文档库 最新最全的文档下载
当前位置:文档库 › 雷尼绍激光干涉仪在数控机床上螺距补偿操作说明

雷尼绍激光干涉仪在数控机床上螺距补偿操作说明

雷尼绍激光干涉仪在数控机床上螺距补偿操作说明
雷尼绍激光干涉仪在数控机床上螺距补偿操作说明

雷尼绍激光干涉仪螺距补偿操作说明

补偿点坐标(激光仪显示的数值)与机械坐标值一致,从小往大(矢量)‐560到0的方向

一,FANUC ,三菱系列

1, 3605 #0 是否使用双向螺距补偿;(选项)

2, 3620 每个轴的参考点的螺距误差补偿点号

3, 3621 螺距补偿表最小点(螺距补偿表长度与补偿点个数不一定一一对应)

4, 3622 螺距补偿表的最大点

5, 3623 螺距误差补偿系数(螺距补偿表的数值最大只能输7,当补偿值大 于7时,例如8,就只能将改值改为2,在对应点输入8/2=4)

6, 3624 螺距误差补偿点间隔

例:加工中心X轴的坐标是从0到1050,Y轴的坐标从0到‐560,Z轴坐标从0到‐560.

在FANUC系统中设置参数如下:

本例中1000/25=40,即激光干涉仪的补偿表数据输入100~139

而对于Y轴与Z轴则与X轴有不同,X轴机械坐标是从0到1050,Y Z轴机械坐标是从0到

‐560(550/25=22) 因此补偿起始点是从221(301)开始,激光干涉仪的补偿表就倒

过来(从下面往上)补

程序:

%

O0100G01G57G90Y1F3000

G4X1.

Y0

G4X4.

M98P0101L21

Y-1

G4X1.

Y1

G4X4.

M98P0102L21

M99

%

雷尼绍软件误差补偿表格设置如下:

测量后误差补偿值如下:

补偿前的定位/重复定位曲线:

补偿后的曲线:

注:此为Z轴实测图,是错位输入:具体操作是将23 的‐2输入螺补的300中,22的‐2输入299中,21的‐2输入298中,21的‐1输到297中,依次类推,最后将25的0输入到277中。

二,西门子

雷尼绍软件应设绝对

32450 反向间隙

32700 螺补生效,在螺补文件执行后更改为1,执行时应为零,否则报警17070.断电重新启动,螺补生效(在诊断的轴信息在绝对补偿值测量系统 1 中可以观察到当前点生效

的补偿值。

具体设置如图:

该例是ATV35SM 车削加工中心的X轴根据上图设置所产生的补偿表:

补偿原理及方法参见西门子简明调试手册。

补偿前的曲线如下:

补偿后的曲线如下:

对比两图可知,螺补方法正确,螺补生效,机床定位性能有明显的改善。

立式加工中心机床的螺距误差补偿(精)

立式加工中心机床的螺距误差补偿 随着我国制造业的飞速发展,数控机床制造技术也在不断地发展,同时对数控机床的各项性能提出了越来越高的要求。机床的定位精度便成为了衡量机床性能的一项重要指标。机械结构当中不可避免的摩擦、间隙,以及装配误差成为了制约机床定位精度的主要因素。由此,数控系统的制造商开发出了螺距误差补偿功能,借此以消除或者削弱以上因素对机床定位精度的影响,从而达到更好的加工效果。发那科与西门子两大公司在这个领域表现得尤为出色,以下将对这两种数控系统的螺距误差补偿方法进行详细介绍。 1.发那科数控系统机床的误差补偿(以FANUC 0i-MD为例) 1.1基本概念 1.1.1补偿点的指定 各轴的补偿点的指定,可通过夹着参考点的补偿点编号指定(+)侧、(-)侧来进行。机械的行程超过(+)侧、(-)侧所指定的范围时,有关超出的范围,不进行螺距误差补偿(补偿量全都成为0)。 1.1.2补偿点号 补偿点数,在螺距误差设定画面上提供有共计1024 点,从0 到1023。通过参数将该编号任意分配给各轴。 另外,螺距误差设定画面中,在最靠近负侧的补偿号前,显示该轴的名称。 1.1.3补偿点的间隔 螺距误差补偿的补偿点为等间隔,在参数中为每个轴设定该间隔。 螺距误差补偿点的间隔有最小值限制,通过下式确定。 螺距误差补偿点间隔的最小值=最大进给速度(快速移动速度)÷7500 1.2相关参数 (1)1851 每个轴的反向间隙补偿量。 (2)1852 每个轴的快速移动时的反向间隙补偿量。 (3)3620 每个轴的参考点的螺距误差补偿点号。 (4)3621 每个轴的最靠近负侧的螺距误差补偿点号。 (5)3622 每个轴的最靠近正侧的螺距误差补偿点号。 (6)3623 每个轴的螺距误差补偿倍率。 (7)3624 每个轴的螺距误差补偿点间隔。 注:以上参数中3620,3621,3622,3624修改后需要切断电源并重新上电才生效,其余参数修改后复位即可生效。 1.3操作方法(以X轴行程为850mm的丝杠为例,全长采集20个数据) 1.3.1连接激光干涉仪 1.3.2设置参数

