下,Y 轴当前坐标以цm 为单位写入参数M5对应的Y 参数。 ⑦ 拆下主轴、机械手治具,将主轴定位键安装拧紧 2-5 调整Z 轴换刀原点参数: ① 在手动方式下,在主轴安装一把刀柄; 按下 MACHINE 菜单键,出现以下菜单; ② 按下2#参考点返回 键 ,让各轴停在换刀位置; ③ 按下 F0 菜单键,出现以下菜单;

安川伺服马达原点对位技术参考

安川伺服马达原点对位技术参考 伺服电机转子反馈的检测相位与转子磁极相位的对齐方式 论坛中总是有人问及伺服电机编码器相位与转子磁极相位零点如何对齐的问题,这样的问题论坛中多有回答,本人也曾在多个帖子有所回复,鉴于本人的回复较为零散,早就想整理集中一下,只是一直未能如愿,今借十一长假之际,将自己对这一问题的经验和体会整理汇总一下,以供大家参考,或者有个全面的了解。 永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐 其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示: 如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据此相位生成与反电势波形一致的正弦型相电流波形了,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系。 在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示: 上述两种转子定向方法对应的绕组相反电势波形和线反电势,以及电角度的关系如下图所示,棕色线为a轴或α轴与d轴对齐,即直接对齐到电角度0点,紫色线为a轴或α轴对齐到与d差(负)30度的电角度位置,即对齐到-30度电角度点: d、q轴矢量与a、b、c轴或α、β轴之间的角度的关系如下图所示,棕色线d轴与a轴或α轴对齐,即直接对齐到电角度0点,紫色线为d‘轴与a轴或α轴相差30度,即对齐到-3 0度电角度点: 主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。 增量式编码器的相位对齐方式

12刀位盘型伺服刀塔的设计

目录 引言 (1) 第1章绪论 (3) 1.1国内外数控车床的研究状况与成果 (3) 1.2数控刀架的发展趋势 (4) 1.3 数控转塔刀架的开发应用 (4) 第2章数控车床自动换刀装置 (6) 2.1概述 (6) 2.2 刀具自动换刀形式 (7) 2.3 数控车床刀架的功能、类型和满足的要求 (8) 2.3.1数控车床刀架的功能 (9) 2.3.2数控机床刀架的类型 (9) 2.3.3数控机床刀架应满足的要求 (10) 第3章 12刀位盘型伺服刀塔的总体方案设计 (12) 3.1调查研究与资料收集 (12) 3.1.1 课题的调查研究 (12) 3.1.2资料收集 (12) 3.2盘型伺服刀塔的整体方案设计与选择 (12) 3.2.1 盘型伺服刀塔的整体方案设计 (12) 3.2.2液压驱动的刀架工作原理 (13) 3.2.3 刀架定位精度及重复定位精度 (14)

3.3盘型伺服刀塔传动部分方案设计 (14) 3.4 盘型伺服刀塔的分度机构方案设计 (15) 3.5盘型伺服刀塔动力刀具方案设计 (17) 3.5.1 齿轮传动的分类和特点 (17) 3.5.2 齿轮传动类型选择的原则 (18) 第4章典型零件的设计和选用 (19) 4.1 盘型伺服刀塔传动部分 (19) 4.1.1 刀架轴的结构设计及计算[10] (19) 4.1.2 液压缸的设计 (20) 4.1.3 碟形弹簧的计算及选用[10] (22) 4.1.4 轴承的选用 (24) 4.1.5 端齿盘的选用 (25) 4.2 动力刀塔的分度机构部分 (27) 4.2.1伺服电机的选用 (28) 4.2.2凸轮机构的选用及计算 (32) 4.3 盘型伺服刀塔动力刀具部分 (33) 4.3.1交流伺服电动机的选择 (34) 4.3.2 齿轮设计计算及选用 (35) 4.3.3 轴承的选用 (37) 第5章12位盘型伺服刀塔三维制作 (38) 5.1 典型零部件实体制作 (38) 5.1.1刀架轴的实体制作 (38)

