文档库 最新最全的文档下载
当前位置:文档库 › LNG冷能用于制冷过程热力学系统基础特性分析_吕寻贞

LNG冷能用于制冷过程热力学系统基础特性分析_吕寻贞

LNG冷能用于制冷过程热力学系统基础特性分析_吕寻贞
LNG冷能用于制冷过程热力学系统基础特性分析_吕寻贞

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科 B 2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 3.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 5.对于玻尔兹曼分布定律n i =(N/q)·g i·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,n i总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6.对于分布在某一能级εi上的粒子数n i,下列说法中正确是:( ) A. n i与能级的简并度无关 B. εi值越小,n i 值就越大 C. n i称为一种分布 D.任何分布的n i都可以用波尔兹曼分布公式求出 B 7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj和εi上分布的粒子数之比为:( ) A. 0.5exp(ε j/2kT) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2ε j/kT) C 8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是:( ) A.Θv越高,表示温度越高 B.Θv越高,表示分子振动能越小 C. Θv越高,表示分子处于激发态的百分数越小 D. Θv越高,表示分子处于基态的百分数越小 C 11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( )

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

工程热力学15制冷循环.doc

15. 制冷循环 15.1制冷与逆卡诺循环 将物体冷却到低于周围环境的温度,并且维持这一低温,称为制冷。为实现这一目的,需要将热量从低温物体(如冷藏室)移向高温物体(如环境)。由热力学第二定律可知,这一过程不能自发实现,必须消耗外部可用能,通常是消耗机械能或高温热源所提供的热能。因此制冷循环是一种逆向循环。如果循环的目的是从低 温物体取走热量,以维持物体的低温状态,称之为制冷循环。 前已述及,在两个恒温热源间的动力循环中,卡诺循环的热效率最高。按照 图15-1,由两个定温过程和两个定熵过程按照与卡诺循环相反方向(逆时针)运行的循环称为逆卡诺循环。可以证明在两个恒温热源间,逆卡诺循环的制 冷系数最大,为 L H L T T T -= max ε (15-1) 式中,H T 和L T 分别是高温热源与低温热源的温度。 L H L L Q Q Q W Q -== ε ← L L H H T Q T Q ≤ 从式中可以看出,和卡诺循环一样,逆卡诺循环的制冷系数也只与高温热源与低 温热源的温度有关。 15.2 空气压缩式制冷循环 利用空气作为制冷工质构成空气压缩制冷循环——逆布雷顿循环。和下节将要讲到的蒸汽制冷循环不同的是:在空气制冷循环中,工质不会发生相变,而是依靠显热在定压情况下吸收和放出热量,因此制冷量较小,偏离逆卡诺循环较远,经济性较低。

鉴于空气定温吸热、放热不易实现,改用两个定压过程代替,因而压缩空气制冷循环实为逆向的布雷顿循环。 分析:低温热源(冷库)吸热 412h h q -= 高温热源(环境)放热 321 h h q -= 耗功 ()()413221h h h h q q w ---=-= 制冷系数 ()()()()1 14 1324132414132412---=----=----== T T T T T T T T T T h h h h h h w q ε 过程1-2、 3-4 定熵, 43112 12T T p p T T =??? ? ??=-κ κ → κκπ1 1 24132-==--T T T T T T 故 1 1 1-= -κ κπ ε (15-2) 可见 ↑→ ↓ επ 减小增压比,可使 制冷系数提高, 但这会使 膨胀温降减小,制冷量下降。 压缩空气制冷循环的 优点:工质易得,安全。 缺点:制冷量不大。(空气热容小,增加↑π → ↓ε) 故一般在普冷(50->℃)很少用(除了用于飞机空调,直排),在深冷(100-<℃)可用于导弹内红外探测器的冷却,不计成本效率)。 为增大制冷量须增大流量,活塞式的压气机、膨胀机让位于 叶轮式的压气

第13章-热力学基础习题及答案

第十三章习题 热力学第一定律及其应用 1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 。 2、如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 。 3、一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2) 所示的def 过程(图中虚线df 为绝热线).判断 这两种过程是吸热还是放热. abc 过程 热,def 过程 热. 4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 。 (=γ C p /C V ) 5、一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下 三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程 气体对外作功最多;____________过程气体能增加最多;__________过程气体吸收的热量最多. V V