数控车床丝杠螺距误差的补偿

项目数控车床丝杠螺距误差的补偿 一、工作任务及目标 1.本项目的学习任务 (1)学习数控车床丝杠螺距误差的测量和计算方法; (2)学习数控车床螺距误差参数的设置方法。 2.通过此项目的学习要达到以下目标 (1)了解螺距误差补偿的必要性; (2)掌握螺距误差补偿的测量和计算方法; (3)能够正确设置螺距误差参数。 二、相关知识 滚珠丝杠螺母机构 数控机床进给传动装置一般是由电机通过联轴器带动滚珠丝杆旋转,由滚珠丝杆螺母机构将回转运动转换为直线运动。 1、滚珠丝杠螺母机构的结构 滚珠丝杠螺母机构的工作原理见图1;在丝杠1 和螺母 4 上各加工有圆弧形螺旋槽,将它们套装起来变成螺旋形滚道,在滚道内装满滚珠2。当丝杠相对螺母旋转时,丝杠的旋转面经滚珠推动螺母轴向移动,同时滚珠沿螺旋形滚道滚动,使丝杠和螺母之间的滑动摩擦转变为滚珠与丝杠、螺母之间的滚动摩擦。螺母螺旋槽的两端用回珠管 3 连接起来,使滚珠能够从一端重新回到另一端,构成一个闭合的循环回路。

2、进给传动误差 螺距误差:丝杠导程的实际值与理论值的偏差。例如PⅢ级滚珠丝杠副的螺距公差为0.012mm/300mm。 反向间隙:即丝杠和螺母无相对转动时丝杠和螺母之间的最大窜动。由于螺母 结构本身的游隙以及其受轴向载荷后的弹性变形,滚珠丝杠螺母机构存在轴向间隙,该轴向间隙在丝杠反向转动时表现为丝杠转动α角,而螺母未移动,则形成了反向间隙。为了保证丝杠和螺母之间的灵活运动,必须有一定的反向间隙。但反向间隙过大将严重影响机床精度。因此数控机床进给系统所使用的滚珠丝杠副必须有可靠的轴向间隙调节机构。 图2为常用的双螺母螺纹调隙式结构,它 用平键限制了螺母在螺母座内的转动,调整时只要扮动圆螺母就能将滚珠螺母沿轴 向移动一定距离,在将反向间隙减小到规定的范围后,将其锁紧。

激光干涉仪操作规程

激光干涉仪操作规程 一、操作步骤 1.系统的相互连接 ·将PC10计算机系统与ML10 激光干涉仪用通讯电缆连接。 ·如果需要,将PC10计算机系统与EC10 环境补偿单元用通讯电缆连接。 ·将PC10、ML10、EC10分别接上电源线,再接到电源插板上。·通过稳压电源,将总电源线接到220V接地电源上。 2.激光的预热 闭合激光干涉仪开关,使激光预热大约15~20分钟,等激光指示灯出现绿色后,表明激光已稳定。 3.测量软件的启动 打开计算机,在“C”提示符下依次键入: ·CD/RENISHAW (RETURN) ·RCS (RETURN) ·a (RETURN) ·b (RETURN) 完成以上步骤后,测量软件已被启动。 4.光学镜的安装 ·将反射镜用夹紧块、安装杆、磁性表座固定在机床运动部件上。

·将反射镜和分光镜组合组成干涉镜;将干涉镜用夹紧块、安装杆、磁性表座固定在机床不可运动部件或其它固定部件上。 5.激光调整 ·调整激光,使其与测量方向一致。调整时,首先用粗光束调,然后用细光束调,保证信号强度达到测量精度要求并恒定(由计算机上信号强度指示确定)。 ·调整透射光线和折射光线重合。 6.目标值设定 根据测量要求,设定目标值,目标值的设定应尽可能的覆盖整个行程范围。 7.数据采集 ·按目标值设定要求编制数控测量程序,在每个测量点必须有足够的延时设定(由机床操作人员完成)。 ·设定数据采集参数,主要包括;线性/圆周、测量次数、单向/双向、测量信息等。 ·按“ALI+D”进行数据采集。 ·数据采集完后,按“ESC”终止采集过程。 8.数据分析 选择“数据分析”菜单,按相关标准要求进行数据分析,分别给出双向定位精度、重复性、反向偏差等精度指标。

