文档库 最新最全的文档下载
当前位置:文档库 › 数据的离散程度1

数据的离散程度1

数据的离散程度1
数据的离散程度1

3.1平均数(1)

学习目标

1.理解算术平均数的意义,会计算一组数据的算术平均数;

2.能根据平均数的意义解决简单的实际问题.

学习重点 计算一组数据的算术平均数;能根据平均数的意义解决简单的实际问题. 学习难点 计算一组数据的算术平均数;能根据平均数的意义解决简单的实际问题. 学习过程

一、自学先学

阅读课本P98-99内容,完成下列问题:

1.一组数据的平均水平通常用 来表示.

2.对于n 个数1x ,2x ,…,n x ,我们把 错误!未找到引用源。叫做这n 个数的算术平均数,简称 ,记为 ,读作“ ”.

3.班级某两组同学献爱心活动中,将平时积攒的零花钱捐献. 捐款金额如下(单位:元): A 组 18,20,22,18,24,18 B 组 20,22,18,22,22

计算A 组同学捐款平均数A x ,A 组同学捐款平均数B x .

4.小红记录了连续5天最低气温,并整理如下表由于不小心被墨迹污染了一个数据,请你算一算这个数据是( )

日 期 一

二 三 四 五

平均气温 最低气温(℃)

16

18

19

18

18.2

A.21

B.18.2

C.19

D.20

小组讨论 展示交流

1.10名射击运动员第一轮比赛成绩如下表所示:

环数 7 8 9 10 人数

4

2

3

1

则他们本轮比赛10名运动员的平均成绩是多少环?

2.小明和小丽所在的A ,B 两个小组同学身高如下:

你怎样计算A 组和B 组的平均身高呢?与同学交流你的做法.

A 组(10人)/cm

B 组(12人)/cm

159,164,160,152,154,169,170,155,168,160

160,160,170,158,170,168,158, 170,158,160,160,168

质疑拓展

1. 已知两组数据x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数分别为2和-2,则x 1+3y 1,x 2+3y 2,…,x n +3y n 的平均数为

2. .若数据1a 、2a 、3a 、…、10a 的平均数是a ,数据1b 、2b 、3b 、…、20b 的平均数是b ,则数据1a 、2a 、3a 、…、10a 、1b 、2b 、3b 、…、20b 的平均数为 .

3.某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为 .

4.若n 个数的平均数为p ,从这n 个数中去掉一个数q ,余下的数的平均数增加了2,则q 的值为

检测反馈

1.一组数据为10,8,9,12,13,10,8,则这组数据的平均数是 .

2.某班第一小组6名女生在测仰卧起坐时,记录下她们的成绩(单位:个/分):45,48,46,50,50,49.这组数据的平均数是 .

3.已知一组数据85、x 、90、80的平均数为85,则x =

4.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是 .

5.已知错误!未找到引用源。x 1,x 2,x 3,3,4,7的平均数为6,则x 1+x 2+x 3= .

6.一组数据3,5,7,m ,n 的平均数是6,则m ,n 的平均数是

7.若数据1x ,2x ,…,n x 的平均数是5,则数据1x +10,2x +10,…,n x +10的平均数为 .

8.为庆祝中国共产党建党90周年,某市举行了聂耳艺术周活动,某单位的合唱成绩如下表:

若去掉一个最高分和最低分后,则余下数据的平均分是 .

9.某中学足球队20名队员的身高如下(单位:cm)170,167,171,168,160,172,168,162,172,169,164,174,169,165,175,170,165,167,170,172.求这20名队员的平均身高.

10.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,求学生的平均分数.

小结反思

3.1平均数(2)

学习目标

1.会求加权平均数,并体会“权”的差异对结果的影响;

2.利用平均数解决实际问题.

学习重点 会求加权平均数,利用平均数解决实际问题. 学习难点 会求加权平均数,利用平均数解决实际问题. 学习过程 自主先学

自学课本P99-101内容,完成下列问题:

1.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间。

小明是这样算的:25.14

.25.10.15.0=+++(小时)

小丽是这样算的:150

5

0.2105.1150.1205.0=?+?+?+?小时

你认为哪种算法正确?为什么?

2.学校举办了一次英语竞赛,该竞赛由阅读、作文、听力和口语四部分构成,小明、小亮和小丽参加了这次竞赛,成绩如下:

阅读 作文 听力 口语 小明 90分 80分 80分 70分 小亮 80分 90分 70分 80分 小丽 70分 80分 90分 80分

(1)计算3个人4项比赛成绩的算术平均数,谁的竞赛成绩最高? (2)根据这4项比赛成绩的“重要程度”,将阅读、作文、听力和口语分别按30%、30%、20%和20%的比例计算他们3人的竞赛成绩,谁的竞赛成绩最高?

在第1个问题中,课外阅读时间0.5、1.0、1.5、2.0在平均数中的“重要程度”是不相同的,分别为20、15、10、5;在第2个问题中,阅读、作文、听力和口语成绩的“重要程度”分别占“30%、30%、20%和20%”.我们把衡量各个数据“重要程度”的数值叫做“ ”,

第1题中时间0.5、1.0、1.5、2.0的“权”分别是 ,小丽算得的平均数1小时是课外阅读时间的加权平均数;

第2题中阅读、作文、听力和口语成绩的“权”分别是 . 小组讨论 展示交流

学校广播站要招聘1名记者,小明、小亮、小丽报名参加了3项素质测试,成绩如下:

采访写作 计算机 创意设计 小明 70 70 86 小亮 90 75 51 小丽 60 84 78

把采访写作、计算机和创意设计按成绩按5 :2 :3的比例计算3个人的素质测试平均成绩,那么谁将被录取?如果按3 :2 :5的比例计算3个人的素质测试平均成绩,那么谁将被录取?

质疑拓展

某校七年级(1)班为了在王强和李军同学中选班长,进行了一次“演讲”与“民主测评”活动,A ,B ,C ,D ,E 五位老师为评委对王强,李军的“演讲”打分;该班50名同学分别对王强和李军按“好”,“较好“,“一般“三个等级进行民主测评.统计结果如下图,表.计分规则:

①“演讲”得分按“去掉一个最高分和一个最低分后计算平均分”;

②“民主测评”分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分; ③综合分=“演讲”得分×40%+“民主测评”得分×60%. 解答下列问题:

(1)演讲得分,王强得 分;李军得 分; (2)民主测评,王强得 分;李军得 分;

(3)以综合得分高的当选班长,王强和李军谁能当班长?为什么?