答案 1、(1)(4)是正确的。 2、是A-B 吸热最多。 3、abc 过程吸热,def 过程放热。 4、P 0/2。 5、等压, 等压, 等压 理想气体的功、能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。 2、 一定量的理想气体经历acb 过程时吸热500 J .则 经历acbda 过程时,吸热为 。 3、一气缸贮有10 mol 的单原子分子理想气体,在压缩 过程中外界作功209J , 气体升温1 K ,此过程中气体能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol · K) 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J. p (×105 Pa) 3 m 3)

生活中的热力学

生活中的热力学 摘要:生活中的热力学现象无处不在,热力学现象的本质和原理亦来自生活。其实我们身边经常可以看到很多和热力学有关的现象。热力学第零定律、热力学第一定律、热力学第二定律、热力学第三定律是热力学的基本定律,高压锅、空调、电冰箱是生活中常见的用电器。 关键词:热力学定律 热力学第一定律也叫能量不灭原理,就是能量守恒定律。它指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。表征热力学系统能量的是内能,通过做功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔE应等于在此过程中外界对系统传递的热量Q和系统对外界做功W之差,即 EⅡ-EⅠ=ΔE=Q-W 或 Q=ΔE+W 这就是热力学第一定律的表达式。对于无限小过程,热力学第一定律的微分表达式为 dQ=dE+dW 其中,E是态函数,dE是全微分;Q、W是过程量,dQ和dW只表示微小量并非全微分,用符号d以示区别。又因ΔE或dE只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否是平衡态无关。 热力学第二定律一般有两个表述: 1.开尔文表述:不可能制成一种循环动作的热机,只从单一热源吸取热量,使之完全变成有用的功而不产生其他影响。 2.克劳休斯表述:热量不可能自动地从低温物体传到高温物体。 其实这两种表述是等价的,我们知道自然界中的各种不可逆过程都是互相关联的。而这两种表述的区别在,克氏表述指出:热传导过程是不可逆的;开氏表述指出:功变热(确切地说,是机械能转化为内能)的过程是不可逆的。两种表述

热力学第一定律习题及答案

热力学第一定律习题 一、单选题 1) 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有:( ) A. W =0,Q <0,U <0 B. W <0,Q <0,U >0 C. W <0,Q <0,U >0 D. W <0,Q =0,U >0 2) 如图,用隔板将刚性绝热壁容器分成两半,两边充入压力不等的空气(视为理想气体),已知p右> p左,将隔板抽去后: ( )

A. Q=0, W =0, U =0 B. Q=0, W <0, U >0 C. Q >0, W <0, U >0 D. U =0, Q=W0 3)对于理想气体,下列关系中哪个是不正确的:( ) A. (U/T)V=0 B. (U/V)T=0 C. (H/p)T=0 D. (U/p)T=0 4)凡是在孤立孤体系中进行的变化,其U 和H 的值一定是:( ) A. U >0, H >0 B. U =0, H=0 C. U <0, H <0 D. U =0,H 大于、小于或等于零不能确定。 5)在实际气体的节流膨胀过程中,哪一组描述是正确的: ( ) A. Q >0, H=0, p < 0 B. Q=0, H <0, p >0 C. Q=0, H =0, p <0 D. Q <0, H =0, p <0 6)如图,叙述不正确的是:( ) A.曲线上任一点均表示对应浓度时积分溶解热大小 B.H1表示无限稀释积分溶解热