FANUC系统的原点和原点回归的几种方法

FANUC系统的原点和原点回归的几种方法 相信很多从事FANUC系统操作的朋友,都遇到过找原点的困扰,现将我的一点心得写出供大家参考,领悟后对FANUC系列找原点再不会感到烦恼(有些自吹了……^o^)。 既然是找原点,那先说说什么是原点吧,原点分为:程序原点、作业原点、机械原点这三个用语,先分别说说吧。 程式原点:图纸上标尺寸的基准点,没什么好解释的,大家都明白。 作业原点:经由原点补正操作,可设定出任意的一个可动点,机械的移动,便以这个点为座标系的“0”点。加工工件时,便以这个点为基准点进行加工。 解释一下:1,加工上,作业原点必须与程式原点一致。 2,所谓原点补正操作,是求出机械原点到X Y Z各轴作业原点间距离的操作,由此项操作所求得的距离,叫做“原点补正值”。 机械原点:OSP控制时,为了知道工具现在的位置,在X Y Z各轴的滚珠螺杆驱动泵上,各装有OSP型位置检出器,这OSP型位置检出器,可在机械的全行程内,产生7位数的数值,OSP所能知道的机械位置,就是这个数值。 好了,现在再来说说原点回归(回到上述哪个原点?当然是回机械原点啦),方法嘛先说说最常用的一种吧。 方法一的操作要领:1,将要进行原点确立这轴以手轮操作,移动到机械原点附近;2,接着,将该轴往移动范围的中心方向移动约100mm(B轴向负方向移约30度;3,这时,请以每分钟230mm以上的速度向原点附近位置移动,大概离原点范围2mm的样子停下(B轴约1度以内);4,在原点回归画面里按原点自动回归即可。 方法二(适用于专用机床,只有Z轴动作),该种机器的原点丢失时机械所处的原点位置一般就是原点位置,管它是第一原点还是第二原点,误差都是极小的(我的实际经验啊,可不是蒙人的),所以啊,直接将参数1815的4#由0 改为1即可,当然,要关闭一次电源的,然后加工实物吧,一测量只差0.02怎样?不行!不行好说,将Z轴相你需要的方向移动一个测量差值即可,然后按上述方法重新确立原点即可。 方法三是我的绝招了,攻无不克,我还没有失手过(呵呵,别笑,是真的)。 大家编程时都知道,主轴在加工某一个孔时(假设需要两面加工才可,并需保证同心度),B轴回转180度后,X Y轴的指令绝对值并没有改变,但依然加工到同一个孔,并有很好的同心度,这是为什么,原来,在设定加工座标系时,我们已设好,0度和180度的同轴值相加的绝对值等于机床该轴的总行程长。 好了,利用这点,我举例X轴,先给X轴找个临时原点用一用,当B为0度时,将X轴移动到我们设定的作业原点,用Z轴在工作治具上或不良素材上,