激光干涉仪功能与应用

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量范围大、分辨力高等优点。通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。 在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量 SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。SJ6000基本线性测量配置: 图1-基本线性配置 SJ6000全套镜组:

图2-SJ6000全套镜组 镜组附件: 图3-SJ6000 镜组附件 镜组安装配件: 图4-SJ6000 镜组安装配件

1.1. 线性测量 1.1.1. 线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 图5-线性测量构建图 图6-水平轴线性测量样图图7-垂直轴线性测量样图 1.1. 2. 线性测量的应用 1.1. 2.1. 线性轴测量与分析 激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。

图8-激光干涉仪应用于机密机床校准 图9-激光干涉仪应用于三坐标机校准 SJ6000软件内置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

数控机床误差实时补偿技术总结

数控机床实时误差补偿技术的学习总结 第1章绪论 制造业的高速发展和加工业的快速提高,对数控机床加工精度的要求日益提高。一般来说,数控机床的不精确性是由以下原因造成: [1]机床零部件和结构的几何误差; [2]机床热变形误差; [3]机床几何误差; [4]切削力(引起的)误差; [5]刀具磨损误差; [6]其它误差源,如机床轴系的伺服误差,数控插补算法误差。 其中热变形误差和几何误差为最主要的误差,分别占了总误差的45%、20%。提高机床加工精度有两种基本方法:误差防止法和误差补偿法(或称精度补偿法)。 误差防止法依靠提高机床设计、制造和安装精度,即通过提高机床本书的精度来满足机械加工精度的要求。由于加工精度的提高受制于机床精度,因此该方法存在很大的局限性,并且经济上的代价也很昂贵。 误差补偿法是认为地造出一种新的误差去抵消当前成为问题的原始误差,以达到减小加工误差,提高零件加工精度目的的方法。误差补偿法需要投入的费用很小,误差补偿技术是提高机床加工精度的经济和有效的手段,其工程意义非常显著。 误差补偿技术(Error Compensation Technique,简称ECT)是由于科学技术的不断发展对机械制造业提出的加工精度要求越来越高、随着精密工程发展水平的日益提高而出现并发展起来的一门新兴技术。误差补偿技术具有两个主要特性:科学性和工程性。 1.机床误差补偿技术可分为下面七个基本内容: [1]误差及误差源分析; [2]误差运动综合数学模型的建立; [3]误差检测; [4]温度测点选择和优化布置技术; [5]误差元素建模技术; [6]误差补偿控制系统及实施; [7]误差补偿实施的效果检验。 2.数控机床误差补偿的步骤: [1]误差源的分析和检测; [2]误差综合数学模型的建立; [3]误差元素的辨识和建模; [4]误差补偿的执行; [5]误差补偿效果的评价。 3.数控机床误差补偿技术研究的现状: [1]过长的机床特性检测和辨识时间; [2]温度测点布置位置优化; [3]误差补偿模型的鲁棒性; [4]误差补偿系统及实施; [5]五轴数控机床多误差实时补偿问题。 4.数控机床误差补偿技术研究的发展趋势: [1]多误差高效检测方法;

激光干涉仪使用方法

用激光干涉仪系统进行精确的线性测量 — 最佳操作及实践经验 1 简介 本文描述的最佳操作步骤及实践经验主要针对使用激光干涉仪校准机床如车床、铣床以及坐标测量机的线性精度。但是,文中描述的一般原则适用于所有情况。与激光测量方法相关的其它项目,如角度、平面度、直线度和平行度测量不包括在内,用于实现0.1微米即 0.1 ppm以下的短距离精度测量的特殊方法(如真空操作)也不包括在内。 微米是极小的距离测量单位。(1微米比一根头发的1/25还细。由于太细,所以肉眼无法看到,接近于传统光学显微镜的极限值)。可实现微米级及更高分辨率的数显表的广泛使用,为用户提供了令人满意的测量精度。尽管测量值在小数点后有很多位数,但并不表明都很精确。(在许多情况下精度比显示的分辨率低10-100倍)。实现1微米的测量分辨率很容易,但要得到1微米的测量精度需要特别注意一些细节。本文描述了可用于提高激光干涉仪测量精度的方法。 2 光学镜组的位置 光学镜的安放应保证其间距变化能够精确地反映待校准机器部件的线性运动,并且不受其它误差的影响。方法如下: 2.1 使Abbe(阿贝)偏置误差降至最低 激光测量光束应当与需要校准的准线重合(或尽量靠近)。例如,要校准车床Z轴的线性定位精度,应当对测量激光光束进行准直,使之靠近主轴中心线。(这样可以极大降低机床俯仰 (pitch) 或扭摆 (yaw) 误差对线性精度校准数据的影响。 2.2 将光学镜组固定牢靠 要尽量减小振动影响并提高测量稳定性,光学镜组应牢牢固定所需的测量点上。安装支柱应尽可能短,所有其它紧固件的横截面都应尽量牢固。磁力表座应直接夹到机床铸件上。 避免将其夹到横截面较薄的机器防护罩或外盖上。确保紧固件表面平坦并没有油污和灰尘。 2.3 将光学镜组直接固定在相关的点上 材料膨胀补偿通常只应用在与测量激光距离等长的材料路径长度上。如果测量回路还包括附加的结构,该―材料死程‖的任何热膨胀或收缩或因承载而发生的偏斜都将导致测量误差。为尽量减少此类误差,最好将光学镜组直接固定到所需的测量点上。在机床校准中,一个光学镜通常固定在工件夹具上,而另一个光学镜组则固定在刀具夹具上。激光测量将会精确地反映刀具和工件之间发生的误差。即使机器防护系统和机器盖导致难于接近,也一定要尽量将干涉镜和角锥反射镜都固定到机器上。不要将一个光学镜安装在机器内部而另一个安装在外部如支在机器外地面的三脚架上,因为整台机器在地基上的移动可能导致校准无效。然而,是否拆下导轨防护罩时需仔细考虑,因为这可能改变机器性能。