课堂检测

1.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为 ( )

A.11元/千克

B.11.5元/千克

C.12元/千克

D.12.5元/千克

2.某学校规定学生的数学成绩由三部分组成,期末考试成绩占70%,期中考试成绩占20%,平时作业成绩占10%,某人上述三项成绩分别为85分,90分,80分,则他的数学成绩是 ( )

A.85分

B.85.5分

C.90分

D.80分

3.一组数据有m 个x 1,n 个x 2,p 个x 3,那么这组数据的平均数为

4.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,求甲、乙、丙三人综合成绩。

学科 数学 物理 化学 生物 甲 95 85 85 60 乙 80 80 90 80 丙 70 90 80 95

5.小明同学在初二年级第一学期的数学成绩如下表格, 请按图示的平时、期中、期末的权重, 计算小明同学的学期总评成绩.

小结反思

考试 平时1 平时2 平时3 期中 期末

成绩 89 78 85 90 87

16

10

6

8

4答对题数

人数/人

321O

3.2中位数和众数(1)

【学习目标】

1.能说出中位数与众数的概念,会根据所给的信息求出一组数据的中位数、众数; 2.能结合具体的情境理解平均数、中位数和众数的区别和联系; 学习重点 根据所给的信息求出一组数据的中位数、众数

学习难点 结合具体的情境理解平均数、中位数和众数的区别和联系 学习过程 自主先学

自学学习P104-106内容,完成下列问题:

1.在献爱心捐款活动中九(1)班某小组7名同学的捐款如下(单位:元):,2,5,5,7,10,10,80该小组平均每名同学捐款 元。你认为这个平均数能反映该组同学捐款的“集中趋势”吗?

当一组数据中个别数据与其他数据的大小差异很大时,平均数就不能较好的反映这组数据的集中程度。怎样描述这组数据的集中程度呢?

阅读课本P104-105,完成下列问题。

1.一般地,将一组数据按大小顺序排列,如果数据的个数是奇数,位置处于 位

置的一个数据叫做这组数据的中位数;如果数据的个数是偶数,处于中间位置的的 叫做这组数据的中位数.

2.一组数据中 的数据叫做这组数据的众数.

3.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数为 , 众数为 .

4.已知一组数据1,2,x ,2,3,3,5,7的众数是2,则这组数据的中位数是 . 你有什么发现: 小组讨论 展示交流

1.我校八年级(1)班每位同学都向“希望工程”捐献图书,捐书情况如下表:

册数 4 5 6 7 8 9 10 12 人数

2

7

12

12

8

5

3

1

(1)这个班级每位同学平均捐多少册书? (2)求捐书册数的中位数和众数.

2.电视台在某次青年歌手大奖赛中,设置了基本知识问答题,答对一题得5分,答错或不答得0分,统计结果如图所示. (1)选手得分的中位数是多少? (2)选手得分的众数是多少? (3)平均分约为多少?

质疑拓展

某校开展了“孝敬父母,从家务事做起” 的活动, 活动结束后,调查了八年级某班50名学生一周做家务所用的时间,得到一组数据,并绘制成下表,请根据下表完成各题:

(1

)填写表中未完成的部分;

(2)该班学生每周做家务的平均时间是______;

(3)这组数据的中位数是 ,众数是 ; (4)请你根据(2)、(3)的结果,用一句话谈谈自己的感受.

课堂检测

1.数据-1、3、1、-2、3的中位数 ,众数 .

2.一组数据50, 40, 80, 40, 90, 30, 50, 50, 40, 20的众数是 .

3.学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数是 ,众数为 .

4.数据0,1,1,x ,3,4的平均数是2,则这组数据的中位数是 .

5.一组数据:x ,8,10,10的中位数与平均数相等,这组数据的中位数是 .

6.九年级二班50名同学在“爱心捐款”活动中,捐款情况统计如下表,

捐款金额(元) 5 10 15 20 50 捐款人数(人)

7

18

10

12

3

(1) 九年级二班50名同学平均捐款多少元?

(2)二班同学捐款数组成的数据中,中位数和众数分别是多少?

(3)根据样本数据,估计该校九年级300名学生在本次活动中捐款多于15元的人数.

7.某地区5月3日至5月9日这7天的日气温最高值统计图如图所示.根据统计图: (1)该地区这7天日气温最高值的众数与中位数分别是多少? (2)求该地区这7天日气温最高值的平均数值.

小结反思

每周做家务的时间(小

0 1 1.5 2 2.5 3 3.5 4 合计 人数

2

2

6

12 13

4

3

50

3.2中位数和众数(2)

学习目标

1.能理解平均数、中位数和众数的区别和联系,并能根据具体问题,选择合适的统计量表示数据的集中程度.

2.能对日常生活中的有关问题与现象做出恰当的判断.

学习重点 理解平均数、中位数和众数的区别和联系,并能根据具体问题,选择合适的统计量表示数据的集中程度.

学习难点 对日常生活中的有关问题与现象做出恰当的判断. 学习过程 自主先学

某公司员工的月工资如下(单位:元):

月工资 20000 12000 8000 6000 3000 2500 2000 1500 人数

1

总经理

2

副总经理 5

部门经理 10

业务主管 24

普通职工 26

普通职工 10

普通职工 4

普通职工

(1)根据上表可以算出该公司员工月工资的平均数3744元、中位数 元、众数 元;

(2)如果你是普通职工,你会更加关注月工资数据的平均数、中位数、众数中的哪一个?如果你是总经理呢?如果你是工会主席?

我们发现:平均数、中位数和众数都能刻画数据的集中程度,在实际应用中,根据需要恰当的选择。

小组讨论 展示交流

1.小明和小颖5次数学单元测试成绩如下(单位:分): 小明:89,67,89,92,96;小颖:86,62,89,92,9

2. 他们都认为自己的成绩比另一位同学好.

(1)请你分析他们各自的理由;(2)你认为谁的成绩更好一些?说明你的理由.

2.某中学开展英语演讲比赛活动,初二(1)、初二(2)班根据初赛成绩各选出5名选手参 加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示. (1)根据左图填写表格.

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好?

(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,

说明理由.

平均分 (分)

中位数 (分)

众 数 (分)

初二(1)班

85 85 初二(2)班

85

80

5号 4号 3号 2号 1号

分数 九(1)班

九(2)班

选手编号

70 85

95 75 80 90 100

质疑拓展

三个生产同一产品的厂家在广告里声称,他们的产品在正常情况下的平均寿命是10年.工商部门为了检查其宣传的真实性,对三个产家出售的产品使用寿命进行了抽样调查,结果如下:

甲厂:5,6,7,7,7,9,11,14,15,17;

乙厂:5,5,6,7,7,8,10,10,10,12,13;

丙厂:5,5,6,6,6,10,11,12,13,14,15.

请回答下列问题:

(1)分别求出以上3组数据的平均数、中位数和众数;

(2)这三家的推销广告分别利用了哪一种表示集中趋势的特征数?

(3)如果你是顾客,会选购哪家工厂的产品?为什么?