C.H2表示两浓度n1和n2之间的积分稀释热 D.曲线上任一点的斜率均表示对应浓度时HCl的微分溶解热 7)H=Q p此式适用于哪一个过程: ( ) A.理想气体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5sPa B.在0℃、101325Pa下,冰融化成水 C.电解CuSO4的水溶液 D.气体从(298K,101325Pa)可逆变化到(373K,10132.5Pa ) 8) 一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1、V2。( ) A. V1 < V2 B. V1 = V2 C. V1 > V2 D. 无法确定 9) 某化学反应在恒压、绝热和只作体积功的条件下进行,体系温度由T1升高到T2,则此过程的焓变H:( ) A.小于零 B.大于零 C.等于零 D.不能确定 10) 对于独立粒子体系,d U=n i d i+ i d n i,式中的第一项物理意义是: ( ) A. 热 B. 功 C. 能级变化 D. 无确定意义 11) 下述说法中哪一个正确:( ) A.热是体系中微观粒子平均平动能的量度 B.温度是体系所储存能量的量度 C.温度是体系中微观粒子平均能量的量度 D.温度是体系中微观粒子平均平动能的量度 12) 下图为某气体的p-V图。图中A→B为恒温可逆变化,A→C为绝热可逆变化,A→D为多方不可逆变化。B, C, D态的体积相等。问下述个关系中哪一个错误?( )

制冷的基本热力学原理

制冷的基本热力学原理 从热力学角度说,制冷系统是利用逆向循环的能量转换系统。按补偿能量的形式(或驱动方式),前面所提及的制冷方法归为两大类:以机械能或电能为补偿的和以热能为补偿的。前者如蒸气压缩式、热电式制冷机等;后者如吸收、蒸气喷射、吸附式制冷机等。 两类制冷机的能量转换关系如图1所示。 图1 制冷机的能量转换关系 (a) 以电能或机械能驱动的制冷机 (b) 以热能驱动的制冷机 热力学关心的是能量转换的经济性,即花费一定的补偿能,可以收到多少制冷效果(制冷量)。为此,对于机械或电驱动方式的制冷机引入制冷系数来衡量;对于热能驱动方式的制冷机,引入热力系数来衡量。 (1) (2)

式中 ----- 制冷机的制冷量; ------ 冷机的输入功; ----- 驱动热源向制冷机输入的热量。 国外习惯上将制冷系数和热力系数统称为制冷机的性能系数 COP(Coefficience of Performance)。我们要研究一定条件下COP的最高值。 对于电能或机械能驱动的制冷机,参见图1(a)。制冷机消耗功w实现从低温热源(被冷却对象,温度)吸热,向高温热源(通常为环境,温度)排热。假定两热源均为恒温热源,向高温热源的排热量为,由低温热源的吸热量(即制冷量)为,制冷机为可逆循环。 由热力学第一定律有 (3) 由热力学第二定律,在两个恒温热源间工作的可逆机,一个循环的熵增等于零,即 (4) 将式(3)代入式(4)得 即 (5) 由定义式(1),则可逆制冷的制冷系数为

(6) 式(6)说明:①两恒温热源间工作的可逆制冷机,其制冷系数只与热源温度有关,而与制冷机使用的制冷剂性质无关。②的值与两热源温度的接低程度有关, 与越接近( /越小),则越大;反之越小。实际制冷机制冷 系数随热源温度的变化趋势与可逆机是一致的。 对于以热能驱动的制冷机,参见图。制冷机从驱动热源(温度为)吸收热量 作为补偿,完成从低温热原吸热,向高温热源排热的能量转换。我们假定驱动热源也是恒温热源,其它假定同前。那么类似地推导热能驱动的可逆制冷机的性能系数 由热力学第一定律有: (7) 由热力学第二定律,循环中 即 (8) 利用式(7),(8)和定义式(2)得出,热能驱动的可逆制冷机的热力系数 (9)

制冷循环的热力学原理概要

第一节制冷循环的热力学原理 一、常用术语 1、物质 具有一定质量并占据空间的任何物体称为物质。 物质通常以固、液、气三态存在。 蒸气压缩式制冷机都依靠内部循环流动的工作物质来实现制冷过程。制冷机中的工作物质称为制冷剂。制冷装置中用来传递冷量的工作物质称为载冷剂。 2、温度 温度是物体冷热程度的量度。它是物质分子热运动剧烈程度的标志尺度。 常用的温度度量单位有摄氏温标t和开氏温标T(绝对温标)。