数控机床的误差补偿

数控机床的误差补偿 随着我国经济的飞速发展,数控机床作为新一代工作母机,在机械制造中已得到广泛的应用,精密加工技术的迅速发展和零件加工精度的不断提高,对数控机床的精度也提出了更高的要求。尽管用户在选购数控机床时,都十分看重机床的位置精度,特别是各轴的定位精度和重复定位精度。但是这些使用中的数控机床精度到底如何呢? 大量统计资料表明:65.7%以上的新机床,安装时都不符合其技术指标;90%使用中的数控机床处于失准工作状态。因此,对机床工作状态进行监控和对机床精度进行经常的测试是非常必要的,以便及时发现和解决问题,提高零件加工精度。 目前数控机床位置精度的检验通常采用国际标准ISO230-2或国家标准GB10931-89等。同一台机床,由于采用的标准不同,所得到的位置精度也不相同,因此在选择数控机床的精度指标时,也要注意它所采用的标准。数控机床的位置标准通常指各数控轴的反向偏差和定位精度。对于这二者的测定和补偿是提高加工精度的必要途径。 一、反向偏差 在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达和步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。对于采用半闭环伺服系统的数控机床, 反向偏差的存在就会影响到机床的定位精度和重复定位精度, 从而影响产品的加工精度。如在G01切削运动时, 反向偏差会影响插补运动的精度, 若偏差过大就会造成“圆不够圆,方不够方”的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。同时,随着设备投入运行时间的增长, 反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加, 因此需要定期对机床各坐标轴的反向偏差进行测定和补偿。 (1)反向偏差的测定 反向偏差的测定方法:在所测量坐标轴的行程内, 预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差,在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值, 以所得平均值中的最大值为反向偏差测量值。在测量时一定要先移动一段距离AB段, 否则不能得到正确的反向偏差值。 测量直线运动轴的反向偏差时,测量工具通常采有千分表或百分表,若条件允许,可使用双频激光干涉仪进行测量。当采用千分表或百分表进行测量时,需要注意的是表座和表杆不要伸出过高过长,因为测量时由于悬臂较长,表座易受力移动,造成计数不准,补偿值也就不真实了。若采用编程法实现测量,则能使测量过程变得更便捷更精确。 例如,在三坐标卧式机床上测量X轴的反向偏差,可先将表压住主轴的圆柱表面,然后运行如下程序进行测量: N10 G91 G01 X50 F1000;工作台右移 N20 X-50;工作台左移,消除传动间隙 N30 G04 X5;暂停以便观察 N40 Z50;Z轴抬高让开 N50 X-50:工作台左移 N60 X50:工作台右移复位 N70 Z-50:Z轴复位 N80 G04 X5:暂停以便观察 N90 M99;