课堂检测

1.某鞋店试销一种新款女鞋,销售情况如下表所示,鞋店经理最关心的是哪种的鞋销量最大.对他来说,下列统计量中最重要的()

型号22 22.5 23 23.5 24 24.5 25 数量(双) 3 5 10 15 8 3 2

A.平均数

B.众数

C.中位数

2.有15位同学参加智力竞赛,已知他们的得分互不相同,取8位同学进入决赛,云云同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这15位同学的分数的( )

A.平均数

B.众数

C.最高分数

D.中位数

3.课本P107练习2.

4.某市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:

次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2

(1)求这次抽样测试数据的平均数、众数和中位数;

(2)根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;

(3)根据(2)中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?

小结反思

3.4 方差

学习目标

1.经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性.

2.知道极差、方差的意义,会计算一组数据的极差与方差.

学习重点知道极差、方差的意义,会计算一组数据的极差与方差

学习难点知道极差、方差的意义,会计算一组数据的极差与方差

学习过程

自主先学

1.某日在不同时刻测得乌鲁木齐和广州的气温情况如下:

0:00 4:00 8:00 12:00 16:00 20:00 乌鲁木齐10°c 14°c 20°c 24°c 19°c 16°c 广州20°c 22°c 23°c 25°c 23°c 21°c

(1)乌鲁木齐和广州的气温的最大值、最小值各是多少?

(2)两地区某日的气温极差是多少?

2.质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径进行了检测,结果如下(单位:mm)

A厂: 40.0, 39.9, 40.0, 40.1, 40.2, 39.8, 40.0, 39.9, 40.0, 40.1

B厂: 39.8, 40.2, 39.8, 40.2, 39.9, 40.1, 39.8, 40.2, 39.8, 40.2

思考探索:

(1)分别计算它们的平均数都是40 ,A厂数据的极差是,B厂数据的极差是 . (2)将上面两组数据绘制成下图,你能发现哪组数据较稳定?

直径/mm 直径/mm

A厂 B厂

(3)怎样更精确的表示这两组数据的离散程度?

用一组数据x1,x2,…,x n与它们的平均数x的差的平方的平均数,即

来描述这组数据的离散程度,并把它叫做这组数据的方差.

(4)请计算A、B两厂生产的乒乓球直径的方差.

小组讨论展示交流

1.甲、乙两台机床生产同种零件,10天出的次品分别是:

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

质疑拓展

某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛,其预赛成绩如图所示:

(1)根据上图填写下表:

平均数 中位数

众数

方差

甲班 8.5 8.5 乙班

8.5

10

1.6

(2)根据上表数据你认为哪班的成绩较好?并说明你的理由;

(3)乙班小明说:“我的成绩是中等水平”,你知道他是几号选手?为什么?

课堂检测

1.数据 0 , -1 , 3 , 2 , 4 的极差是 .

2.甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S 2甲=0.9,S 2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是 .

3.数据1,2,3,4,5的方差是 .

4.小明和小兵两人参加学校组织的理化实验操作测试, 近期的5次测试成绩如右图所示,则小明5次成绩的 方差S 12与小兵5次成绩的方差S 22之间的大小关系为 S 12 S 22.(填“>”、“<”、“=”)

5.已知一组数据1,2,3,4,5的方差为2,则另一组 数据11,12,13,14,15的方差为 .

6.甲、乙两人在5次打靶测试中命中的环数如下:

甲:

8,8,7,8,9

乙:5,9,7,10,9

(1)填写右表: (2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么? (3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .

小结反思

平均数 众数 中位数 方差

甲 8 8 乙 9

3.2

珍藏第二章 数据的离散程度

期末复习教学案 第二章 数据的离散程度 【知识回顾】 1.描述一组数据的离散程度(即波动大小)的量: 等。 2.极差: (1)极差计算公式: 。 注意:极差越小,这组数据的离散程度(即波动大小)就越 ,这组数据就越 。 (2)用极差来衡量一组数据的离散程度(即波动大小)的优缺点:(回忆) 3.方差(或标准差): (1)方差计算公式: ; 标准差计算公式: 。 注意:①方差的单位是 ;而标准差的单位是 。 ②方差(或标准差)越小,这组数据的离散程度(即波动大小)就越 ,这组数据就越 。 ③两组数据比较时,一组数据的极差大,这组数据的方差(或标准差)不一定...就大! (2)填表: (3)区分“二选一”和“对二者做出评价”这两类题型的回答的不同:(回忆) 【基础训练】 1.(08,大连)随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为: 13=甲x ,13=乙x ,6.3S 2=甲,8.15S 2=乙,则小麦长势比较整齐的试验田是 。 2.(07,晋江)一组数据35,35,36,36,37,38,38,38,39,40的极差是_______ _。 3.(08,永州) 已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为 . 4. 在统计中,样本的标准差可以反映这组数据的

A .平均状态 B .分布规律 C .离散程度 D .数值大小 5.(08,台州)一组数据9.5,9,8.5,8,7.5的极差是 A .0.5 B .8.5 C .2.5 D .2 6.(08,义乌)近年来,义乌市对外贸易快速增长.右图是根据我市2004年至2007年出口总额绘制的条形统计图,观察统计图可得在这期间我市年出口总额的极差是 亿美元. 7.(08,嘉兴)已知甲、乙两组数据的平均数分别是80x =甲,90x =乙,方差分别是2 10S =甲,2 5S =乙,比较这两组数据,下列说法正确的是 A .甲组数据较好 B .乙组数据较好 C .甲组数据的极差较大 D .乙组数据的波动较小 8.下列说法正确的是 A .两组数据的极差相等,则方差也相等 B .数据的方差越大,说明数据的波动越小 C .数据的标准差越小,说明数据越稳定 D .数据的平均数越大,则数据的方差越大 9.(08,河南)样本数据3,6,a , 4,2的平均数是5,则这个样本的方差是 。 10. 数据1x , 2x ,3x ,4x 的平均数为m ,标准差为5,那么各个数据与m 之差的平方和为_________。 11.(08,西宁)一组数据1-,0,3,5,x 的极差是7,那么x 的值可能有 A .1个 B .3个 C .4个 D .6个 12.(08,鄂州)数据0,-1,6,1,x 的众数为1-,则这组数据的方差是 A .2 B . 34 5 C D . 265 13.(08,黄石)若一组数据2,4,x ,6,8的平均数是6,则这组数据的方差是 A . B .8 C . D .40 14. 已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_________ ,标准差为_______ 。 15.若一组数据1a ,2a ,…,n a 的方差是5,则一组新数据12a ,22a ,…,n a 2的方差是 A .5 B .10 C .20 D .50 16.若一组数据1x , 2x ,… , n x 的方差为9,则数据321 -x ,322-x ,…,32-n x 的标准差是_______. 17.一组数据的极差为4,方差为2将这组数据都扩大3倍,则所得一组新数据的极差和方差是 A .4,2 B .12,6 C .4,32 D .12,18 18.甲乙两名战士在相同条件下各射击10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7 乙:6,7,7,6,7,8,7,9,8,5 (1)分别计算以上两组数据的极差;