T(k)=t(℃)+273.15 图2-1 两种常用温标的比较 3、热量 物体在热过程中所放出或吸收的能量称为热量。 生产中常用制冷能力来衡量设备产冷量大小。 制冷能力:制冷设备单位时间内从冷库取走的热量。 4、比热(specific heat) 比热是一个物性参数,意为单位度量的物质温度变化1k时所吸进或放出的热量。 体积比热Cv(J/m3.k) 摩尔比热Cp(J/mol.k) 5、显热和潜热 不改变物质的形态而引起其温度变化的热量称为显热。 不改变物质的温度而引起其形态变化的热量称为潜热。 制冷剂的汽化潜热有何要求? 表1-1 几种制冷物质的汽化潜热(kJ/kg) 物质水氨R12 R22 氯甲 烷 二氧 化硫 R114 R502 汽化热2256.8 1369 167.5 234.5 427.1 397.8 137.9 6 150.0 2 6、压力 垂直作用在单位面积上的力称为压力p(压强)。p是确定物质状态的基本参数之一。1bar=105Pa,饱和压力Ps与饱和温度ts 的对应

关系。 7、比容v和密度 比容:每千克物质所占有的容积。v是基本状态参数。v=1 8、导热系数 表示材料传导热量的能力,是一个物性参数。数值上等于:1m 厚的材料两边温差1k时在1小时内通过1m2表面积所传导的热量。单位:w/m.k 9、压-焓图(lgp-h) 物质的热力状态性质可以绘制成曲线图的形式。制冷剂性质曲线图有多种形式。行业中最常用的是lgp-h图。 lgp-h图的构成可以总结为一个临界点、二条饱和线、三个状态区、六组等值线。

热力学基础练习题与答案

第一次 热力学基础练习与答案 班 级 ___________________ 姓 名 ___________________ 班内序号 ___________________ 一、选择题 1. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程 是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最 多的过程 [ ] (A) 是A →B. (B) 是A →C. (C) 是A →D. (D) 既是A →B 也是A →C , 两过程吸热一样多。 2. 有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看 成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢 气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量 是: [ ] (A) 6 J. (B) 5 J. (C) 3 J. (D) 2 J. 3.一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中 [ ] (A) 气体向外界放热 (B) 气体对外界作正功 (C) 气体内能增加 (D) 气体内能减少 4. 一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循 环过程中,气体从外界吸热的过程是 [ ] (A) A →B . (B) B →C . (C) C →A . (D) B →C 和B →C . 5. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在 一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的 [ ] (A) n 倍. (B) n -1倍. (C) n 1倍. (D) n n 1 倍. 6.如图,一定量的理想气体,由平衡状态A 变到平衡状态 B (p A = p B ),则无论经过的是什么过程,系统必然 [ ] (A) 对外作正功. (B) 内能增加. V V

化工热力学理论

第2章流体的p-V-T(x)关系 1.1 本章学习要求 本章的核心容是流体的PVT关系。 要求学生掌握纯物质的P-V-T立体相图中,点、线、面所代表的物理意义及在 PT面和 PV面上投影所形成的P-T相图和P-V相图。认识物质的气、液、固三类常见状态和气 -液、 气-固、液-固相平衡等在相图中的表征方法;掌握临界点的物理意义及其数学特征。 要求掌握理想气体的基本概念及其基本的数学表达方法;明确在真实条件下,物质都是以非理想状态存在的,掌握采用立方型状态方程和Virial方程进行非理想气体PVT计算的方法。 1.2 重点 1.2.1 纯物质的PVT关系 图1-1 纯物质的p-V-T相图 图1-2 纯物质的p-T图图1-3 纯物质的p-V图 临界点C在图上表现为拐点,数学上的可表述为: C T T P V = ?? ? = ? ? ?? (1-1) C 2 2 T T P V = ?? ? = ? ? ?? (1-2)

