文档库 最新最全的文档下载
当前位置:文档库 › 射流式喷射搅拌器与旋转喷嘴技术性能对照表

射流式喷射搅拌器与旋转喷嘴技术性能对照表

射流式喷射搅拌器与旋转喷嘴技术性能对照表

SL射流式喷射搅拌器与旋转调合喷嘴

技术性能比较对照表

搅拌器调合原理图

比重2介质层

比重3介质层

比重4介质层比重5介质层喷射流体柱

比重1介质层

储罐调合过程状态旋转喷嘴在储罐内调合原理图

旋转喷嘴储罐调合状态

中比重介质层

低比重介质层

高比重介质

喷射流体柱

大比重介质沉降流道

同时具有调合、防止沉积、辅助清洗

保护储罐的功能

仅具有调合功能

由于喷射喷嘴角度不断变化,储罐内的流体流态同时不断变化,喷射流态迭加成扩散球面,无静电积聚的条件。由于喷射流体仅向上固定斜角喷射,形成固定流道,喷射过程有可能产生的静电会在储罐液体上表面积聚。

由于喷射喷嘴角度不断变化,喷射流由于喷射流体仅向上固定斜角喷射,形成固定流道,喷射流体冲量矢量角

文丘里管射流装置的结构及工作原理

文丘里管射流装置的结构及工作原理 作者:西南科技大学王海军 着现代工业的加速发展,在工农业生产的诸多领域对射流技术的需求日渐广泛。如金属切割、打磨、工件的表面清洗等,因此,提高射流装置的效率,降低其成本,具有重要意义。现有的液体加压射流喷射器装置,主要是以气压机与泵相结合的加压喷射器装置为主。进入2O世纪8O年代以来,各国多把注意力集中在如何形成一种特殊的脉冲射流发生器上,许多研究人员为此进行了大量的研究与实验,提出了各种类型的脉冲水射流发生装置,但对于改进射流喷头方面并没有太大的发展,尤其是结构的简化方面。传统设备在生产工艺上虽然可以满足实际需求,但是其结构复杂、体积相对较大,且不能满足一些特殊的要求,如强腐蚀性液体、磨液、易堵高粘稠性液体等对设备损坏较大,造成设备无法正常运行,折旧速度加快。笔者利用文丘里管结合气压机的射流装置,革新了喷射器部分。在本设计中真空度主要由“文丘里管(真空泵主要构件)”产生,而且可以达到要求;若采用两根“文丘里管”串连,则产生的真空度达原来的十几倍。射流的压力大小主要由速度决定,调节气流的相关参数即可以对射流进行调节。本设计将原有普通连续水射流喷射器结构与文丘里管结构相结合,利用喷管高压空气流从小孔吹出的方式而使液室产生真空引力引起气液在混合室混合。因此,可以由空气吹出速度的大小来调节真空度的大小。该装置减少了原有的加压喷射器需要泵提供液体注入动力,节约了能量、减小了体积。

图1 文丘里管射流实验装置结构示意图 压力表1、2、3分别测量文丘里管人口、喉、出口,B1、B2分别为调节阀,α、β分别为文丘里管的前后倾角。其中α=15° β=12°,管直径a=50 mm,文丘里管的喉部直径b=15.6 mm,全管的长度为400 mm。 2 分析与结果 2.1 原理 文丘里管射流装置的工作原理可以用伯努利方程和连续方程来表达: 伯努利方程: 连续方程: V· A=常数 (2) 式中,V-流体流速,m/s;g——重力加速度,n;ρ——流体压力,Pa;γ——流体比重,M/n3;z--流体势能,m;A——过流截面,m2。 文丘里管的流量特征可用下式表示:

高压清洗机连续水射流清洗喷嘴的种类及结构

目前,高压清洗机在我国各个工业领域已经逐渐得到推广应用,而且呈逐步扩大趋势。其重要部件高压喷嘴是高压清洗机应用中获得高能量利用率的关键因素之一,对高压水射流的清洗质量有明显的影响。经过实验,如果喷嘴的质量差或者耐磨性不够,将引起高压水射流质量恶化,最终导致设备大部分功率浪费掉。 首先,喷嘴是流体射流的发生元件,它的功能不但是把高压泵或增压器提供的静压转化为水的动压,而且应保证水射流具有优良的流动特性与动力特性。其次,喷嘴又是清洗除垢的执行元件,其传输功率会影响清洗效果,因此喷嘴在高压清洗机整体中的作用至关重要。 一、连续水射流清洗喷嘴的种类及结构介绍: 1、按内孔横截面形状可分为:圆锥收敛形、圆锥圆柱形和流线型喷嘴等; 2、按出水射流形状可分为:圆柱型、扇形、锥形、雾化型等。 其中,圆锥圆柱形喷嘴由于其流量系数大,是目前最常用的高压喷嘴,结构图如下: 圆锥收敛形喷嘴 圆锥收敛形喷嘴

。 特点:射流聚集性差,适用于中、低压水射流,制作材料一般采用合金钢。圆锥带圆柱形喷嘴 特点:射流聚集性较好,适用于中、低压水射流,制作材料一般采用合金钢。收敛扩散形喷嘴

特点:产生有效的空化作业,适用于中、低压淹没水射流,制作材料一般采用合金钢。 喇叭口形喷嘴 特点:射流穿透力强,适用于高压和超高压水射流,制作材料为宝石。 流线形喷嘴 ;

特点:射流聚集性好,阻力小,设计、加工难度大,制作材料一般采用合金钢。 二、喷嘴流量、压力、喷孔孔径的关系: 高压清洗机当喷射压力与喷嘴孔径设定后,喷射流量可按照如下公式计算: 公式(1) 喷枪喷嘴取,柔性喷杆取。 通过公式(1)可看出,当喷嘴直径确定后,只有压力达到一定值时,流量才达到泵的排量,其关系曲线如下图:

全射流喷头综述

全射流喷头研究综述Array【摘要】与摇臂式喷头相比,全射流喷的水力性能更好、成本更加低廉。因此对 全射流喷头的研究对节水灌溉技术的发展有重要意义。我国从80年代起对全射流喷头进行投入研发,有成型的产品,但未能在生产中广泛推广。现代的研究者为实现全射流喷头的生产化、实用化进行了更多的研究,并用多种软件对其进行模拟计算,这也是喷头研究的重要趋势。 【关键字】全射流喷头、发展现状、存在问题、研究趋势 0、引言: 在目前的生产实践中,喷灌中使用较多的喷头包括摇臂式喷头和全射流喷头,其中大多数为摇臂式喷头。它虽然有很多优点,但也存在着不足之处。摇臂式喷头由流道、旋转密封机构、驱动机构、换向机构等几部分组成。由于它是靠摇臂敲打喷体获得驱动力矩,扇形喷洒喷灌的换向机构复杂,故障多,对工作寿命以及稳定性有一定影响。 全射流喷头是利用水流附壁原理来实现喷体的步进和反向转动功能的喷头。在水力性能方面,由于在出口前工作区内就已经渗入大气,喷射出来的水流喷灌均匀度、雾化程度都明显好于其它型式的喷头。在结构方面,与摇臂式喷头相比,运动部件少,无撞击部件;结构相对简单。全射流喷头制造成本将比同型号的摇臂式喷头降低30%。这在理论和实际试验中都得到了证明。 国外发展喷微灌的经验表明,喷头的普及与推广与农民购置能力有密切关系,我国的国情决定了农民很需要既节约水量又节约资金的喷灌设备。因此对全射流喷头这种水力性能较好、价格又低廉的研究是很有必要的。 1、全射流喷头发展历史及现状: 1.1、喷头产品生产状况: 全射流喷头在1975年由水利部立项开发,中国科学院力学研究所为组长单位,江苏大学(原镇江农业机械学院)为副组长单位,进行系统的研究开发。由于种种原因,后来的全射流喷头研究在全国分为三个课题组分别进行研究。全射流喷头是我国独创的节能节水产品,20世纪80年代已完成该结构的初步研究。最终得出几种不同形式的全射流喷头,具体种类结构如下[2]。 (1)由江苏大学研究开发的PSF型反馈式步进全射流喷头。1984年PSF型反馈式步进全射流 喷头曾获机械工业部科技进步二等奖。结构图如图一:

搅拌器的设计原则

搅拌器设计原则 如需设计一款搅拌器,要求暂设为以下数据:搅拌反应釜为开启式的,也就是说无压力自然环境下工作,为圆柱筒状,直径27cm,搅拌液体粘度很低,接近于水,液体深度有20cm;要求设计一款搅拌器桨叶,能够适合该种液体的搅拌。 分析,搅拌桨叶有很多种,大致有涡轮式、锚式、浆式、推进式、框式等如下: 1:有平桨式和斜桨式两种。平桨式搅拌器由两片平直桨叶构成。桨叶直径与高度之比为4~10,圆周速度为1.5~3m/s,所产生的径向液流速度较小。斜桨式搅拌器的两叶相反折转45°或60°,因而产生轴向液流。桨式搅拌器结构简单,常用于低粘度液体的混合以及固体微粒的溶解 和悬浮。 桨式搅拌器(图一) (图二) 2:由2~3片推进式螺旋桨叶构成(图2),工作转速较高,叶片外缘的圆周速度一般为5~15m/s。旋桨式搅拌器主要造成轴向液流,产生较大的循环量,适用于搅拌低粘度(<2Pa·s)液

体、乳浊液及固体微粒含量低于10%的悬浮液。搅拌器的转轴也可水平或斜向插入槽内,此时液流的循环回路不对称,可增加湍动,防止液面凹陷。 旋桨式搅拌器(图三) 3:由在水平圆盘上安装2~4片平直的或弯曲的叶片所构成桨叶的外径、宽度与高度的比例,一般为20:5:4,圆周速度一般为3~8m/s。涡轮在旋转时造成高度湍动的径向流动,适用于气体及不互溶液体的分散和液液相反应过程。被搅拌液体的粘度一 般不超过25Pa· 涡轮式搅拌器(图四)

(图五)折叶圆盘涡轮式涡轮式搅拌器 图六)平直叶圆盘涡轮式90°平刃涡轮式搅拌器 45°平刃涡轮式搅拌器 (图七)折叶圆盘涡轮

涡轮叶片弯曲式搅拌器 (图八) 投涡轮叶片式搅拌器

水射流术语

水射流常用术语词汇表 A Abrasion 磨耗,磨损Abrasive 磨料Abrasive jet 磨料射流Abrasive nozzle 磨料喷嘴Abrasive particle 磨料颗粒Abrasive suspension jet 磨料浆体射流Advanced ceramics 高级陶瓷 Air jet 空气射流Autoclave 蒸压器,高压釜 B Back thrust 后推力,后座力Blasting 喷射Borehole 扩孔,孔眼Breaking 破裂,碎裂Brinell hardness 布式硬度Brittle material 脆性材料 Bur 毛刺,鳞片 C Cannon 炮,短粗管Carbon dioxide 二氧化碳Cavitation 空化Cavitation erosion 空蚀,汽蚀Cavitating jet 空化射流Centrifugal pump 离心泵Chemical erosion 化学冲蚀Check valve 单向阀Chipping 碎片,碎屑Cleaning 清洗,清净CMC 羧甲基纤维素Coal mining 采煤,采矿Coating removal 涂层清除Composite 复合物,复合材料Compressive strength 抗压强度Concrete 混凝石,混凝土Continuous jet 连续射流Contraction 收缩 Control valve 控制阀Culmination 顶点,极点 Cut 切割,切削Cutting 切割,切屑 D Deburring 去毛刺,除鳞Decommissioning 拆除Decontamination 净化,清除Descaling 除垢,除锈Discharge 排出,排量Discharge coefficient 流量系数Dismantling 拆卸,拆除Disposal 处理,废弃Drilling 钻进,钻孔Droplet impact 液滴冲击Ductile material 塑(韧)性材料Dump valve 卸荷阀,切断阀Dwell time 停滞时间Dynamic pressure 动压力 E EDM machining 点火花加工Elasto-plastic method 弹塑性方法