数据的离散程度(一)

§6.4.1数据的离散程度(一) 学习目标: 1.了解刻画数据离散程度的三个量度——极差、标准差和方差,能借助计算器求出相应的数值。 2.通过实例体会用样本估计总体的思想,进一步认识“离散程度”的意义。 3.能借助计算器求出一组数据的方差、标准差,并在具体问题情景中加以运用。 活动过程: 活动一:回顾旧知 1.平均数计算公式是什么? 2.平均数反映数据的什么趋势? 活动二:新知探究 1.想一想 阅读课本149页,完成下列问题 (1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量吗? (2)求甲、乙两厂被抽取的鸡腿的平均质量。 (3)在图中画出表示平均质量的直线(画在书上),观察图象你发现了什么? (4)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值呢?它们差几克?乙厂呢? (5)如果只考虑鸡腿规格,你认为外贸公司应购买哪个厂的鸡腿?为什么? 2.概念引入 生活中数据除了“平均水平”外还有离散程度。离散程度是指数据相对于“平均数”的 ___________程度。数据的离散程度可以用极差、方差、标准差来刻画。 极差:是指一组数据中最_____数据与最______数据的差,极差是用来刻画数据离散程度的一个统计量。

方差:各个数据与平均数之差的平方的平均数,记作s2,设有一组数据:x1, x2, x3,……,xn,其平均数为x 则()()()()[]2 23222121 x x x x n s x x x x n -++-+-+-=Λ 标准差(即方差的算术平方根) ()()()()[]2 2322211x x x x n s x x x x n -++-+-+-=Λ 3.练一练 如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿质量如下:(单位:g ) 75 74 73 78 72 76 74 76 74 75 74 72 73 72 78 76 77 77 77 79 (1)丙厂这20只鸡腿质量的平均数和极差是多少? (2)如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。 (3)在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么? 小结: 当几组数据的平均数相等或比较接近时,我们可以用极差,方差或标准差来比较数据的离散程度.一组数据的极差、方差或标准差越小,说明数据的离散程度越_____(填“大”或“小”),数据的波动越_______,说明数据越稳定。 练习反馈“ 1.五个数1,2,4,5,a,的平均数是3,则a=__ __,这五个数的方差是______; 2.甲、乙两个小组各10名学生的某次数学测验成绩如下:(单位:分) 甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74 (1)甲组数据的众数是____________,乙组数据的中位数是_________________ (2)若甲组数据的平均数为x ,乙组数据的平均数为y ,则x 与y 的大小关系是 (3)经计算知:s 2甲=13.2, s 2乙=26.36, s 2甲______s 2乙(填>、=、<符号),这说明___________________________________________________________

如何衡量数据的离散程度精编版

如何衡量数据的离散程 度精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

如何衡量数据的离散程度 我们通常使用均值、中位数、众数等统计量来反映数据的集中趋势,但这些统计量无法完全反应数据的特征,即使均值相等的数据集也存在无限种分布的可能,所以需要结合数据的离散程度。常用的可以反映数据离散程度的统计量如下: 极差(Range) 极差也叫全距,指数据集中的最大值与最小值之差: 极差计算比较简单,能从一定程度上反映的数据集的离散情况,但因为最大值和最小值都取的是极端,而没有考虑中间其他数据项,因此往往会受异常点的影响不能真实反映数据的离散情况。 四分位距(interquartilerange,IQR) 我们通常使用箱形图来表现一个数据集的分布特征: 一般中间矩形箱的上下两边分别为数据集的上四分位数(75%,Q3)和下四分位数(25%,Q1),中间的横线代表数据集的中位数(50%,Media,Q2),四分位距是使用Q3减去Q1计算得到: 如果将数据集升序排列,即处于数据集3/4位置的数值减去1/4位置的数值。四分位距规避了数据集中存在异常大或者异常小的数值影响极差对离散程度的判断,但四分位距还是单纯的两个数值相减,并没有考虑其他数值的情况,所以也无法比较完整地表现数据集的整体离散情况。 方差(Variance) 方差使用均值作为参照系,考虑了数据集中所有数值相对均值的偏离情况,并使用平方的方式进行求和取平均,避免正负数的相互抵消: 方差是最常用的衡量数据离散情况的统计量。 标准差(StandardDeviation) 方差得到的数值偏差均值取平方后的算术平均数,为了能够得到一个跟数据集中的数值同样数量级的统计量,于是就有了标准差,标准差就是对方差取开方后得到的: 基于均值和标准差就可以大致明确数据集的中心及数值在中心周围的波动情况,也可以计算正态总体的置信区间等统计量。

2013年苏科版九年级上第二章数据的离散程度检测题含答案

第二章数据的离散程度检测题 【本试卷满分100分,测试时间90分钟】 一、选择题(每小题3分,共30分) 1.在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36 ℃的上下波动数据为:0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0.1,0,则对这10天中该学生的体温波动数据分析不正确的是( ) A.平均数为0.12 B.众数为0.1 C.极差为0.3 D.方差为0.02 2.对甲、乙两名同学100米短跑进行5次测试,他们的成绩通过计算得;错误!未找到引用源。,错误!未找到引用源。=0.025,错误!未找到引用源。=0.026,下列说法正确的是()A.甲短跑成绩比乙好 B.乙短跑成绩比甲好 C.甲比乙短跑成绩稳定 D.乙比甲短跑成绩稳定 3.(2011湖南益阳中考)“恒盛”超市购进一批大米,大米的标准包装为每袋30 kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结 果是错误!未找到引用源。那么这6袋大米重量 ..的平均数和极差分别是( ) A.0,1.5 B.29.5,1 C.30,1.5 D.30.5,0 4.数据70、71、72、73的标准差是() B.2 D.5 4 5.样本方差的计算公式错误!未找到引用源。中,数字20和30分别表示样本的() A.众数、中位数 B.方差、标准差 C.数据的个数、平均数 D.数据的个数、中位数 6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是() A.3.5 B.3 C.0.5 D.-3 7.一组数据的方差为错误!未找到引用源。,将该组数据的每一个数据都乘2,所得到的一组新数据的方差 是() A.错误!未找到引用源。 B.错误!未找到引用源。 C.2错误!未找到引用源。 D.4错误!未找到引用源。 8.体育课上,八年级(1)班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道两个组立定跳远成绩的() A.平均数 B.方差 C.众数 D.频率分布 9.(2011山东德州中考)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:

评价数据离散程度的指标

标准差 标准差(Standard Deviation),也称(mean square error),是各数据偏离的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 标准差(Standard Deviation),在统计中最常使用作为程度(statistical dispersion)上的。标准差定义为的,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质: 为非负数值,与测量资料具有相同单位。一个总量的标准差或一个的标准差,及一个子集合样品数的标准差之间,有所差别。 标准计算公式 假设有一组数值X1,X2,X3,......Xn(皆为),其平均值为μ,公式如图1. 图1 标准差也被称为,或者实验标准差,公式如图2。 图2 简单来说,标准差是一组数据分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合{0, 5, 9, 14} 和{5, 6, 8, 9} 其平均值都是7,但第二个集合具有较小的标准差。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的。标准差数值越大,代表回报远离过去值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。 如是总体,根号内N=n,如是,标准差公式根号内N=(n-1),因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。 公式意义 所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。 深蓝区域是距平均值小于一个标准差之内的数值范围。在中,此范围所占比率为全部数值之68%。根据正态分布,两个标准差之内(深蓝,蓝)的

数据的离散程度【公开课教案】

6.4 数据的离散程度 第一环节:情境引入 内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。 质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下: 甲厂:75 74 74 76 73 76 75 77 77 74 74 75 75 76 73 76 73 78 77 72 乙厂:75 78 72 77 74 75 73 79 72 75 80 71 76 77 73 78 71 76 73 75 把这些数据表示成下图: 质量/g 甲厂乙厂 (1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少? (2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。 (3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克? (4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。 在学生讨论交流的的基础上,教师结合实例给出极差的概念:

极差是指一组数据中最大数据与最小数据的差。它是刻画数据离散程度的一个统计量。 目的:通过一个实际问题情境,让学生感受仅有平均水平是很难对所有事物进行分析,从而顺利引入研究数据的其它量度:极差。 注意事项:当一组数据的平均数与中位数相近时,学生在原有的知识与遇到问题情境产生知识碰撞时,才能较好地理解概念。 第二环节:合作探究 内容1: 如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图: 78 质量/g (1)丙厂这20只鸡腿质量的平均数和极差分别是多少? (2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距。 (3)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么? 数学上,数据的离散程度还可以用方差或标准差刻画。 方差是各个数据与平均数之差的平方的平均数,即: ()()()[] 222212...1x x x x x x n s n -++-+-= 注:x 是这一组数据x 1,x 2,…,x n 的平均数,s 2是方差,而标准差就是方差的算术平方根。一般说来,一组数据的极差、方差、标准差越小,这组数据就越稳定。 说明:标准差的单位与已知数据的单位相同,使用时应当标明单位;方差的单位是已知单位的平方,使用时可以不标明单位。 目的:通过对丙厂与甲、乙两厂的对比发现,仅有极差还不能准确刻画一组

初中数学九(上)第二章数据的离散程度学案

课题:极差 学习目标:(1) 经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性。. (2) 掌握极差的概念,理解其统计意义。 (3) 了解极差是刻画数据离散程度的一个统计量,并在具体情境中加以应用。 学习重点:掌握极差的概念,理解其统计意义。 学习难点:极差的统计意义. 学习过程: 一.情景创设 小明初一时数学成绩不太好,一学年中四次考试成绩分别是75、78、77、76.初一暑假时,小明参加了科技活动小组,在活动中,小明体会到学好数学的重要性,逐渐对数学产生了兴趣,遇到问题时从多方面去思考,深入钻研.因此小明的数学成绩进步很快,初二的一学年中,小明在四次考试的数学成绩是80、85、92、95. 看完这则小通讯,请谈谈你的看法. 你以为在这些数据中最能反映学习态度重要性的是哪一对数据?两者相差多少? 引入概念:极差. 二、探索活动 下表显示的是某市2001年2月下旬和2002年同期的每日最高气温: 试对这两段时间的气温进行比较. 我们可以由此认为2002年2月下旬的气温比2001年高吗? 两段时间的平均气温分别是多少?平均气温都是12℃.这是不是说,两个时段的气温情况没有什么差异呢?请同学们根据上表提供的数据,绘制出相应的折线图. 观察一下,它们有差别吗?把你观察得到的结果写在下面的横线上: _____________________________________________________________. 通过观察,我们可以发现:图(a)中折线波动的范围比较大——从6℃到22℃,图(b)中折线波动的范围则比较小——从9℃到16℃. 思考 什么样的指标可以反映一组数据变化范围的大小? 我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变围.用这种方法得到的差称为极差(range). 极差=最大值-最小值. 三、实践应用 例1 观察上图,分别说出两段时间内气温的极差. 例2 你的家庭中年纪最大的长辈比年纪最小的孩子大多少岁? 例3 自动化生产线上,两台数控机床同时生产直径为40.00毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米). (2) 就所生产的10个零件的直径变化范围,你认为哪个机床生产的质量好?

数据的离散程度

数据的离散程度 一、选择 1、国家统计局发布的统计公报显示:2001到2005年,我国GDP 增长率分别为8.3%,9.1%,10.0%,10.1%,9.9%。经济学家评论说:这五年的年度GDP 增长率之间相当平稳。从统计学的角度看,“增长率之间相当平稳”说明这组数据的( )较小。 A 、标准差 B 、中位数 C 、平均数 D 、众数 2、刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否温度,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的( ) A 、众数 B 、方差 C 、平均数 D 、频数 3、若一组数据1、2、3、x 的极差是6,则x 的值为( ) A 、7 B 、8 C 、9 D 、7或-3 4、下列说法中,错误的有 ( ) ①一组数据的标准差是它的差的平方;②数据8,9,10,11,1l 的众数是2;③如果数据x 1,x 2,…,x n 的平均数为x ,那么(x 1-x )+(x 2-x )+…(x n -x )=0;④数据0,-1,l ,-2,1的中位数是l . A 、4个 B 、3个 C 、2个 D 、l 个 二、填空 5、数据:1、3、4、7、2的极差是 。 6、对某校同龄的70名女学生的身高进行测量,其中最高的是169㎝,最矮的是146㎝,对这组数据进行整理时,可得极差为 。 7、甲、乙、丙三台包装机同时分装质量为400 克的茶叶.从它们各自分装的茶叶中分别随机 抽取了10盒,测得它们的实际质量的方差如下表所示: 根据表中数据,可以认为三台包装机中, 包装机包装的茶叶质量最稳定。 8、小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如右图所示,则小明5次成绩的方差S 12与小兵5次成绩的方差S 22之间的大小关系为S 12 S 22.(填“>”、“<”、“=”) 9、一组数据的方差 ])10()10()10[(15 1 222212-++-+-= n x x x s ,则这组数据的平均数是 ,n x 中下标 n= 。 10、已知一组数据x1,x2,…,xn 的方差是a 。则数据x1-4,x2-4,…,xn -4的方差是 ;数据 3x1,3x2,…,3xn 的方差是 。 三、解答 11、在某旅游景区上山的一条小路上,有一些断断续续的台阶。如图是其中的甲、乙段台阶路的示意图。请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题: 16 14 14 16 15 15 甲路段 17 19 10 18 15 11 乙路段