伺服电机回原点解释

EVOC,SOKON,华北工控,硕控智能,蓝天,四维,首控工控,艾雷斯研华工控机,华北工控机,研祥工控机 leetro乐创 伺服电机原点复归 1.原点搜索是原点没有建立的情况下执行。 2.原点返回是原点已经建立的情况下,返回到原点位置。 原点信号又伺服驱动器给出,原点附近信号由传感器指定 如果使用绝对脉冲, 那么每次发送的脉冲量, 都是相对与这个原点来说的原点输入信号没有限定由谁给定, Z相信号给定也是可以的. 不过建立原点有3种模式, 可以选择只使用原点输入信号来建立原点 第一次上电, 先用建立原点.当后面的动作远离了这个原点,想返回去的时候, 选择原点返回实找零的方法有很多种,可根据所要求的精度及实际要求来选择。可以伺服电机自身完成(有些品牌伺服电机有完整的回原点功能),也可通过上位机配合伺服完成,但回原点的原理基本上常见的有以下几种。 一、伺服电机寻找原点时,当碰到原点开关时,马上减速停止,以此点为原点。这种回原点方法无论你是选择机械式的接近开关,还是光感应开关,回原的精度都不高,就如一网友所说,受温度和电源波动等等的影响,信号的反应时间会每次有差别,再加上从回原点的高速突然减速停止过程,可以百分百地说,就算排除机械原因,每次回的原点差别在丝级以上。 二、回原点时直接寻找编码器的Z相信号,当有Z相信号时,马上减速停止。这种回原方法一般只应用在旋转轴,且回原速度不高,精度也不高。 三、此种回原方法是最精准的,主要应用在数控机床上:电机先以第一段高速去找原点开关,有原点开关信号时,电机马上以第二段速度寻找电机的Z相信号,第一个Z相信号一定是在原点档块上(所以你可以注意到,其实高档的数控机床及中心机的原点档块都是机械式而不会是感应式的,且其长度一定大于电机一圈转换为直线距离的长度)。找到第一个Z相信号后,此时有两种方试,一种是档块前回原点,一种是档块后回原点(档块前回原点较安全,欧系多用,档块后回原点工作行程会较长,日系多用)。以档块后回原为例,找到档块上第一个Z相信号后,电机会继续往同一方向转动寻找脱离档块后的第一个Z相信号。一般这就算真正原点,但因为有时会出现此点正好在原点档块动作的中间状态,易发生误动作,且再加上其它工艺需求,可再设定一偏移量;此时,这点才是真正的机械原点。此种回原方法是最精准的,且重复回原精度高。 1)伺服电机原点复归是伺服找原点,而非plc找原点, 2)原点复归一般有三个传感器,分别是前后两个极限限位开关,一个近原点开关。有的伺服驱动器只接一个近原点传感器。这些传感器都是接到伺服驱动器上面。 3)plc等上位机只是给伺服驱动器指令,原点复归,定位,速度等指令进入伺服驱动器后,伺服驱动器根据上位机的信号自动进行相关操作。像编码器就是接到伺服驱动器上面的。编码器的数值也是进入伺服驱动器的。 4)原点复归有多种方式,可以在伺服驱动器上面设置。根据设置,可以闭合伺服驱动器端子上的相关触点,也可以通过上位机通信的方式,给伺服驱动器回原点的命令信号。 5)伺服回原点的过程。伺服驱动器接收到plc发出的回原点指令后,根据伺服驱动器中设置的回原点方式,向一个方向,或者两个方向运动遇到近原点传感器后,变到一个很低的速度,也就是爬行速度,然后等待z相信号,z相信号接收到后,伺服自动停止。原点复归的过程都是伺服驱动器自动完成的,是伺服找原点,而不是plc找原点,所以近原点传感器和前后限位传感器是接到伺服驱动器上面的。

数控车床刀塔原理及改造

数控车床刀塔原理及改造 【摘要】本文主要介绍电动刀塔的结构和液压刀塔的改造。MJ-460数控刀塔原采用的电动刀塔,发生故障后,严重影响生产,采用国产液压刀塔成功地实现了进口意大利DUPLOMATIC电动刀塔的国产化改造,而且早期引进的数控车床刀塔大部分已经到达使用寿命,本次改造极大的提高了生产效率。 【关键词】刀塔;控制方式;可编程控制器 1.数控车床刀塔改造 MJ-460数控刀塔原采用的电动刀塔故障后,严重影响生产的情况,尤其是早期引进的数控车床刀塔大部分已经到达使用寿命,改造极大的提高了生产效率。 1.1 液压刀塔的工作原理及控制方式 结合图1.1举例说明一个8工位液压刀塔的工作原理。例如由一号刀换到四号刀。电磁阀A通电,刀盘松开。确认刀盘锁紧信号G没有感应,(刀盘已松开)电磁阀B通电液压马达带动刀盘开始旋转。开始刀位信号检测,当刀塔到达四号刀时,通过软件进行奇偶校验检测正确,电磁阀B立即断电刀塔旋转停止。 电磁阀A断电刀盘锁紧,刀盘锁紧信号G得到,确认刀盘锁紧,换刀过程结束[1]。 1.2 液压刀塔的控制方式 该液压刀塔的刀号识别:三个接近开关的状态排列组合代表不同的刀号,根据接近开关的状态确认当前的刀位。并通过相应电磁阀来执行控制的动作。(如表1.2是刀号与接近开关的对应关系表) 2.数控车床刀塔PMC控制程序编写 2.1 PMC编写过程 (1)将数控机床的PMC程序,使用CF卡从数控机床的ROM中传出。 (2)将PMC中原来的刀塔控制部分删除,重新编写刀塔的控制程序。 (3)将编写好的程序重新传入机床,对机床进行调试。使之符合要求,完成改造任务。 2.2 机床的PMC硬件