射流曝气器

射流曝气器 射流曝气器是向曝气池内曝气的废水装置,是废水活性污泥法生物处理系统曝气装置的一种类型。由水泵将泥、水混合液打入射流曝气器喷嘴,并高速喷出,在射流曝气器内,氧转移过程的实现是在这个射流曝气器喷嘴周围使压缩空气(或空气直接吸入)与泥水混合液混合并在吼管中强烈搅动,气泡被粉碎成雾状,继而在扩散管中由于速头变成压头,微细气泡进一步被压缩,氧即迅速转移到混合液,从而强化了氧的转移过程,氧转移效率可提高到30-35%以上。思源水业工程射流曝气器。 结构参数: 1、喷嘴形状。喷嘴形状有多种,如圆薄壁孔板形、流线形、圆锥形收缩及多孔喷嘴等。其中以流线形喷嘴效率最好,但因其加工困难,所以不如圆锥形喷嘴使用范围广泛。圆薄壁孔板形喷嘴的射流紧密段较短,射流具有较高的破裂率,所以其喉嘴距较短。由于喷嘴口径的尺寸对射流器的影响很敏感,因此要考虑防锈问题,一般喷嘴的材料常用不锈钢、铜或者其它材料进行镀铬处理。 2、喷嘴收缩角(对圆锥形收缩喷嘴而言)或喷嘴直径。由于射流器的工作介质为污水或污水与活性污泥的混合物,从防止喷口堵塞方面来考虑,喷口直径不宜太小,但从射流器在整个曝气池中曝气与气液的均匀性以及在操作运转的灵活性等方面考虑,喷口直径也不宜过大。一般直径为25mm左右为宜。 3、吸气室。它是喷嘴和喉管共同的固定基础,进气管与之相连。吸气室一般为圆筒状,气体截面积为喷嘴出口面积的6~10倍。根据吸入流体与工作液体的流动方向可把吸气管设计成与工作液体平行或斜交(垂直)两种。一般认为吸入气体的进入方向和工作水的进入方向之夹角以40~60°为好,夹角线与喷嘴管轴线交点宜在喷嘴之前,这样可防止进气直径冲击入射水。 4、喉管进口段。它把吸气室与喉管连接起来。为了减少被吸入气体的能量损失,一般采用收缩圆锥形或光滑曲线形,其收缩角在13~120°之间。当喉管喷嘴面积比m(m指喉管截面与喷口截面之比)小时,收缩角取小值;喉管喷嘴面积比m大时,收缩角取大值。也有人认为收缩角宜在30~60°之间。 5、喉嘴距,即喷嘴出口断面到喉管入口断面之间的距离。这段距离对射流器充氧效果来说是不利的,故要求做得越短越好。它一般在(0.5~2)d喷嘴的范围内。当喉管较短时,适当增大喉嘴距,可以防止射流穿透喉管而不起混合作用。 6、喉管长径比(L/D)及喉管喷嘴面积比(m)。用射流器来曝气,喉管是一个关键部件。由于引射介质为空气,按照曝气充氧的要求,一方面希望气泡被“切割”越小越好,这就要求工作介质与引射介质之间要进行剧烈的紊动混合作用。喉管的适当长度及大小(一般用喉管截面与喷口截面之比m来表示),对加强氧的转移作用以及为充分发挥活性污泥的生物学特性具有重要作用。另一方面也希望能抽吸更多的气体,以满足废水生物处理的供氧要求,前者要求混合管的直径偏小为佳,而后者要求偏大为好,两者之间的要求看似矛盾,但从氧的转移及动力消耗这两方面来考虑,两者之间又存在着一个最佳值,因为自吸充氧,混合管直径要求不宜过大,否则高速射流在混合管部分不起紊动混合作用,而同时混合管的长度也不宜过小,否则射流会直接穿透混合管而不起混合、掺混作用。喉管的长度不但影响其本身的工作,而且影响在它后面的扩散管的工作:喉管越长,其中的摩擦损失越大,出口处速度分布越均匀,扩散管中的损失就越小:喉管越短,其中的摩擦损失越小,它的出口处速度越不均匀,它后面的扩散管中的损失就越大;为了减少摩擦损失和扩散损失,这样就存在一

搅拌器型式2

搅拌器的分类 搅拌器共分为十大类,分别为以下几种: 1、二叶浆式搅拌器 1)平直叶浆式PJ/PCJ 最基本的一种浆型,低速时以水平环流为主;高速时为径向流;有挡板时,为上下循环流。适用于低粘度液体的混合、均匀、调和、溶解、传热或结晶,或在高粘度下,一般在层流状态工作,采用多层大直径低速搅拌。 2)斜叶浆式XJ/ZJ 可制成24o、45o或60o倾角,有轴向和径向分流。 3)弧叶浆式HJ/HCJ 新开发的一种类型,可替代XJ、ZJ。在同等使用条件下,排出性能比XJ高30%,功率水平可持平。综合性能优于XJ。 4)双折叶浆式SCJ/CCJ

多段逆流型搅拌器,运行时促进液体形成较大的轴向循环,一般多层搅拌组合使用。特别适用于过渡流域下的混合、固液悬浮、液液分散、溶解、传热等。 5)复合折叶浆式FJ/FDJ 高效轴向流叶轮,在主叶片上增加了一个辅助叶片,该辅叶片能消除主叶片后端发生的流动剥离现象,使搅拌功率减少,同时在叶端能发生交叉的垂直分流、提高混合效果。适用于中、低粘度的混合、分散、传热。特别适用于大型灌槽的固液悬浮。 6)螺旋叶浆式AJ/ACJ 与罐体相适应的弧形叶片并与斜叶浆式组合,适用于中高粘度的混合、均质、传热、反应等。一般多层组合使用。具有双螺带浆的特点。 7)曲边斜叶式QJ

斜叶浆式的一种类型,浆底旋转面接近本容器的椭圆面,浆叶平面与旋转轴垂直面又称倾角45o,兼起刮板作用,多为低转速运行,可在过流或层流区操作。 8)菱臂孤叶BJ/BCJ 本搅拌器桨叶类型特别,是行业内专用搅拌,适用于漂洗、浸染类操作,多为低速范围层流操作。 9)花板孔式FJ/FCJ 左右两桨叶一高一低,不以轴对称,低速运转,层流状态下有较好的微观剪切效果,行业专用搅拌器。用于纤维物料的操作,也可用于摆动操作。 2、开启涡轮式搅拌器 1)平直叶开启涡轮PK/PKS/PCK/PKW