如何衡量数据的离散程度

如何衡量数据的离散程度 我们通常使用均值、中位数、众数等统计量来反映数据的集中趋势,但这些统计量无法完全反应数据的特征,即使均值相等的数据集也存在无限种分布的可能,所以需要结合数据的离散程度。常用的可以反映数据离散程度的统计量如下: 极差(Range) 极差也叫全距,指数据集中的最大值与最小值之差: 极差计算比较简单,能从一定程度上反映的数据集的离散情况,但因为最大值和最小值都取的是极端,而没有考虑中间其他数据项,因此往往会受异常点的影响不能真实反映数据的离散情况。 四分位距(interquartile range,IQR) 我们通常使用箱形图来表现一个数据集的分布特征: 一般中间矩形箱的上下两边分别为数据集的上四分位数(75%,Q3)和下四分位数(25%,Q1),中间的横线代表数据集的中位数(50%,Media,Q2),四分位距是使用Q3减去Q1计算得到:

如果将数据集升序排列,即处于数据集3/4位置的数值减去1/4位置的数值。四分位距规避了数据集中存在异常大或者异常小的数值影响极差对离散程度的判断,但四分位距还是单纯的两个数值相减,并没有考虑其他数值的情况,所以也无法比较完整地表现数据集的整体离散情况。 方差(Variance) 方差使用均值作为参照系,考虑了数据集中所有数值相对均值的偏离情况,并使用平方的方式进行求和取平均,避免正负数的相互抵消: 方差是最常用的衡量数据离散情况的统计量。 标准差(Standard Deviation) 方差得到的数值偏差均值取平方后的算术平均数,为了能够得到一个跟数据集中的数值同样数量级的统计量,于是就有了标准差,标准差就是对方差取开方后得到的: 基于均值和标准差就可以大致明确数据集的中心及数值在中心周围的波动情况,也可以计算正态总体的置信区间等统计量。 平均差(Mean Deviation) 方差用取平方的方式消除数值偏差的正负,平均差用绝对值的方式消除偏差的正负性。平均差可以用均值作为参考系,也可以用中位数,这里使用均值: 平均差相对标准差而言,更不易受极端值的影响,因为标准差是通过方差的平方计算而来的,但是平均差用的是绝对值,其实是一个逻辑判断的过程而并非直接计算的过程,所以标准差的计算过程更加简单直接。 变异系数(Coefficient of Variation,CV) 上面介绍的方差、标准差和平均差等都是数值的绝对量,无法规避数值度量单位的

九年级上 第二章 数据的离散程度讲学稿

课题:极差 学习目标:(1)经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性。. (2) 掌握极差的概念,理解其统计意义。 (3)了解极差是刻画数据离散程度的一个统计量,并在具体情境中加以应用。学习重点:掌握极差的概念,理解其统计意义。 学习难点:极差的统计意义. 学习过程: 一.情景创设 小明初一时数学成绩不太好,一学年中四次考试成绩分别是75、78、77、76.初一暑假时,小明参加了科技活动小组,在活动中,小明体会到学好数学的重要性,逐渐对数学产生了兴趣,遇到问题时从多方面去思考,深入钻研.因此小明的数学成绩进步很快,初二的一学年中,小明在四次考试的数学成绩是80、85、92、95. 看完这则小通讯,请谈谈你的看法. 你以为在这些数据中最能反映学习态度重要性的是哪一对数据?两者相差多少? 引入概念:极差. 二、探索活动 下表显示的是某市2001年2月下旬和2002年同期的每日最高气温: 试对这两段时间的气温进行比较. 我们可以由此认为2002年2月下旬的气温比2001年高吗? 两段时间的平均气温分别是多少?平均气温都是12℃.这是不是说,两个时段的气温情况没有什么差异呢?请同学们根据上表提供的数据,绘制出相应的折线图. 观察一下,它们有差别吗?把你观察得到的结果写在下面的横线上: _____________________________________________________________. 通过观察,我们可以发现:图(a)中折线波动的范围比较大——从6℃到22℃,图(b)中折线波动的范围则比较小——从9℃到16℃. 思考 什么样的指标可以反映一组数据变化范围的大小? 我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变围.用这种方法得到的差称为极差(range). 极差=最大值-最小值. 三、实践应用 例1 观察上图,分别说出两段时间内气温的极差. 例2 你的家庭中年纪最大的长辈比年纪最小的孩子大多少岁? 例3 自动化生产线上,两台数控机床同时生产直径为40.00毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米). (2) 就所生产的10个零件的直径变化范围,你认为哪个机床生产的质量好 ?

数据的离散程度

6.4 数据的离散程度 1.了解极差的意义,掌握极差的计算方法; 2.理解方差、标准差的意义,会用样本方差、标准差估计总体的方差、标准差.(重点、难点) 一、情境导入 从图中我们可以算出甲、乙两人射中的环数都是70环,但教练还是选择乙运动员参赛. 问题1:从数学角度,你知道为什么教练员选乙运动员参赛吗? 问题2:你在现实生活中遇到过类似情况吗? 二、合作探究 探究点一:极差 欢欢写了一组数据:9.5,9,8.5,8,7.5,这组数据的极差是( ) A .0.5 B .8.5 C .2.5 D .2 解析:这组数据的最大值是9.5,最小值是7.5,因此这组数据的极差是:9.5-7.5= 2.故选D. 方法总结:要计算一组数据的极差,找出最大值与最小值是关键. 探究点二:方差、标准差 【类型一】 方差和标准差的计算 求数据7,6,8,8,5,9,7,7,6,7的方差和标准差. 解析:一组数据的方差计算有两个常用的简化公式:(1)s 2=1n [(x 21+x 22+…+x 2n )-nx 2];(2)s 2=1n [(x 1′2+x 2′2+…+x n ′2)-nx ′2],其中x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,a 是