FANUC刀库设定

2.1刀库初始化参数 2.1.1C计数器的设定 该画面用于设定和显示功能指令的计数器(CTR:SUB5)的计数器的最大值和现在值。该画面上可以使用简易显示方式和注释显示方式。要移动到计数器画面,按下[计数器]软键。 请将C0的设定值输入您使用刀库的最大刀具。LD-XPFA-A3顺序PMC目前只支持斗笠16把,斗笠20把,刀臂24把,刀臂32把刀具。请勿使用其他数据,否则会报1011ATC TYPE(C0,D103)SET ERROR!的PMC 异警。 在C0的现在值位置输入你现在刀库对准换刀位的那把刀具的刀套号。C0在刀库使用中不可以设置为0或大于C0设定值的数据,否则会报1012CTR(C2)=0OR>MAG.CAPACITY!的PMC异警。

2.1.2D数据表的设定 数据表具有两个画面:数据表控制数据画面和数据表画面。要移动到数据画面时,按下[数据]软键。 (1)数据表控制数据画面([列表]画面)按下[数据]软键,出现用于管理数据表的数据表控制数 据画面。该画面上可以使用简易显示方式和注释显示方式。 在LD-XPFA-A3顺序PMC中,请将D数据表的地址D0一列的参数设置为00000001,数据设置应大于350。 设置完成后,强烈建议切断NC电源一次。 参数的具体设置含义如下:

(2)数据表画面([缩放]画面)设定了数据表控制数据时,从数据表控制数据画面按下软键[缩放],出现数据表画面。在此画面上,可以使用简易显示方式、注释显示方式和位显示方式。 1.在初次设置刀库时,请将D0设置为0,D1设置为1,D2设置为2……,依次设置,最大号为刀库的最 大刀套容量号。例如,C0的设定数位20,那就把D0至D20按照0至20的顺序依次设置。C0的设定数位24,那就把D0至D24按照0至24的顺序依次设置。 2.操作面板上的选择性停止,工作灯,单节执行,机械空跑,单节忽略,自动断电全部按下有效时,在 MDI执行M79指令,也可以达到重置刀库的目的,但必须指出,M79重置,限于刀臂24把,刀臂32把刀具的刀库。不适用于斗笠刀库。 3.D103是刀库设置开关,在不使用刀库的时候,设置为99。 4.如果安装斗笠16把,斗笠20把刀的刀库时,设置D103为1或2都可以。 5.如果安装的是刀臂的24把刀,32把刀刀库时,请设置D103为6。(如果你安装的刀库的近接开关是输 出为NPN形式,请设置D103为5) 设置完成后,强烈建议切断NC电源一次。