下垂补偿功能的原理

西门子840D数控系统补偿功能bjxtdlhzzj,2008-11-10 19:22:11 一、西门子840D数控系统的补偿功能 西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。这些功能有: 1、温度补偿。 2、反向间隙补偿。 3、插补补偿,分为: (1) 螺距误差和测量系统误差补偿。 (2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。 4、动态前馈控制(又称跟随误差补偿)。包括:速度前馈控制和扭矩前馈控制。 5、象限误差补偿(又称摩擦力补偿)。分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。 6、漂移补偿。 7、电子重量平衡补偿。 在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。 二、840D下垂补偿功能的原理 1、下垂误差产生的原因: 由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。 2、840D下垂补偿功能参数的分析: 西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。描述如下: (1) $AN_CEC[t,N]:插补点N的补偿值,即基准轴的每个插补点对应于补偿轴的补偿值变量参数。 (2) $AN_CEC_INPUT_AXIS[t]:定义基准轴的名称。 (3) $AN_CEC_OUTPUT_AXIS[t]:定义对应补偿值的轴名称。 (4) $AN_CEC_STEP[t]:基准轴两插补点之间的距离。 (5) $AN_CEC_MIN[t]:基准轴补偿起始位置: (6) $AN_CEC_MAX[t]: 基准轴补偿终止位置 (7) $AN_CEC_DIRECTION[t]:定义基准轴补偿方向。其中: ★ $AN_CEC_DIRECTION[t]=0:补偿值在基准轴的两个方向有效。 ★ $AN_CEC_DIRECTION[t]=1:补偿值只在基准轴的正方向有效,基准轴的负方向无补偿值。 ★ $AN_CEC_DIRECTION[t]=-1:补偿值只在基准轴的负方向有效,基准轴的正方向无补偿值。 (8) $AN_CEC_IS_MODULO[t]:基准轴的补偿带模功能。 (9) $AN_CEC_MULT_BY_TABLE[t]:基准轴的补偿表的相乘表。这个功能允许任一补偿表可与另一补偿表或该表自身相乘。 3、下垂补偿功能用于螺距误差或测量系统误差补偿时的定义方法: 根据840D资料的描述,机床的一个轴,在同一补偿表中,既可以定义为基准轴,又可以

数控机床误差补偿技术的研究

数控机床误差补偿技术的研究

目录 摘要 (iv) Abstract (v) 第一章概述........................................................... - 1 - 1.1数控技术的基本概念 (1) 1.1.1 数控技术和数控机床 .......................................... - 1 - 1.1.2数控机床的特点............................................... - 1 - 1.1.3 数控机床的分类 .............................................. - 1 - 1.2误差补偿技术的研究 (1) 1.2.1误差补偿现状................................................. - 2 - 1.3本论文的研究目的意义和研究内容 (3) 1.3.1研究的目的和意义............................................. - 3 - 1.3.2研究的主要内容............................................... - 3 - 1.3.3研究的基本思路和基本方法..................................... - 3 - 第二章数控机床的进给传动系统 ......................................... - 4 - 2.1数控机床对进给传动系统的要求.. (4) 2.2数控机床进给传动装置的结构 (4) 2.2.1滚珠丝杠螺母机构的结构....................................... - 4 - 2.2.2 进给传动误差................................................ - 5 - 2.2.3 电机与丝杠的联接、传动方式 .................................. - 6 - 2.3数控系统的三种控制方式.. (6) 第三章数控机床的精度及可靠性分析 ..................................... - 8 - 3.1数控机床误差的分类 (8) 3.2误差模型简介 (8) 3.2.1 几何误差.................................................... - 8 - 3.2.2 热误差...................................................... - 9 - 3.2.3 运动控制误差................................................- 10 - 3.2.4 其它误差....................................................- 10 - 3.3数控机床的精度 .. (10) 3.4数控机床的精度检查 (11) 3.4.1 机床几何精度的检查 ..........................................- 11 - 3.4.2 机床定位精度的检查 ..........................................- 11 - 3.5数控机床的可靠性 (12)

西门子840D数控系统螺距误差补偿知识

西门子840D数控系统螺距误差补偿 西门子840D数控系统不同于以前曾广泛应用的810T/M和840C等老数控系统,它并没有提供专门的双向螺距误差补偿功能,通过对840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了进行双向螺距误差补偿的问题。 关键词:数控系统下垂补偿功能双向螺距误差补偿 由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械正反向传动误差的不一致,导致零件加工精度误差不稳定。因此也必须定期对机床坐标精度进行补偿,必要时要做双向坐标补偿,以达到坐标正反向运动误差的一致性。 一、西门子840D数控系统的补偿功能 西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。这些功能有: 1、温度补偿。 2、反向间隙补偿。 3、插补补偿,分为: (1) 螺距误差和测量系统误差补偿。 (2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。 4、动态前馈控制(又称跟随误差补偿)。包括:速度前馈控制和扭矩前馈控制。

5、象限误差补偿(又称摩擦力补偿)。分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。 6、漂移补偿。 7、电子重量平衡补偿。 在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。 二、840D下垂补偿功能的原理 1、下垂误差产生的原因: 由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。 2、840D下垂补偿功能参数的分析: 西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。描述如下: (1) $AN_CEC[t,N]:插补点N的补偿值,即基准轴的每个插补点对应于补偿轴的补偿值变量参数。 (2) $AN_CEC_INPUT_AXIS[t]:定义基准轴的名称。 (3) $AN_CEC_OUTPUT_AXIS[t]:定义对应补偿值的轴名称。 (4) $AN_CEC_STEP[t]:基准轴两插补点之间的距离。 (5) $AN_CEC_MIN[t]:基准轴补偿起始位置: (6) $AN_CEC_MAX[t]: 基准轴补偿终止位置 (7) $AN_CEC_DIRECTION[t]:定义基准轴补偿方向。其中:

数控机床误差测量与补偿

数控机床误差测量与补偿 摘要:本文在分析数控加工误差来源及分类的基础上,明确了几何误差的性质、产生原因及在各类误差源中所占的比重,着重介绍了用激光干涉测量法的测量原理及特点并对其两种不同的测量 方法进行比较,最后进行误差试验,得到补偿效果。 abstract: based on the analysis of the source and classification of nc maching error, this paper clears the nature of the geometric error, the causes and its proportion in all kinds of error sources. the principle and characteristics of laser interferometry is emphatically introduced and the two different methods are compared. at last, the error measurement is conducted to get compensation efffect. 关键词:数控机床;几何误差;误差测量;误差补偿 key words: nc machine tools;geometric error;error measurement;error compensation 中图分类号:tg659 文献标识码:a 文章编号:1006-4311(2013)22-0017-02 1 数控机床误差分析 1.1 误差的来源数控机床的误差来源比较复杂。机械加工的误差主要来源于机床、加工过程和检测等三个方面。如:①床身、主轴、立柱、导轨、旋转轴等机床零部件在制造过程中引入的尺寸误

840D螺距补偿步骤

1.螺距补偿 →Service →Manage Date →NC-active –date →Meas.-system-error-comp. →选择将要补偿的轴。 →Copy →光标到LIECHTI →Insert →打开补偿表 →输入补偿值 如X轴的补偿: CHANDATA(1) $AA_ENC_COMP[1,0,AX1]=0 $AA_ENC_COMP[1,1,AX1]=-0.00 $AA_ENC_COMP[1,2,AX1]=-0.001 $AA_ENC_COMP[1,3,AX1]=-0.003 $AA_ENC_COMP[1,4,AX1]=-0.004 $AA_ENC_COMP[1,5,AX1]=-0.007 $AA_ENC_COMP[1,6,AX1]=-0.009 $AA_ENC_COMP[1,7,AX1]=-0.011 $AA_ENC_COMP[1,8,AX1]=-0.012 $AA_ENC_COMP[1,9,AX1]=-0.014 $AA_ENC_COMP[1,10,AX1]=-0.017 $AA_ENC_COMP[1,11,AX1]=-0.016 $AA_ENC_COMP[1,12,AX1]=-0.018 $AA_ENC_COMP[1,13,AX1]=-0.019 $AA_ENC_COMP[1,14,AX1]=-0.023 $AA_ENC_COMP[1,15,AX1]=-0.026 $AA_ENC_COMP[1,16,AX1]=-0.028 $AA_ENC_COMP[1,17,AX1]=-0.029 $AA_ENC_COMP[1,18,AX1]=-0.029 $AA_ENC_COMP[1,19,AX1]=-0.032 $AA_ENC_COMP[1,20,AX1]=-0.034 $AA_ENC_COMP[1,21,AX1]=-0.037 $AA_ENC_COMP[1,22,AX1]=-0.037 $AA_ENC_COMP[1,23,AX1]=-0.039 $AA_ENC_COMP[1,24,AX1]=-0.042 $AA_ENC_COMP[1,25,AX1]=-0.046 $AA_ENC_COMP[1,26,AX1]=-0.049 . $AA_ENC_COMP_STEP[1,AX1]=56 $AA_ENC_COMP_MIN[1,AX1]=-171 $AA_ENC_COMP_MAX[1,AX1]=1285