接近原数据平均数的一个常数,x′是x1′,x2′,…,x n′的平均数. 解:方法一:因为x=1 10(7×4+6×2+8×2+5+9)=7,所以s2= 1 10 [(7-7)2+(6-7)2 +(8-7)2+(8-7)2+(5-7)2+(9-7)2+(7-7)2+(7-7)2+(6-7)2+(7-7)2]=1.2. 所以标准差s=30 5 . 方法二:同方法一,所以s2=1 10 [(72+62+82+82+52+92+72+72+62+72)-10×72]= 1.2,标准差s=30 5 . 方法三:将各数据减7,得新数据:0,-1,1,1,-2,2,0,0,-1,0.而x′=0, 所以s2=1 10 [02+(-1)2+12+12+(-2)2+22+02+02+(-1)2+02-10×02]=1.2.所以标准 差s=30 5 . 方法总结:计算一组数据的方差和标准差的步骤:先计算该组数据的平均数(或需加减的数值),然后按方差(或标准差)的计算公式计算. 【类型二】方差和标准差的应用 在一次女子排球比赛中,甲、乙两队参赛选手的年龄(单位:岁)如下: 甲队:26,25,28,28,24,28,26,28,27,29; 乙队:28,27,25,28,27,26,28,27,27,26. (1)两队参赛选手的平均年龄分别是多少? (2)利用标准差比较说明两队参赛选手年龄波动的情况. 解析:先求出两队参赛选手年龄的平均值,再由标准差的定义求出s甲与s乙,最后比较大小并作出判断. 解:(1)x甲=1 10 ×(26+25+28+28+24+28+26+28+27+29)=26.9(岁), x乙=1 10 ×(28+27+25+28+27+26+28+27+27+26)=26.9(岁). (2)s2甲= 1 10 ×[(26-26.9)2+(25-26.9)2+…+(29-26.9)2]=2.29, s2乙=1 10 ×[(28-26.9)2+(27-26.9)2+…+(26-26.9)2]=0.89. 所以s甲= 2.29≈1.51, s乙=0.89≈0.94, 因为s甲>s乙, 所以甲队参赛选手年龄波动比乙队大. 方法总结:求标准差时,应先求出方差,然后取其算术平方根.标准差越大(小)其数据

数据离散程度的度量

数据离散程度的度量复习学案 一、教学内容:第10章数据离散程度的度量 二、复习目标: 1、通过复习熟练掌握考察数据离散程度的量及意义。 2、能根据数据统计结果作出简单判定与决策。 三、本章知识结构: 极差——概念 概念——用科学 方差——公式——计算器 数据离散程度的度量计算方 标准差——概念——差和标 公式——准差。 四、依据知识结构翻阅课本与笔记本记忆基本知识点 1、检查知识点 2、完成下列题目: (1)样本2,3,0,5,-7,6的极差是。 (2)下面几个概念中,能体现一组数据离散程度的是。 A、平均数 B、中位数 C、众数 D、极差 (3)数学老师对小明参加的4次中考模拟的考试成绩进行统计分析,判断小明成绩是否稳定的应计算的数学量是。 A、平均数 B、中位数 C、众数 D、方差 (4)已知1,2,3,4,5的方差为s2,则11,12,13,14,15这组数的方差是。 3、专题研究: (1)甲、乙两个小组各6名同学,某次数学测验成绩如下: 甲:76,90,84,86,81,81 乙:82,80,85,89,79,80 甲组的众数是,乙组的中位数是,甲组的方差是,乙组的方差是,由计算知学习成绩较稳定的小组是。 (2)为了从甲、乙两名射击选手中选出一人参加射击比赛,辅导员对它们的实际水平进行了测试,每人射击10次,成绩如下: 甲:9,9,10,8,6,10,10,8,10,8 乙:10,8,7,10,10,10,10,8,7,8 你如何帮助辅导员作出决策? 四、课堂达标: 1、下列说法正确的是()

A、如果两名运动员的训练成绩的平均数、众数、中位数相同则他们的成绩一样 B、一组数据的方差总是大于标准差 C、一组数据的方差越大,则这组数据的波动越小 D、一组数据的方差越小,则这组数据的波动越小 2、已知一组数据为-1,0,x,1,-2的平均数是0那么这组数据的方差是。 3、一组数据x1,x2,……x n的方差s2=0.36,则这组数据x1,x2,…… x n,x的方差是()。 4、一个样本的方差s2=1/50【(x1- 5)2+(x2- 5)2+……+(x n- 5)2】那么这个样本的容量是,平均数是。 5、已知样本x1,x2,……x n的方差为2,平均数是6,则3x1+2,3x2+2,…… 3x n+2的方差是,平均数是。 五、小结(学生先独立小结,小组再整合): 六、作业:

如何衡量数据的离散程度

如何衡量数据的离散程度 Revised by Jack on December 14,2020

如何衡量数据的离散程度 我们通常使用均值、中位数、众数等统计量来反映数据的集中趋势,但这些统计量无法完全反应数据的特征,即使均值相等的数据集也存在无限种分布的可能,所以需要结合数据的离散程度。常用的可以反映数据离散程度的统计量如下: 极差(Range) 极差也叫全距,指数据集中的最大值与最小值之差: 极差计算比较简单,能从一定程度上反映的数据集的离散情况,但因为最大值和最小值都取的是极端,而没有考虑中间其他数据项,因此往往会受异常点的影响不能真实反映数据的离散情况。 四分位距(interquartile range,IQR) 我们通常使用箱形图来表现一个数据集的分布特征: 一般中间矩形箱的上下两边分别为数据集的上四分位数(75%,Q3)和下四分位数(25%,Q1),中间的横线代表数据集的中位数(50%,Media,Q2),四分位距是使用Q3减去Q1计算得到: 如果将数据集升序排列,即处于数据集3/4位置的数值减去1/4位置的数值。四分位距规避 了数据集中存在异常大或者异常小的数值影响极差对离散程度的判断,但四分位距还是单纯的两个数值相减,并没有考虑其他数值的情况,所以也无法比较完整地表现数据集的整体离散情况。 方差(Variance) 方差使用均值作为参照系,考虑了数据集中所有数值相对均值的偏离情况,并使用平方的方式进行求和取平均,避免正负数的相互抵消: 方差是最常用的衡量数据离散情况的统计量。 标准差(Standard Deviation) 方差得到的数值偏差均值取平方后的算术平均数,为了能够得到一个跟数据集中的数值同样数量级的统计量,于是就有了标准差,标准差就是对方差取开方后得到的:

评价数据离散程度的指标

评价数据离散程度的指 标 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

标准差 标准差(Standard Deviation),也称(mean square error),是各数据偏离的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 标准差(Standard Deviation),在统计中最常使用作为程度(statistical dispersion)上的。标准差定义为的,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质: 为非负数值,与测量资料具有相同单位。一个总量的标准差或一个的标准差,及一个子集合样品数的标准差之间,有所差别。 标准计算公式 假设有一组数值X1,X2,X3,......Xn(皆为),其平均值为μ,公式如 图1. 图1 标准差也被称为,或者实验标准差,公式如图2。 图2

简单来说,标准差是一组数据分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是7,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的。标准差数值越大,代表回报远离过去值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。 如是总体,根号内N=n,如是,标准差公式根号内N=(n-1),因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。 公式意义