高压水射流喷嘴设计

本科毕业设计(论文)通过答辩 摘要: 高压水射流技术是近三十年来发展起来的一项新技术,在采矿、冶金、石油、建筑、化工、市政建设及医学领域得到广泛应用并取得可喜的成果。从原理上讲,它与世隔绝我国煤矿中使用已久的水力采煤技术基本相同,都是把具有一定压力的水通过直径较小的喷嘴形成射流,将这股射流作为工具进行切割、破碎和清洗物料。所不同的只是高压水射流的水压更高、喷嘴直径更细而已。水力采煤中使用的水压通常为5~15MP,水枪出口直径为15~30mm;而高水射的水压一般在30MP以上,有的高达数百兆帕,喷嘴直径则在2mm以下,最小的可达0.1mm。因此高压水射流可以在很小的区域内集中极大的能量,例如100MP的高压水射流的能量束密度可以与激光束相匹敌。 本毕业设计题目是水射流采煤机切割装置设计。主要阐述了高压水射流技术在采煤机上的应用之背景,优缺点和所需要解决的问题等方面的内容。 高压水射流和采煤机联合进行破煤是一门新技术,需要解决的问题还很多。本设计主要是关于喷嘴在滚筒上的布置,水路控制系统和高压旋转密封等方面作初步的尝试。设计了一种用高压水射流控制水路,水射流辅助截齿破煤的滚筒结构。 关键词:水射流;截齿;喷嘴;滚筒

1 水射流采煤综述 1.1高压水射流概述 煤炭作为我国一次能源的主体,它的持续、稳定和协调发展,无疑具有重大意义。采掘机械的技术水平则是发展煤炭工业中的关键环节。加强采掘机械的科学技术研究工作是煤炭工业增产、节约能源消耗、保障工人安全、高效率等方面的发展的重要技术手段。 高压水射流技术是近几十年来逐渐发展起来的一门新兴技术。它的应用发展日趋成熟和广泛。在这种形式下,人们试途将高压水射流技术应用于矿山机械中,特别是采掘机械中,已经取得初步成果。这必将推动煤炭工业的进一步发展。 高压水射流的基本原理是将具有一定的压力水通过直径较小的喷嘴形成的射流,并将这股射流作为工具进行破碎、切割和清洗等工作。一般水压在30MP以上,而喷嘴的直径仅在2mm以下。这样形成的水射流具有极高的能量,从而具有很强的打击力。高压水射流系统一般有如下几部分组成:压力源、喷嘴及其控制装置和连接它们的高压管以及其它。其附示意图如下: 图1-1

喷头的种类及工作原理

第二章喷头第一节喷头的种类及工作原理第二节喷头的基本参数、性能指标和影响因素第三节摇臂式喷头结构第四节喷头的选型与布置 1 第一节喷头的种类及工作原 理喷头是喷灌机与喷灌系统的重要组成部分。它的作用是把有压水流喷射到空中,散成细小的水滴,并均匀喷洒在灌溉土地上。因此喷头的性能、结构形式及制造质量的好坏将直接影响喷灌的质量。2 喷水量喷头性能工作压力射程喷头的种类和工喷作原理射流式喷头的水头力学原理摇臂式喷头的结构 3 喷头的种类和工作原理按其工作压力和射程的大小可以分为低压喷头或称近射程喷头、中压喷或称中射程喷头和高压喷头或称高射程喷头其划分界线大致可以按表1所列的范围分类。目前用得最多的是中、近射程喷头,因为它消耗的能量较小,而且比较容易得到较好的喷灌质量。按照喷头的结构型式与水流性状可以分为旋转式、固定式和孔管式三种4567喷头按其工作压力和射程的大小分类喷头类别低压喷头中压喷头高压喷头性能工作压力1~3 3~5 5 (kg/cm2喷水量(m3/h )40 射程(m)40 8 反作用式旋转式喷头叶轮式喷摇臂式头按离心式其固定式喷头缝隙式结构折射式分类多列孔管管孔式喷头单列孔管9 固定式喷头折射式喷头离心式喷头10特点:喷灌过程中,所有部件固定不动,水流以全圆或扇形同时向四周散开水流分散,射

程小(5~10m)喷灌强度大水滴细小,工作压力低结构简单,工作可靠,寿命长用途:公园、苗圃、温室等11 旋转式喷头根据转动机构的特点,将旋转式喷头分为摇臂式、叶轮式、和反作用式齿轮式四种。齿轮式、摇臂式喷头分别是农业和草坪灌溉中最广泛的两种喷头12第二节喷头的基 本参数、性能指标和影响因素对于一个好的喷头,既要要求其机械性能好,即结构简单,工作可靠;又应要求其水力性能好,也就是满足喷灌的主要技术要求(喷管强度小于土壤入渗率,水滴直径细和喷头组合以后的水量分布均匀),而且在同样工作压力和同样流量条件下射程最远。这些要求事相互矛盾的,互相制约的。我们在设计和使用喷头时应全面考虑各方面的要求。不可以片面追求某一指标而忽视其他技术要求,例如,我们不可以追求射程远,而不顾水滴直径和水量分布的要求。而且影响某一水力参数的因素都有好几个。为了能正确使用和设计喷头,我们就需要了解影响这些水力参数(射程、喷洒均匀度和水滴直径)的因素,以便实践中根据需要调节或选择这些水力参数,使之符合身产的要求。13 1、喷水量喷喷水量或称喷头流量是指喷头在单位时间头内,喷射出来的水体积。的性表示符号:q 常用单位:m3/h 有时也用能L/s表示转换关系:1L/s=3.6 m3/h 测定方法:常采用体积法,循环水池三角堰或水表测定。14 计算喷头流量的半经验方程:

搅拌器及其选型

小直径高转速搅拌机的选型及使用 目前在SW中国的几个工厂使用最多的搅拌设备是小直径高转速搅拌机。其中尤其以涡轮式搅拌器(齿式叶片)为主,推进式搅拌器(桨状叶片)为辅,其他形式的叶片就更少了。现仅以前二种搅拌机为例,互相学习探讨一下相关的问题。 一、搅拌 搅拌是使釜(或槽)内物料形成某种特定方式的运动(通常为循环流动)。 搅拌注重的是釜内物料的运动方式和剧烈程度,以及这种运动状况对于给定过程的适应性。

二.小直径高转速搅拌机1.种类: (1)。推进式搅拌器 (2)。涡轮式搅拌器

(1)推进式搅拌器(旋桨式搅拌器) 其叶轮直径较小,通常仅为釜直径的0.2~0.5倍,但转速较高,可达 100~500r/min。 叶片端部的圆周速度较大,可达5~15m/s。 工作原理: 工作时,推进式搅拌器如同一台无外壳的轴流泵,高速旋转的叶轮使液体作轴向和切向运动。 液体的轴向分速度使液体沿轴向向下流动,流至釜底时再沿釜壁折回,并重新返回旋桨入口,从而形成如图3-3所示的总体循环流动,起到混合液体的作用。 液体的切向分速度使液体在容器内作圆周运动,这种圆周运动使釜中心处的液面下凹,釜壁处的液面上升,从而使釜的有效容积减小。下凹严重时桨叶的中心甚至会吸入空气,便搅拌效果急剧下降。 当釜内物料为液-液或液-固多相体系时,圆周运动还会使物料出现分层现象,

起着与混合相反的作用,故应采取措施抑制釜内物料的圆周运动。 推进式搅拌器的特点是液体循环量较大,但产生的湍动程度不高,常用于低黏度( <2Pa·s)液体的反应、混合、传热以及固液比较小的溶解和悬浮等过程。 (2)涡轮式搅拌器(齿状叶片为例) 该搅拌器有多种型式。大部分盘状叶片都属此类(如齿状叶片)其叶轮直径亦较小,通常也仅为釜径的0.2~0.5倍,转速可达10 ~ 500 r/min,叶端圆周速度可达4~ 10m/s。

压力与流量计算公式

压力与公式: 的Kv ,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv 的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的系数Kv 值。调节阀额定流量系数Kv 的定义是:在规定条件下,即阀的两端压差为 10Pa,流体的密度为lg/cm ,额定行程时流经调节阀以m/h 或t/h 的流量数。 1.一般液体的Kv 值计算 a.非阻塞流 :△ P时 当P2≤时 式中:Qg -下气体流量Nm/h Pm-(P1+P2)/2(P1 、P2 为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN> 10MPa) 当P2>时 当P2≤时 式中:Z-系数,可查GB/T 2624-81 《的设计安装和使用》 3.低修正(高液体KV 值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在

Rev<2300 时流体处于低速层流,这样按原来公式计算出的KV 值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度,由Rev 查FR-Rev 曲线求得;QL-液体流量m/h 对于单座阀、阀、等只有一个流路的阀 对于双座阀、等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体mm/s FR -Rev 关系曲线 FR-Rev 关系图 4.水蒸气的Kv 值的计算 a. 当P2>时 当P2≤时 式中:G―kg/h ,P1、P2 含义及单位同前,K-修正系数,部分蒸汽的K 值如下::K =;氨蒸汽:K=25;11:K=;、蒸汽:K =37;、蒸汽:K=;、蒸汽:K=。 b.过热水蒸汽 当P2>时 当P2≤时 式中:△ t ―水蒸汽℃,Gs、P1、P2含义及单位同前。那么如何计算选择电动水阀口径?工程上我们常用的是通过计算的流量系数(Kv/Cv )值来推导电动水阀口径,因为流量系数和水阀口径是成对应关系的,换句话说,流量系数定了,水阀口径大小也就确定了。水阀流量系数(Kv/Cv )采用以下公式计算:Cv=Q/ΔP1/2 其中Q-设备(/)的冷量/热量或风量ΔP- 为调节阀前后压差比理论上讲,在不同的空调回路中,ΔP值是不同的,是一个动态变化的值,取值范围一般在1-7 之间。但由于在流量系数的计算过程中ΔP 是开取值,所以对Cv 计算影响并不是很大。因此,在工程设计中一般选ΔP值为4。举例来说,假设1 台技术指标值如下:风量:8000 M3/H 冷量:KW 热量:KW 余压:410 PA 功率:2KW 如何选用调节水阀?首先,我们计算流量系数Kv/ Cv 值Cv=Q/ Δ P1/2=*2= Kv=Cv/== 然后计算出来的流量系数Kv/ Cv 选用与其相适应口径的调节水阀。 与流速的关系:气体的流速越大,越小。 1 压力 根据原理,Pc与进口压力P1(绝压)的比值称为临界压力比pβ,即β=Pc /P1 从此式可看出气体的临界压力比β 只与气体的比热比n 有关,气体的比热比可看作为一,不同类型气体的n 值如下: 对单气体,取n=1.67,则β=0.487,即Pc=0.487P1;

【CN209829386U】一种水射流喷嘴罩【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920625923.4 (22)申请日 2019.05.05 (73)专利权人 桂林航天工业学院 地址 541004 广西壮族自治区桂林市七星 区金鸡路2号 (72)发明人 袁凯峰 周俊 王治国 卢伟  (74)专利代理机构 深圳汇策知识产权代理事务 所(普通合伙) 44487 代理人 迟芳 (51)Int.Cl. B05B 15/00(2018.01) (54)实用新型名称 一种水射流喷嘴罩 (57)摘要 一种水射流喷嘴罩。用于水射流的喷嘴不使 用时缺乏遮挡和防护,导致喷嘴易因外界磕碰、 腐蚀或其他影响而导致使用性能降低。本实用新 型包括锥形筒和网罩,所述锥形筒的大口端为插 口端,所述锥形筒的小口端处设置有网罩,所述 锥形筒内沿其内圆周方向设置有若干个柔性凸 起,若干个柔性凸起均靠近锥形筒的插口端设 置,每个柔性凸起与相邻的柔性凸起之间间隙设 置,所述锥形筒内沿其内圆周方向设置有吸水 片,吸水片靠近锥形筒的小口端设置。本实用新 型用于防护喷嘴。权利要求书1页 说明书4页 附图5页CN 209829386 U 2019.12.24 C N 209829386 U