螺距误差补偿

螺距误差补偿 螺补有关的参数: MD32450MA_BACKLASH[ ] (轴反向间隙补偿) MD32700MA_ENC_COMP_ENABLE[ ] = 0 可以写补偿值 = 1 补偿文件写保护MD38000MA_MM_ENC_COMP_MAX_POINTA[ ](轴螺补补偿点数) 螺补的步骤(以X轴为例): 1参数MD38000,按照X轴的全行程以及步长必须小于150mm的规则确定要补偿的点数(最好是一次确定并更改所有需要螺补轴的补偿点数)。更改完此参数后会出现一个报警4000,此时不要做NCK Reset,此时应该做NC备份。备份完后作POWER ON。 2在“Programe”(程序)中“Workpiece Programe(工件程序)”拷入各个轴的螺补程序LBX,LBY,LBZ等。 3在Service(服务)中找寻Data selection,在打开的界面中选择NC_active_data,回到data manage(数据管理)中打开NC_active_data,会出现meas.system_error_comp目录,再打开此目录会出现几个子目录:meas.system_error_comp_axis1(axis2,Axis3,axis4,……),点击axis1,按copy出现一个面板,将axis1复制到LB中,回到“workpiece(工件)”的LB 中,将出现AX1—EEC程序,此程序就是X轴的数据补偿程序。其他轴同理。 4在对机床进行螺补之前,应先走一遍所测轴全程,确定所测轴的全程间隙,如果过大需要调整光栅钢带的长度,使得所测轴全程激光测得的数与显示屏显示的数相差范围在0.02mm以下。 5设置MD32700= 0,将X轴以LBX的程序运行一遍(注意要设置好LBX里的步长,全长等数据),将激光测试出的各个点的误差及反向间隙数据采集下来。把各个点的误差数据以及程序的步长,最大和最小点一次写入AX1—EEC程序(注意不要改变数据的正负号),将反向间隙写入MD32450。 6在auto方式下选择AX1—EEC程序,并执行此程序。将MD32700设置为1,按“MD 参数生效”,作一次复位,使补偿值生效。再执行LBX程序,再检验X轴精度是否合格。 7如果精度检验不合格,可能有以下几种情况: ⑴定位精度不合格。需要分析一下激光曲线,具体看是否有地方出现较大拐点等, 要检查钢带外壳的直线度并调整,最好控制在0.05mm以内,重复E,F步骤, 再次补偿。 ⑵重复精度不合格。这个问题就比较复杂,对于螺补数据几乎不可能,因为它完 全来源于机械的安装,只能寄希望于机械的安装精度合格了。也许唯一能解点

FANUC数控机床螺距误差的检测分析与应用_赵宏立

FANUC 数控机床螺距误差的检测分析与应用 赵宏立 (沈阳职业技术学院,沈阳110045 )1数控机床螺距误差补偿原理与检测分析 随着精密加工和精益生产的市场需求,数控机床这 种高效高精的自动化设备逐渐在我国普及和使用,由于设备的长期运转和磨损,机床自身的精度需要定期校准,特别是数控机床的重复定位精度和定位精度的检测和补偿,直接影响产品的加工精度和效益。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的检测和补偿方法。Fanuc 数控机床的螺距误差补偿功能有一定的代表性,下面针对Fanuc 数控机床进行螺距误差的检测分析和补偿。1.1 螺距误差补偿与检测原理 在半闭环数控系统当中,重复定位精度和定位精度很大程度上取决于数控机床的滚珠丝杠精度,由于滚珠丝杠存在制造误差和长期加工使用带来的磨损,其精度必然下降,故所有的数控机床都为用户提供了螺距误差补偿功能。螺距误差补偿是将指定的数控机床各轴进给指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控机床各轴全行程上的误差偏移值,再将误差偏移值补偿到数控系统中,则数控机床各轴在运动时控制刀具和工件向误差的逆方向产生相对运动,自动补偿误差偏移值,提高机床的加工精度。1.2 螺距误差补偿应用与分析 我们知道,在大多数数控系统中螺距误差补偿只是 对机床的线性补偿段起作用,只要在数控系统允许的范围内补偿就会起到补偿作用,每轴的螺距误差可以用最小移动单位的倍数进行补偿,一般以机床参考点作为补偿原点,在移动轴设定的各 补偿间隔上,把应补偿的值作为固定参数设定。如图1所示为步距规采用线性补偿方法进行检测。 但一般情况下丝杠的使用是不均匀的,经常使用的地方必然就要磨损得多,用线性补偿只是进行统一均匀线性补偿,不能照顾到特殊的点,而采用点补偿正好能满足这一点,螺距补偿才会没有误 差。为了减少点补偿的误差,应该尽量选取较小的螺距补偿点间距。点补偿的优点是能针对不同点的不同误差值进行补偿,解决了不同点不同螺距误差的补偿问题,补偿的精度高。缺点是测量误差时比较麻烦,需用专业的测量仪器跟踪各点测量。如图2所示,采用定点补偿法进行螺距误差补偿的检测。 摘要: Fanuc 数控机床在我国数控加工领域占据着主导地位,它的精度和性能指标直接取决于数控机床的定位精度和重复定位精度。在实践应用中,数控系统的螺距误差补偿功能是最节约成本且直接有效的方法。利用激光干涉仪或步距规测得的实际位置与数控机床移动轴的指令位置相比较,计算出全程上的误差分布曲线,在数控系统控制移动轴运动时考虑该误差差值并加以补偿,可以使数控机床的精度达到更高水平。 关键词: 定位精度;螺距误差;检测;补偿中图分类号:T G502.13文献标识码:A 文章编号:1002-2333(2010)05-0038-03 Analysis and Application of Thread Pitch Error Compensation in Fanuc CNC Machine ZHAO Hong-li (Shenyang Polytechnic College,Shenyang 110045,China ) Abstract :Fanuc CNC Machine Tools dominated the field of NC machining in China,its accuracy and performance depends directly on the positioning accuracy and repeat positioning accuracy of CNC Machine Tools.In practical applications,the function of pitch error compensation is the most cost effective and direct method of CNC system.The actual position measured by using laser interferometer or a step gauge is compared with the instructions position of CNC machine moving axis,the position error curve is calculated out on the whole distribution,the error value is compensated in the moving-axis CNC system control movement.So the accuracy of CNC machine tools can be achieved a higher level. Key words :position accuracy;screw pitch error;measure; compensation 图 1 利用步距规进行线性 螺距误差检测 图2利用激光干涉仪进行 定点补偿检测 ACADEMIC COMMUNICATION 学术交流 理论/研发/设计/制造 机械工程师2010年第5期 38