第二章数据的离散程度学案_苏科版_初三_九年级 2.3 用计算器求方差和标准差

九年级数学备课组课型:新授 【教学目标】: (1)使学生掌握利用计算器求一组数据的标准差和方差。. (2) 进一步体会用计算器进行统计计算的优越性。 【教学重点】:利用计算器求一组数据的标准差和方差. 【教学难点】:利用计算器求一组数据的标准差和方差. 【教学方法】:讨论法 【情景创设】 1.什么是极差?什么是方差与标准差? 2.极差、方差与标准反映了一组数据的什么? 引入:用笔算的方法计算标准差比较繁琐,如果能够利用计算器,就会大大提高效率。那么本节就来学习用计算器求标准差。 【探索活动】 下面以计算P.49的问题为例。 为了从小明和小丽两人中选拔一个参加学校军训射击比赛,现对他们的射击成绩进行了测试,10次打靶命中的环数如下: 小明:10,7,8,8,8,8,8,8,9,6; 小丽:8,8,8,8,5,8,8,9,9,9 计算小明和小丽命中环数的方差和标准差,哪一个人的射击成绩比较稳定? 方法一: (1)打开计算器; ; 说明: (1)按 (2)输入10次110时,可按 (3)需要删除刚输入的数据时,可按 方法二:见P50中“方法二” 【课堂练习】 1.P50练习 教师巡视指导。 2.补充:(1)用计算器求下面一组数据的标准差: 9.9 10.3 9.8 10.1 10.4 10 9.8 9.7 (2)甲、乙两人在相同条件下各掷铁饼5次,距离如下;(单位:米)

甲:46.0 48.5 41.6 46.4 45.5 乙:47.1 40.8 48.9 48.6 41.6 (1)试判定谁投的远一些? (2)说明谁的技术较稳定? 【学习体会】 着重小结用计算器进行统计运算的步骤;交流用计算器计算的体验。

第二章统计数据收集与整理.

第二章统计数据的收集与整理 一、单项选择题 1.典型调查与抽样调查相比,两者的不同点在于(。 A、调查组织形式 B、调查方法 C、选择调查单位的方法 D、调查对象 2.直方图一般可用来表示(。 A、累积次数的分布 B、次数分布的特征 C、变量之间的函数关系 D、数据之间的相关性 3.如果所有标志值的次数都增加一倍,而标志值不变,则算术平均数(。 A、增加 B、减少 C、不变 D、无法确定 4.要了解南京市居民家庭的收支情况,最适合的调查方式是(。 A、普查

B、重点调查 C、抽样调查 D、典型调查 的组中值为( 6.在比较两组数据的离散程度时,不能直接比较两者的方差,因为这两组数据的(。 A、标准差不同 B、方差不同 C、数据个数不同 D、计量单位不同 7.在数据集中趋势的测度中,不受极端值影响的测度是(。 A、众数 B、几何平均数 C、调和平均数

D、算术平均数 8.某公司将员工分为老、中、青三类,然后根据对各个员工情况的分析,从三类员工中按比例选出若干名员工为代表,调查他们的文化支出金额,再推算出全公司员工文化活动年支出金额的近似值,此为(。 A、典型调查 B、重点调查 C、抽样调查 D、普查 9.将不同地区、部门、单位之间同类指标进行对比所得的综合指标称为(。 A、动态相对指标 B、结构相对指标 C、比例相对指标 D、比较相对指标 10.有12 名工人看管机器台数资料如下:2、5、4、4、3、3、4、3、4、4、2、2,按以上资料编制分配数列,应采用(。 A、单项分组 B、等距分组 C、不等距分组 D、以上几种分组均可 11、表示股票价格的K线图属于(种统计图。

数据的离散程度

6.4 数据的离散程度 1.如图是甲.乙两位同学5次数学考试成绩的折线统计图,你认为成绩较稳定的是( ). A.甲 B.乙 C.甲.乙的成绩一样稳定 D.无法确定 2.人数相等的甲.乙两班学生参加了同一次数学测验,班级平均分和方差如下: 甲x =80,乙x =80,s 2甲 =240,s 2乙 =180,则成绩较为稳定的班级为( ). A.甲班 B.乙班 C.两班成绩一样稳定 D.无法确定 3.下列统计量中,能反映一名同学在7~9 年级学段的学习成绩稳定程度的是 ( ) A.平均数 B.中位数 C.众数 D.方差 4.某车间6月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2, 3,1,2则在这10天中该车间生产零件的次品数的( ). A.众数是4 B.中位数是1.5 C.平均数是2 D.方差是1.25

5.在甲.乙两块试验田内,对生长的禾苗高度进行测量,分析数据得:甲试验田内禾苗高度数据的方差比乙实验田的方差小,则(). A.甲试验田禾苗平均高度较高 B.甲试验田禾苗长得较整齐 C.乙试验田禾苗平均高度较高 D.乙试验田禾苗长得较整齐 6. 5名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm):0,2,-2,-1,1,则这组数据的极差为_______cm. 7.五个数1,2,4,5,a的平均数是3,则a= ,这五个数的方差为 . 8.已知一组数据1,2,1,0,-1,-2,0,-1,则这组数据的平均数为,中位数为,方差为 . 9.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是____环,中位数_____环,方差是______. 10.已知数据a.b.c的方差是1,则4a,4b,4c的方差是 . 11.某学生在一学年的6次测验中语文.数学成绩分别为(单位:分): 语文:80,84,88,76,79,85

第二章数据的离散程度复习教学案教案

第二章数据的离散程度复习教学案 【知识回顾】 1.描述一组数据的离散程度(即波动大小)的量: 等。 2.极差: (1)极差计算公式:。 注意:极差越小,这组数据的离散程度(即波动大小)就越,这组数据就越。 (2)用极差来衡量一组数据的离散程度(即波动大小)的优缺点:(回忆) 3.方差(或标准差): (1)方差计算公 式:; 标准差计算公 式:。 注意:①方差的单位是;而标准差的单位 是。 ②方差(或标准差)越小,这组数据的离散程度(即波动大小)就 越,这组数据就越。 ③两组数据比较时,一组数据的极差大,这组数据的方差(或标准 差)不一定 ...就大! (2)填表:

(3)区分“二选一”和“对二者做出评价”这两类题型的回答的不同:(回忆) 【达标测试】 1.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为: 13=甲x ,13=乙x ,6.3S 2=甲,8.15S 2=乙,则小麦长势比较整齐的试验田是 。 2.一组数据1-,0,3,5,x 的极差是7,那么x 的值可能是__________ 3. 已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为 . 4. 在统计中,样本的标准差可以反映这组数据的 A .平均状态 B .分布规律 C .离散程度 D .数值大小 7.已知甲、乙两组数据的平均数分别是80x =甲,90x =乙,方差分别是210S =甲 ,25S =乙,比较这两组数据,下列说法正确的是 A .甲组数据较好 B .乙组数据较好 C .甲组数据的极差较大 D .乙组数据的波动较小 8.下列说法正确的是 A .两组数据的极差相等,则方差也相等 B .数据的方差越大,说明数据的波动越小 C .数据的标准差越小,说明数据越稳定 D .数据的平均数越大,则数

相关文档