刀塔技术专题,伺服动力,动力伺服刀,转塔刀塔类技术资料

刀塔技术专题,伺服动力,动力伺服刀,转塔刀塔类技术资料[AT13140-0034-0001] 具有刀盘角度定位装置的车床伺服刀塔 [摘要] 一种具有刀盘角度定位装置的车床伺服刀塔,包括在一车床伺服刀塔上设置驱动部与刀盘部;此刀盘部是设置刀盘旋转轴带动位于刀盘承座上的刀盘,此刀盘承座具有相互垂直的纵向滑道及横向滑道;刀盘旋转轴具有数个围绕于其径向部位的角度定位槽;一刀盘角度定位装置是设置电磁驱动部控制纵向推动元件与横向推动元件,使纵向推动元件可于纵向滑道内滑动;并推动横向定位元件于相对应的横向滑道内滑动;使横向定位元件上的角度定位件与相对应的角度定位槽相互嵌卡,而将该刀盘固定于预定的旋转角度。本实用新型可准确的将刀盘部停止于预定角度。[AT13140-0040-0002] 旋转刀塔 [摘要] 本实用新型涉及一种用于数控车床车、铣、复合刀塔及加工中心机转塔式的旋转刀塔,它包括刀塔,所述刀塔中的一字形扁头刀柄座与导向座上的一字形导槽配合且沿导向座旋转转动。优点:一是V型槽刀柄更换时间短、速度快且便于更换;二是可安装多轴器及更换多轴器的功能,其钻孔、攻牙可一次性完成,作业时间缩短,大幅提高加工效率;三是承载力大、结构刚性好、使用寿命长、加工简单、制造成本低,便于设备维护、保养及维修的优点;四是旋转精度高,稳定性能佳。 [AT13140-0035-0003] 电气液复合自动刀塔 本实用新型涉及一种电气液复合自动刀塔,包括机座,其特征在于:所述机座内仅设有一根轴即主轴,所述主轴中部与机座上的缸体配合形成环形内腔,所述主轴中部外周对应连接有圆环形活塞使缸体内腔被分割成可与进、排气或液压管路连通的进、排气或液压腔,以实现圆环形活塞带动主轴做轴向往复运动,所述主轴一端连接有用于可安装多把刀具的刀盘,另一端设有主轴旋转驱动装置,所述刀盘和圆环形活塞之间的主轴外周部上设有两个可相对啮合和分离的端齿盘,靠近刀盘的端齿盘与主轴连接,另一端齿盘连接在机座上。本实用新型结构紧凑、传动机构简单、体积小,利用气或液压推动活塞缸实现主轴的轴向往复运动,污染小。 [AT13140-0048-0004] 立式液压伺服刀塔 [摘要] 一种立式液压伺服刀塔,壳体内有圆柱形腔体,腔体口有固定端齿盘,固定端齿盘与腔体之间有圆环形液压缸,腔体内有刀盘轴,刀盘轴的前端连有刀盘,刀盘上有活动端齿盘,刀盘轴的后端连有直齿轮,刀盘轴上有环形活塞,壳体上有与刀盘轴平行的蜗轮轴,蜗轮轴上有蜗轮和与刀盘轴直齿轮啮合的直齿轮,壳体上有与上述蜗轮相啮合的蜗杆,蜗杆连有伺服电机。本实用

台达伺服定位控制案例

X1 Y0脉冲输出Y1正转/反转Y 脉冲清除 4DOP-A 人机 ASDA 伺服驱动器 【控制要求】 ● 由台达PLC 和台达伺服,台达人机组成一个简单的定位控制演示系统。通过PLC 发送脉冲控制伺服, 实现原点回归、相对定位和绝对定位功能的演示。 ● 下面是台达DOP-A 人机监控画面: 原点回归演示画面 相对定位演示画面

绝对定位演示画面【元件说明】

【PLC 与伺服驱动器硬件接线图】 台达伺服驱动器 码器 DO_COM SRDY ZSPD TPOS ALAM HOME

【ASD-A伺服驱动器参数必要设置】 当出现伺服因参数设置错乱而导致不能正常运行时,可先设置P2-08=10(回归出厂值),重新上电后再按照上表进行参数设置。 【控制程序】

M1002 MOV K200 D1343 Y7 Y10 Y11 M20 M21 M22 M23 M24 M1334 Y12 M1346 M11 X0 X1 X3 X4 X5 X6 X7 M12 M13 设置加减速时间为 200ms Y6 M10 伺服启动伺服异常复位M0M1M2M3M4M1029 DZRN DDRVI DDRVI DDRVA DDRVA ZRST K10000 K100000K-100000K400000K-50000K5000 K20000 K20000 K200000 K200000 X2 Y0 Y0 Y0 Y0 Y0 Y1 Y1 Y1 Y1 M1M0M0M0M0M2M2M1M1M1M3M3M3M2M2M4 M4 M4 M4 M3 M0 M4 原点回归 正转圈 10跑到绝对坐标,处400000跑到绝对坐标,处 -50000定位完成后自动关闭定位指令执行伺服计数寄存器清零使能 反转圈10伺服电机正转禁止伺服电机反转禁止PLC 暂停输出脉冲伺服紧急停止伺服启动准备完毕伺服启动零速度检出伺服原点回归完成伺服定位完成伺服异常报警