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

FANUC的进给运动误差补偿方法

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计论文 FANUC的进给运动误差补 偿方法 学生姓名: 指导教师姓名: 所在班级所在专业 论文提交日期论文答辩日期 答辩委员会主任主答辩人 系 年月日

FANUC的进给运动误差补偿方法 目录 毕业设计任务书 (1) 开题报告 (2) 第一章进给运动误差补偿方法 (6) 1.1常见进给运动误差 (7) 1.1.1反向间隙误差补偿 (8) 1.1.2螺距误差补偿 (9) 1.1.3摩擦补偿 (11) 第二章进给误差数据采集与补偿参数的设置 (12) 2.1激光干涉仪 (12) 2.1.1单频激光干涉仪 (12) 3.1 双频激光干涉仪 (13) 3.1.1 雷尼绍激光校准系统 (14) 3.1.2 测量误差分析 (19) 3.2误差补偿参数的设置 (20) 毕业设计总结 (23) 参考文献 (24) 致谢 (25) 外文翻译 (26) 2

无锡职业技术学院毕业设计说明书 机械技术学院 毕业设计任务书 课题名称FANUC的进给运动误差补偿方法 指导教师王小平职称高级技师 专业名称数控设备应用与维护班级数控设备10832 学生姓名尹耀强学号1061083237 课题需要完成的任务: 1.根据课题调研查阅资料,了解国内外现状、进展,编写调研报告。 2.收集技术资料、图纸进行设计或分析探讨。 3.对不同类型设计的分析, 进行方案论证,确定总体方案。 4.完成毕业设计的论文。 5. 3000单词量的外文资料的翻译(专业相关科技类)。 课题计划: 2月21日—2月25日;确定毕业设计课题。 2月28日—3月 4日;收集整理英文翻译资料。 3月 7日—3月11日;查阅技术资料,完成课题的前期调研工作,完成英文翻译。3月14日—3月18日;完成课题相关资料收集,进行毕业论文构思。 3月21日—3月25日;完成毕业论文初稿。 3月28日—4月01日;完成毕业论文初稿。 4月04日—4月08日;修改、完善毕业论文,定稿。 4月11日—4月20日;整理打印毕业设计资料,完成答辩 计划答辩时间: 4月20日 数控技术系(部、分院) 2011 年3月 1 日 1

激光干涉仪检测方法

FANUC、OKUMA机床的激光干涉仪检测方法 一、光的相干性 二、激光干涉法测距原理 三、FANUC螺补参数的设定 四、关于FANUC系统正负方向补偿号的计算方法 五、FANUC的检测用程式 六、OKUMA螺补参数的设定 七、OKUMA检测程式 八、检测值输入的方法

一、光的相干性 相長性干涉 當兩個波長相同的光束波形同步射出時,其波峰位置會如下圖 2 一般重合,固稱為“相長性干涉”。在相長性干涉的情況下,輸出波的振幅等於兩個輸入波的振幅之和。 ?相消性干涉 當兩個相干光束波形以180°的相位差異步射出時,一個輸入光束的波峰位置會如下圖3 一般與另一個輸入光束的波谷重合,固稱為“相消性干涉”。在相消性干涉的情況下,兩個輸入波會互相抵消而產生暗淡的光

二、激光干涉法测距原理 图片: 根据光的干涉原理,两列具有固定相位差,而且有相同频率、相同的振动方向或振动方向之间夹角很小的光相互交叠,将会产生干涉现象,如图所示。由激光器发射的激光经分光镜A分成反射光束S1和透射光束S2。两光束分别由固定反射镜M1和可动反射镜M2反射回来,两者在分光镜处汇合成相干光束。若两列光S1和S2的路程差为Nλ(λ为波长,N为零或正整数),实际合成光的振幅是两个分振幅之和,光强最大。当S1和S2的路程差为λ/2(或半波长的奇数倍)时,合成光的振幅和为零,此时光强最小。 激光干涉仪就是利用这一原理使激光束产生明暗相间的干涉条纹,由光电转换元件接收并转换为电信号,经处理后由计数器计数,从而实现对位移量的检测。由于激光的波长极短,特别是激光的单色性好,其波长值很准确。所以利用干涉法测距的分辨率至少为λ/2,

相关文档