1.2.2 状态方程(Equations of State ,EOS) 状态方程是物质P-V-T 关系的解析式,可表达为函数关系: f (P,V,T)0= (1-3) 状态方程的重要价值在于: (1) 用状态方程可精确地代表相当广泛围的P-V-T 数据,大大减小实验测定的工作量; (2) 用状态方程可计算不能直接从实验测定的其它热力学性质; (3) 用状态方程可进行相平衡计算,如计算饱和蒸气压、混合物气液相平衡、液-液平衡等,尤其是在计算高压气液平衡时的简捷、准确、方便,为其它方法不能与之相比的。 1.2.3 理想气体状态方程 理想气体状态方程是流体状态方程中最简单的一种,理想气体的概念是一种假想的状态,实际上并不存在,它是极低压力或极高温度下各种真实气体的极限情况。数学表达式为: P 0 (V ) lim (PV)RT →→∞=或PV RT = (1-4) 1.2.4 真实气体状态方程 大体上分为三类: 第一类是立方型状态方程,如Van der Waals 、RK 、SRK 、PR 、PT 等; 第二类是多项级数展开式的状态方程,如Virial 、BWR 、MH 等; 第三类是理论型状态方程。 1.2.4.1 立方型状态方程 (1) Van der Waals(VdW ,1873年)方程 (2) Redlich-Kwong(RK ,1949年)方程 (3) Soave-Redlich-Kwong(SRK ,1972年)方程 (4) Peng-Robinson(PR ,1976年)方程 (5) Patel-Teja(PT,1982年)方程 立方型状态方程的应用: (1) 用一个EOS 即可精确地代表相当广泛围的实验数据,藉此可精确计算所需的数据; (2) EOS 具有多功能性,除了PVT 性质之外,还可用最少量的数据计算流体的其它热力学函数、纯物质的饱和蒸气压、混合物的气-液相平衡、液-液相平衡,尤其是高压下的相平衡计算; (3) 在相平衡计算中用一个EOS 可进行二相、三相的平衡数据计算,状态方程中的混合规则与相互作用参数对各相使用同一形式或同一数值,计算过程简捷、方便。 1.2.4.2 多项级数展开式方程 (1) Virial 方程 PV B Z 1RT V = =+ (1-38) 通常适用于C T T <,P 1.5MPa <压力下的真实气体PVT 关系和其它热力学性质计算。 截至第III 项的Virial 方程为:

工程热力学与传热学(第十七讲)11_1、2、3

第十一章蒸汽压缩制冷循环 制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温,称为制冷。 制冷技术广泛应用于生产、科研、生活中。 制冷循环的目的:是将低温热源的热量转移到高温热源。 根据热力学第二定律,为了达到这个目的,必须提供机械能或热能作为代价。 根据所消耗的能量形式不同,一般可将逆循环分为两大类: ①消耗机械能的压缩式制冷循环。 包括:空气压缩制冷循环和蒸汽压缩制冷循环。 ②消耗热能的制冷循环。 包括:蒸汽喷射式制冷循环和吸收式制冷循环。 本章介绍最常用的蒸汽压缩制冷循环,并分析提高其经济性的途径。 第一节制冷剂及p-h图 制冷剂是制冷装置的工质,主要是低沸点物质。蒸汽压缩制冷装置中的制冷剂主要是氟里昂和液氨。 常用的氟利昂有:氟利昂12(CF2Cl2)、氟利昂22(CHF2Cl)、氟利昂134a (C2H2F4)、氨等。物理性质见表11-1。

制冷剂在制冷循环中存在汽-液相变,为了计算制冷循环中个过程的能量变化和状态参数,需要查找制冷剂的饱和蒸汽表和过热蒸汽表。 但是,工程上更多的是应用制冷剂的压-焓图(p-h图)进行分析。 p-h图是根据制冷剂蒸汽性质表绘制的。 p-h图是以logp为纵坐标、以h为横坐标建立的半对数坐标图。 如图11-1所示。 说明:①采用logp为坐标,可以使压力从0.001~0.01Mpa,从0.01~0.1Mpa,从0.1~1Mpa所占的坐标高度相同,使低压区图线面积增大,读数更准确。 ②因为实际蒸汽压缩制冷循环常用的工作压力围都远低于临界压力,所以工程上使用的p-h图都没有绘制较高压力部分。 p-h图分析:全图共有六条线、三个区(未饱和液体区、湿蒸汽区、过热蒸汽区)和一个点临界点C)。

第13章-热力学基础习题及答案

第十三章习题 热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是。 2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。 3、一定量的理想气体,分别经历如图(1) 所示 的abc过程,(图中虚线ac为等温线),和图(2) 所 示的def过程(图中虚线df为绝热线).判断这两 种过程是吸热还是放热. abc过程 热,def过程热. 4、如图所示,一绝热密闭的容器,用隔板分成相等的两部 分,左边盛有一定量的理想气体,压强为p0,右边为真空.今 将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压 强是。(= γC p/C V) 5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.V V