权 利 要 求 书1/1页CN 209829386 U 1.一种水射流喷嘴罩,其特征在于:包括锥形筒(1)和网罩(2),所述锥形筒(1)的大口端为插口端,所述锥形筒(1)的小口端处设置有网罩(2),所述锥形筒(1)内沿其内圆周方向设置有若干个柔性凸起(4),若干个柔性凸起(4)均靠近锥形筒(1)的插口端设置,每个柔性凸起(4)与相邻的柔性凸起(4)之间间隙设置,所述锥形筒(1)内沿其内圆周方向设置有吸水片(5),吸水片(5)靠近锥形筒(1)的小口端设置。 2.根据权利要求1所述的一种水射流喷嘴罩,其特征在于:锥形筒(1)外套装有连接片 (3)。 3.根据权利要求2所述的一种水射流喷嘴罩,其特征在于:连接片(3)靠近锥形筒(1)的插口端处。 4.根据权利要求1所述的一种水射流喷嘴罩,其特征在于:网罩(2)为半球形罩体,网罩(2)与述锥形筒(1)的小口端相卡接。 5.根据权利要求1所述的一种水射流喷嘴罩,其特征在于:网罩(2)为半球形罩体,网罩(2)与述锥形筒(1)的小口端固定连接。 6.根据权利要求1至5中任一项所述的一种水射流喷嘴罩,其特征在于:锥形筒(1)为圆锥筒或方锥筒。 7.根据权利要求6所述的一种水射流喷嘴罩,其特征在于:吸水片(5)厚度的取值范围为2~4mm。 8.根据权利要求1所述的一种水射流喷嘴罩,其特征在于:连接片(3)上配合设置有连接环(6),连接环(6)上加工有豁口(7)。 2

搅拌器的工作原理

搅拌器的工作原理 搅拌器是使液体、气体介质强迫对流并均匀混合的器件。搅拌器的类型、尺寸及转速,对搅拌功率在总体流动和湍流脉动之间的分配都有影响。一般说来,涡轮式搅拌器的功率 分配对湍流脉动有利,而旋桨式搅拌器对总体流动有利。对于同一类型的搅拌器来说,在 功率消耗相同的条件下,大直径、低转速的搅拌器,功率主要消耗于总体流动,有利于宏 观混合。小直径、高转速的搅拌器,功率主要消耗于湍流脉动,有利于微观混合。搅拌器 的放大是与工艺过程有关的复杂问题,至今只能通过逐级经验放大,根据取得的放大判据,外推至工业规模。 不同介质黏度的搅拌粘度系指流体对流动的阻抗能力,其定义为:液体以1cm/s的速 度流动时,在每1cm2平面上所需剪应力的大小,称为动力粘度,以Pa?s为单位。粘度是 流体的一种属性。流体在管路中流动时,有层流、过渡流、湍流三种状态,搅拌设备中同 样也存在这三种流动状态,而决定这些状态的主要参数之一就是流体的粘度。在搅拌过程中,一般认为粘度小于5Pa?s的为低粘度流体,例如:水、蓖麻油、饴糖、果酱、蜂蜜、 润滑油重油、低粘乳液等;5-50Pa?s的为中粘度流体,例如:油墨、牙膏等;50-500Pa?s的为高粘度流体,例如口香糖、增塑溶胶、固体燃料等;大于500Pa?s的为特高粘流体例如:橡胶混合物、塑料熔体、有机硅等。对于低粘度介质,用小直径的高转速的搅拌器就能带 动周围的流体循环,并至远处。而高粘度介质的流体则不然,需直接用搅拌器来推动。适 用于低粘和中粘流体的叶轮有桨式、开启涡轮式、推进式、长薄叶螺旋桨式、圆盘涡轮式、布鲁马金式、板框桨式、三叶后弯式、MIG式等。适用于高粘和特高粘流体的叶轮有螺带 式叶轮、螺杆式、锚式、框式、螺旋桨式等。有的流体粘度随反应进行而变化,就需要用 能适合宽粘度领域的叶轮,如泛能式叶轮等。 搅拌器的类型主要有下列几种: 1.旋桨式搅拌器 由2~3片推进式螺旋桨叶构成,工作转速较高,叶片外缘的圆周速度一般为5~15m/s。 旋桨式搅拌器主要造成轴向液流,产生较大的循环量,适用于搅拌低粘度(<2Pa·s)液体、乳浊液及固体微粒含量低于10%的悬浮液。搅拌器的转轴也可水平或斜向插入槽内, 此时液流的循环回路不对称,可增加湍动,防止液面凹陷。 2.涡轮式搅拌器

各种搅拌器介绍

复合叶桨式搅拌器 这是一种高效轴向流叶轮,它在主叶片上再增加了一个辅助叶片,该辅叶片有消除主叶片后方发生的流动剥离现象,使搅拌功率减少;同时在叶端能产生交叉的垂直分流,提高了混合效果,适用于中、低粘度的混合、分散、传热。特别适用于大型罐槽的固液悬浮。 螺旋叶桨式(推进式)搅拌器 推进式搅拌机(螺旋浆叶)一般为2叶,也可为3叶或4叶。推进式搅拌机(器)容积循环速率大,在工作时能很好地使流体在随浆叶旋转的同时进行上下翻腾,即容易使低粘度流体流动处于湍流状态。但由于其在旋转时,主要对流体作用轴向的推力,对流体所作用的剪力很小,这种搅拌器难以使高粘度流体处于湍流状态,也难以使高粘度流体充分搅拌混合。推进式搅拌器的转速一般应在60—200r/min范围内,故这种搅拌器一般适用于低粘度流体的混合操作。

曲边斜叶桨式搅拌器 本类搅拌器是斜叶桨式的一种变型,浆底旋转面接近容器的椭圆面,浆叶平面与旋转轴垂直面又成倾角45,兼起刮板作用,多为低转速运行,可在过流或层流区操作。