FANUC数控机床机械原点的设置及回零常见故障分析

F A N U C数控机床机械原点的设置及回零常见 故障分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

FANUC数控机床机械原点的设置及回零常见故障分析 当前大多数数控机床均采用通过减速档块的方式回零,但谊方式在日常使用中故障率却艰高,有时甚至出现机械原点的丢失。本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对该类数控机床常见回零故障的各种形式式进行了分析与总结。 机械原点是机床生产厂家在生产机床时任机床上设置的一个物理位置,可以使控制系统和机床能够同步,从而建立起一个用于测量机床运动坐标的起始位置点,通常也是程序坐标的参考点。大多数机床在开机后都需要回零即回机械原点的操作。本文以FANUC系统的台中精机VCENTER-70加工中心为例浅析了数控机床机械原点的设置方法,并对此类数控机床常见回零故障的各种形武进行了分析与总结。 1 机械原点设置 1.1 机械原点丢失的原因 台中精机生产的VCENTER-70加工中心采用增量编码器作为机床位置的检测装置。系统断电后,工件坐标系的坐标值就会失去记忆,尽管靠电池能够维持坐标值的记忆,但只是记忆机床断电前的坐标值而不是机床的实际位置,所以机床首次开机后要进行返回参考点操作。而当系统断电遇到电池没电或特殊情况失电时,就会造成机械原点的丢失.从而使机床回参考点失败而无法正常工作。此时机床会产生。#306 n轴电池电压0#的报警信息,并且还会产生机械坐标丢失报警。#300第n轴原点复位要求”(n代指X、Y、Z)。

DMG各轴原点设定

X轴原点设定 1.在更换了X轴的直线电机或者光栅尺后,要对原点重新设定 2. 3.手动移动主轴到Y轴的中心点 4. 5.主轴调整到0度(垂直于X轴) 6. 7.移动X轴到接近中心的地方 8. 9.清理C轴中心圆孔 10. 11.在主轴上安装一个百分表,探针探入圆孔 12. 13.调整主轴转速到最低转速 14. 15.观察百分表的变化,慢慢移动X轴直到符合要求为止 16. 17.记录控制面板上的X轴的位置,这个数字就是X轴的ACTL 18. 19.调出X轴的机械位置尺寸REF,调出MP960.0 20. 21.将这两个字做对比,看差是多少 22. 23.将MP960.0的尺寸上±这个差值 24. 25.最好使用插入的方式 26. 27.修改成功后再验证测量一次即可 Y轴原点设定

2. 3. 手动移动主轴到接近X轴的中心点 4. 5. 主轴调整到0度(垂直于X轴) 6. 7. 移动X轴到中心的地方 8. 9. 清理C轴中心圆孔 10. 11. 在主轴上安装一个百分表,探针探入圆孔 12. 13. 调整主轴转速到最低转速 14. 15. 观察百分表的变化,慢慢移动Y轴直到符合要求为止 16. 17. 记录控制面板上的Y轴的位置,这个数字就是Y轴的ACTL 18. 19. 调出Y轴的机械位置尺寸REF,调出MP960.1 20. 21.将这两个字做对比,看差是多少 22. 23.将MP960.1的尺寸上±这个差值 24. 25.最好使用插入的方式 26. 27.修改成功后再验证测量一次即可 Z轴原点设定