六斜叶开启涡轮式搅拌器 四斜叶开启涡轮式搅拌器 三斜叶开启涡轮式搅拌器

六叶开启涡轮搅拌器 六直叶开启涡轮式 径流型搅拌器,使用转速范围大,使用粘度范围广,具有高剪切力及湍流扩散能力。因其没有圆盘,不会阻碍浆叶上下液层混合,在有挡板槽中可以形成较大的对流循环,特别适用于剪切分散操作,同时因其具有良好的循环和剪切能力,也用于一般的固体溶解、反应、传热、乳化、结晶、固体悬浮操作。 六弯叶开启涡轮式 具有平直叶涡轮几乎所有的特点,又因其具有特殊的后弯结构,排出性能更好,浆叶也不易磨损,特别适用于固体含量多时固液悬浮的操作,一般配挡板使用;同时也适用于一般的反应、传热、乳化等操作。 异形搅拌器 三直叶锥底式SZP 本类搅拌器为径流型搅拌器,使用条件同平直叶开启涡轮,适用于锥形容器搅拌的最下层搅拌,可应用于一般的反应、溶解、悬浮、传热、乳化、结晶等操作。

压力与流量计算公式

压力与流量计算公式 压力与流量计算公式: 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中: FL-压力恢复系数,见附表 FF-流体比系数,FF=0.96-0.28 PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体临界压力(绝对压力),kPa QL-m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>0.5P1时 当P2≤0.5P1时

式中: Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时 当P2≤0.5P1时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 3.低修正(高液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量 m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 4.水蒸气的Kv值的计算 a.饱和蒸汽 当P2>0.5P1时 当P2≤0.5P1时 式中:G―蒸汽流量kg/h,P1、P2含义及单位同前,K-蒸汽修正系数,部分蒸汽的K 值如下:水蒸汽:K=19.4;氨蒸汽:K=25;氟里昂11:K=68.5;甲烷、乙烯蒸汽:K=37;丙烷、丙烯蒸汽:K=41.5;丁烷、异丁烷蒸汽:K=43.5。

搅拌器知识汇总

搅拌器知识汇总 搅拌器对于我们来说可能有点陌生,生活中,我们没有直接接触过这一方面的知识,但是,搅拌器的使用已经渗入到各个行业中,并且给生产方面带来了极大的便利。 本文主要从以下几个方面介绍搅拌器: 1型式及简介 (1)平直叶桨式搅拌器 平直叶桨式搅拌器有平直叶整体桨式(HG5-220_65)PJ和平直叶可拆桨式(HG5_220_65)PCJ两种。其中平直叶可拆桨式是最基本的一种桨型,低速时为水平环流型,层流区操作:高速时为径流型。有挡板时,功率准数值N P明显上升,为上下循环流,湍流加强,适用于低粘度液的混合、分散、固体悬浮、传热、液相反应等过程。μ<2000cP,n=1~100rpm,V=1~50m/s。常用规格 D J/D=0.35~0.8,b/D J=0.10~0.25.当D J/D=0.9以上时可设置多层桨叶,适用于高粘度液搅拌;降低桨叶离底部高度可作刮板用,防止重组份沉附底部。有用于悬浮、结晶与萃取等过程。 产品展示图如下所示: (2)三宽叶旋桨式搅拌器 旋桨式搅拌器的桨叶前部桨面与运动方面的倾角是连续变化的(与推进式桨一样),桨叶后部分像斜叶桨面一样有一个固定倾角,所以它综合了推进式桨和斜叶涡轮式桨的特性,是一种应用广泛的搅拌器,它类似推进式属轴流形,循环能力大,动力消耗小,又像斜中涡轮桨剪切性能得到了提高,因此它的适用范围比较大。低粘液体混合、分散、溶解、固体悬浮、结晶、传热、液相反应等过程都适用,在一些气体吸收过程也得到了应用,三宽叶旋桨式是较普遍使用的搅拌器型式,常用介质粘度范围μ<10000cP,常用运转速度 n=30~500rpm, v=3~15m/s,常用尺寸D J/D=0.2~0.5,B/D J=2.4(宽),常用左旋,可做成右旋。主要有三种:三宽叶整体旋桨式—KHX、三宽叶稳定环旋桨式—KWX、三宽叶可拆旋桨式—KCX. 产品展示:

喷嘴设计及计算

第一章喷头改进设计的必要性 喷雾喷头是通过一定方法,将液体分离细小雾滴的装置,目前在使用的一般是采用减小喷口直径,这些喷头雾化效率低,水量小, 第二章喷嘴设计及计算 喷嘴是喷头的重要部件,也是直接影响喷灌质量和喷头水力性能的一个部件。它不但要最大限度地把水流压能变成动能,而且要保持稳流器整理过的水流仍具有较低的紊流程度。 喷嘴的结构形式一般有下列三种: 1. 圆锥形喷嘴 圆锥形喷嘴由于其结构简单,加工方便而被大量应用于喷头,其结构如图。圆锥形喷嘴的主要结构参数是:喷嘴直径D c,喷嘴圆柱段长度l,喷嘴内腔锥角。 有的喷头为了提高雾化程度或增加喷头近处的水量,而在喷嘴出口处增加一粉碎螺钉,其结构见图。由于射流撞击在螺钉上,增加了碰撞阻力以致影响了喷头的射程及喷洒均匀度,所以现在除了个别喷头外已很少采用加粉碎螺钉的结构。 2. 流线形喷嘴 为了使水流平顺,有的喷头设计成流线形,以减少水流冲击损失。流线 形喷嘴结构如图所示。 苏联维多新斯基为流线形喷嘴的设计提供了计算公式:

实验表明,水流不很平顺的喷头采用流线形喷嘴,喷头射程能增 加8~12%。但水流很平顺的喷头采用流线形喷嘴,喷头的射程增加很微小。由此可见,流线形喷嘴能使水流平稳从而提高喷头射程。 3。流线圆锥形喷嘴 流线圆锥形喷嘴是上述两种形式之结合,图12就是这种形式的喷嘴。从图可以看出来,水流自喷管先经过喷嘴的流线形段,继而经过圆锥形段。从加工来说,凸流线形喷嘴易于加工。由于圆锥形喷嘴有结构简单,加工方便等优点,所以目前喷头大多采用圆锥形喷头。 第二节 喷嘴直径的确定 喷嘴直径是一个重要的数值,它直接影响到喷灌质量,如喷灌强度,均匀度和雾化程度。它又和喷头的结构和水力性能有极为密切的关系,诸如喷灌直径Dcm ,喷头流量,射程和工作压力等。 由于喷头喷出的射流是高压高速水流的孔口出流,所以可应用水力学的圆形孔口出流公式计算。即: Q= 2 24 gH D 式中: 0H =2 H 其中, Q—喷嘴流量 --流量系数 0D -射流收缩断面的直径0H -射流收缩断面的压力 -流速系数 H-喷头工作压力