2. 3. 手动移动主轴到X和Y轴的中心点 4. 5. 主轴调整到0度(垂直于X轴) 6. 7. 移动X轴到中心的地方 8. 9. 手动调节Z轴到接近于原始的机械位置 10. 11. 拿一个等高块放在工作台上,这个等高块最好接近并低于Z轴原点的测量尺寸 12. 13. 测量等高块的高度,并记住尺寸 14. 15. 将等高块放入主轴下方,慢慢降低Z轴到接近等高块,留有小于1MM的间隙 16. 17. 这时放一个百分表进去,将百分表的位置调到0位 18. 19. 上升主轴,用一个平板测量等高块和百分表的差值,记住这个差值,将这个差值加在等高块的尺寸上 20. 21. 这个尺寸就是当前Z轴的实际位置ACTL 22. 23. 将这个数值和之前的REF做比较,算出差值,看差是多少 24. 25.调出MP960.2,进行修改 26. 27.最好使用插入的方式 28. 29.修改成功后再验证测量一次即可 C轴原点设定

12刀位星型伺服刀塔设计毕业论文设计(可编辑)

12刀位星型伺服刀塔设计毕业论文设计 目录 前言 1 1 绪论3 1.1 数控机床发展历程以及国内外发展现状的思考 3 1.2 数控机床的发展趋势 4 1.3 研究方法 5 1.4 设计内容 5 2 运动学与动力学计算9 2.1 伺服电机的选择计算9 2.1.1选择电动机的类型9 2.1.2选择电动机的功率9 2.2 计算总传动比及分配各级传动比10 2.3 计算传动装置的运动和动力参数11 2.3.1计算各齿轮的转速11 2.3.2计算各齿轮的功率12 2.3.3计算各齿轮的转矩12 3 传动零件的设计计算13 3.1 齿轮的设计计算13 3.1.1电机到刀盘的传动链的设计计算 13

3.1.2电机到刀具的传动链的设计计算 20 3.2 轴的设计计算 30 3.2.1轴1的设计计算 30 3.2.2轴2的设计计算 33 3.2.3轴3的设计计算 34 3.3 刀盘的设计36 4液压系统的设计与计算38 4.1 液压油泵的选择38 4.2 液压缸的设计 38 4.2.1 选择液压缸类型38 4.2.2液压缸主要尺寸的计算38 4.3 拟定液压系统图40 5箱体的设计与计算41 5.1 确定箱体内传动件轮廓及其相对位置41 5.2 箱体内壁位置的确定42 5.3 箱体主要结构尺寸的确定42 总结44 致谢45 参考文献46 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下

进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名: 日期: 指导教师签名: 日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名: 日期: 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名: 日期:年月日

FANUC加工中心Z轴无法回原点

无法回原点有几种情况: 以下回答参考《FANUC 0i 系列维修诊断与实践》P217~P223 7-1. 机床不能正常返回参考点 参考点(Reference point)——是数控厂家通过在伺服轴上建立一个相对稳定不变的物理位置作为参考点,又称电气栅格。 所谓返回参考点,严格意义上是回到电气栅格零点。(数控机床分为机械坐标零点、工件坐标零点、电气栅格零点——参考点,相关说明请参看有关厂家的编程、操作说明书)。 我们加工时所使用的工件坐标零点(G54~G59),是在参考点的基础上进行一定量的偏置而生成的(通过参数)。所以当参考点一致性出现问题时,工件零点的一致性也丧失,加工精度更无从保证。 目前建立参考点的方式主要分为两种: ⑴增量方式,也称为有档块回零(reference position with dogs)——在每次开电后,需要手动返回参考点,当“机械档块”碰到减速开关后减速,并寻找零位脉冲,建立零点。一旦关断电源,零点丢失。 ⑵绝对坐标方式(absolute-position detector)——每次开电后不需要回零操作,零点一旦建立,通过后备电池将绝对位置信息保存在特定的SRAM区中,断电后位置信息也不丢失,这种形式被称为绝对零点。 下面以这两种不同的回零方式,分别讨论不能正常返回了零点的影响因素及解决方法。 7-1-1. 不能正常返回参考点(增量方式) 其故障表现形式为: 情况1:手动回零时不减速,并伴随超程报警 情况2:手动回零有减速动作,但减速后轴运动不停止直至90# 报警——伺服轴找不到零点 情况3:手动回零方式下根本没有轴移动 那么我们从分析整个返回参考点的工作过程和工作原理入手。 原理及过程 (1)回参考点方式有效(ZRN)(MD1/MD4)——对应PMC 地址G43.7=1,G43.0=1/G43.2=1 (2)轴选择(+/-Jx)有效——对应PMC 地址G100~G102=1 (3)减速开关读入信号(*DECx)——对应PMC 地址X9.0~X9.3 或G196.0~3=1,0,1 (4)电气栅格被读入,找到参考点。 这里需要详细说明的是“电气栅格”。FANUC 数控系统除了与一般数控系统一样,在返回参考点时需要寻找真正的物理栅格——编码器的一转信号,或光栅尺的栅格信号。并且还要在物理栅格的基础上再加上一定的偏移量——栅格偏移量(1850#参数中设定的量),形成最终的参考点。也即“GRID”信号,“GRID”信号可以理解为是在所找到的物理栅格基础上再加上“栅格偏移量”后生成的点。 FANUC 公司使用电气栅格“GRID”的目的,就是可以通过1850# 参数的调整,在一定量的范围内(小于参考计数器容量设置范围)灵活的微调参考点的精确位置,这一点与西门子数控系统返回参考点方式有所不同。而这一“栅格偏移量”参数恰恰是我们维修工程师维修、调整时应该用到的参数。 故障原因

三菱伺服电机怎样回原点

三菱伺服电机怎样回原点 工业高度发达的今天,已经是信息时代,每天大量的信息涌入我们的脑海,总有太多了解不透的东西。现在行业越来越细分,隔行如隔山,不管在哪个小领域,只要我们做的足够好,总是会有立足之地。三菱伺服电机也是比较专业的设备,很多问题都要专业的人才能解决。随着工业的发展,三菱伺服电机运用的领域也很多。可以用于工作机械和一般工业机械等需要高精度位置控制和平稳速度控制的应用,也可用于速度控制和张力控制的领域。 在使用三菱伺服电机时也常会碰到一些问题,如三菱伺服电机hc-kfs23怎样回原点?工程师是想此电机断电后,我人为转动丝杆到任何位置,再上电。伺服电机仍可准确找到原点位置,没有任何外部原电接近开关。要实现这个功能,大家给出的建议是,要使用绝对位置系统,它会记得我们的绝对原点位置。但要求在驱动器里装锂电池,来保存位置数据。如果没有电池保证供电,伺服电机没有电源,也就没办法记住原点的位置,三菱伺服电机怎样回原点解决办法要看具体原因。 有时我们会遇到更麻烦的问题,三菱伺服电机怎样回原点,一位工程师用了一套三菱伺服系统(FX-2N的PLC,FX2N-1PG,

MR-E伺服,三菱HC-KF电机),使用时候,按照说明编写程序开机找原点,出现的问题是,到了原点感应器后,1PG立即 反向运行不停止,直到驱动器报警,到极限感应器也不停止。这问题得好好分析一下,只有理清思路才能解决问题。 三菱伺服电机怎样回原点这个问题,感觉应该是在转动的过程中,没有找到零点的脉冲。到极限也不停止,一个要看你极限开关的信号进入系统有没有,系统有没有检测到,还要看你编程对不对,编程时我们有时因为一个小小的细节没注意,当它反应出来时就会是个大问题,我们写程序时一定要仔细检查两遍。不要等到后面出了问题再到处找原因,三菱伺服电机怎样回原点这个问题是不复杂的。 程序执行原点回位后,接受到了PGO信号后,1PG立即输出反向脉冲。一直运转,到了极限感应器不停止,程序接收到极限感应器信号了,但是1PG的信号没有清0,一直有回原点的反向输出,驱动器报警了还在输出。 三菱伺服电机位置控制有两种方式,一种是相对位置的控制方式,只要将下一步位置和当前位置作比较就会知道。另一种是绝对位置的控制方式,一直和零点位置作比较。这两种方式都熟悉了后,

相关文档
相关文档 最新文档