开启涡轮式搅拌器的分类及工作原理

开启涡轮式搅拌器的分类及工作原理 一、开启涡式搅拌器的介绍:涡式搅拌器是将将叶片直接焊接于轮毂上,折叶开启涡轮搅拌器的叶片在焊接时,通常是在轮毂上开槽,叶片嵌入后施焊。小型开启涡轮搅拌器也有整体铸造的,特别是折叶的,如大量生产,用铸造的比焊接的更为方便。对于大直径的开启涡轮,也可将全部叶片或径向对称的一对做成与轮毂可拆连接的,以便于安装。 二、开启涡式搅拌器的分类:依据桨型可分为平直叶开启涡轮式搅拌器、斜叶开启涡轮式搅拌器、弯叶开启涡轮式搅拌器;依据叶片与轮毂的连接方式又可分为整体式开启涡轮式搅拌器、可拆式开启涡轮式搅拌器;依据叶片数量又可分为三叶开启涡轮式搅拌器、四叶开启涡轮式搅拌器、六叶开启涡轮式搅拌器。 三、工作原理: 1、径向流涡轮旋转起来把液体从轴方向吸入而向与轴垂直的方向(径向)排出。当罐内有挡板时,排出流遇到了罐壁则向上下分开,使罐内形成上下循环的流型。这种叶轮功率消耗大,剪切力强,又具有排出能力。因此它适用于既要有强的剪切,又要有一定循环流量的场合,如在液-液体系用于乳化、乳 液聚合、悬浮聚合、萃取等;在固-液体系则用于把干的和湿的滤饼再捣碎成 浆状以及使固体一面破碎一面溶解;对于气-液体系则用于氧化反应那样的气 体分散和伴有化学反应的吸收等。对于圆盘涡轮,由于它能在叶轮下一度保持气体进而使之分散,减少气体的浪费,因此很多气-液操作都用它。 2、轴向流涡轮使液体沿与轴平行的方向排出,使其进行有效的轴向循 环。产生同样的排量,这种叶轮所需的功率仅占径向流涡轮的一半,所以对罐内循环流占重要地位的场合,它是有效的叶轮。这种叶轮主要用于液-液系和 固-液系中需要强循环的场合,如均一混合、反应、传热等。 3、弯曲叶径向流涡轮的叶片是用钢板弯曲制成的,有些场合用压扁的圆

各种搅拌器介绍

这是一种高效轴向流叶轮,它在主叶片上再增加了一个辅助叶片,该辅叶片有消除主叶片后方发生的流动剥离现象,使搅拌功率减少;同时在叶端能产生交叉的垂直分流,提高了混合效果,适用于中、低粘度的混合、分散、传热。特别适用于大型罐槽的固液悬浮。 螺旋叶桨式(推进式)搅拌器 推进式搅拌机(螺旋浆叶)一般为2叶,也可为3叶或4叶。推进式搅拌机(器)容积循环速率大,在工作时能很好地使流体在随浆叶旋转的同时进行上下翻腾,即容易使低粘度流体流动处于湍流状态。但由于其在旋转时,主要对流体作用轴向的推力,对流体所作用的剪力很小,这种搅拌器难以使高粘度流体处于湍流状态,也难以使高粘度流体充分搅拌混合。推进式搅拌器的转速一般应在60—200r/min范围内,故这种搅拌器一般适用于低粘度流体的混合操作。 曲边斜叶桨式搅拌器 本类搅拌器是斜叶桨式的一种变型,浆底旋转面接近容器的椭圆面,浆叶平面与旋转轴垂直面又成倾角45,兼起刮板作用,多为低转速运行,可在过流或层流区操作。 六斜叶开启涡轮式搅拌器 四斜叶开启涡轮式搅拌器 三斜叶开启涡轮式搅拌器 六叶开启涡轮搅拌器 六直叶开启涡轮式 径流型搅拌器,使用转速范围大,使用粘度范围广,具有高剪切力及湍流扩散能力。因其没有圆盘,不会

阻碍浆叶上下液层混合,在有挡板槽中可以形成较大的对流循环,特别适用于剪切分散操作,同时因其具有良好的循环和剪切能力,也用于一般的固体溶解、反应、传热、乳化、结晶、固体悬浮操作。 六弯叶开启涡轮式 具有平直叶涡轮几乎所有的特点,又因其具有特殊的后弯结构,排出性能更好,浆叶也不易磨损,特别适用于固体含量多时固液悬浮的操作,一般配挡板使用;同时也适用于一般的反应、传热、乳化等操作。 异形搅拌器 三直叶锥底式SZP 本类搅拌器为径流型搅拌器,使用条件同平直叶开启涡轮,适用于锥形容器搅拌的最下层搅拌,可应用于一般的反应、溶解、悬浮、传热、乳化、结晶等操作。 三叶后掠整体式HQ,四叶后掠整体式SQ 为径流型搅拌器,配合指型挡板,能得到大流量的上下循环流,且剪切作用好,适合应用于传热、传质、固体溶解、悬浮等。 布尔马金式搅拌器 为径流型搅拌器,浆叶前端带有后掠角的大宽叶浆叶,排出性能优于直叶和弯叶开启涡轮,功耗低,剪切力小,有挡板时,可产生对流循环及湍流扩散,适用于传热、传质、混合、纤维物料的溶解。 六片平直叶开启涡轮搅拌器 径流型搅拌器,湍流扩散和剪切力大,有挡板时可以形成较大的上、下循环流,使用转速和粘度范围大。特别适用于剪切分散操作也可用于一般的反应、溶解、悬浮、传热、乳化、结晶操作。 平直叶、弯叶、斜叶圆盘涡轮式搅拌器

相关文档