答案 1、(1)(4)是正确的。 2、是A-B 吸热最多。 3、abc 过程吸热,def 过程放热。 4、P 0/2。 5、等压, 等压, 等压 理想气体的功、内能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。 2、 一定量的理想气体经历acb 过程时吸热500 J .则 经历acbda 过程时,吸热为 。 3、一气缸内贮有10 mol 的单原子分子理想气体,在压 缩过程中外界作功209J , 气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K) 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J. p (×105 Pa) 3 m 3)

工程热力学简答题

第1章 基本概念 ⒈ 闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 ⒉ 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊ 平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋ 倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 )( )( b v b b e b P P P P P P P P P P <-=>+=; 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。 ⒌ 温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 ⒍ 经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度

化学热力学基础习题

第6章化学热力学初步习题目录 第一部分化学热力学基础、热化学 一判断题;二选择题;三填空题;四计算题 第二部分熵、吉氏函数与化学反应方向 一判断题;二选择题;三填空题;四计算题 第一部分化学热力学基础、热化学 一判断题 1气体的标准状况与物质的标准态是同一含义。() 2在恒温恒压下,某化学反应的热效应Q p=△H=H2-H1,因为H是状态函数,故Q p也是状态函数。() 3系统状态一定,状态函数就有确定的值。() 4在恒温恒压条件下,反应热只取决于反应的始态和终态,而与过程的途径无关。()5功和热是系统与环境间能量传递的两种形式。() 6气体膨胀或被压缩所做的体积功是状态函数。() 7由环境中吸收热量,系统的热力学能增加。() 8环境对系统做功,系统的热力学能增加。() 9系统的焓等于系统的热量。() 10系统的焓等于恒压反应热。() 11系统的焓变等于恒压反应热。() 12反应的热效应就是该反应的焓变。() 13由于CaCO3的分解是吸热的,故它的生成焓为负值。() 14298K时反应Na(s)+1 Cl2(g)→NaCl(s)的△r H=-411.1kJ·mol-1,即该温度下NaCl(s) 2 的标准摩尔生成焓为-411.1kJ·mol-1。() 15298.15K时由于Na+(g)+Cl-(g)→NaCl(s)的△r H=-770.8kJ·mol-1,则NaCl(s)的标准摩尔生成焓是-770.8kJ·mol-1。()

16298K时,反应CO(g)+Cl2(g)→COCl2(g)的△r H=-108kJ·mol-1,则△f H(COCl2,g)=-108kJ·mol-1。.() 17所有气体单质的标准摩尔生成焓都为零。() 18△f H(Br2,g)=0kJ·mol-1。() 19298K时石墨的标准摩尔生成焓为零。() 20在密闭容器中盛有等物质的量的N2(g)和O2(g),使其反应生成NO(g),保持反应在等温下进行,则该反应的焓变一定等于△f H(NO,g)。.() 21已知在某温度和标准态下,反应2KClO3(s)→2KCl(s)+3O2(g)进行时,有2.0molKClO3分解,放出89.5kJ的热量,则在此温度下该反应的△r H=-89.5kJ·mol-1。() 22反应H2(g)+Br2(g)→2HBr(g)的△r H与反应H2(g)+Br2(l)→2HBr(g)的△r H相同。() 23298K、标准态时,NH3(g)与O2(g)反应生成NO(g)和H2O(g),每氧化1molNH3(g)放出 226.2kJ热量,则其热化学方程式为NH3(g)+5 4O2(g)→NO(g)+3 2 H2O(g),△r H=-226.2kJ。 () 24反应N2(g)+3H2(g)→2NH3(g)的△r H与反应1 2N2(g)+3 2 H2(g)→NH3(g)的△r H相同。( ) 25相同质量的石墨和金刚石,在相同条件下燃烧时放出的热量相等。....() 二选择题 1下列各物理量中,为状态函数的是()。 (A)△H;(B)Q;(C)H;(D)△U。 2下列各物理量中,为状态函数的是()。 (A)△U;(B)U;(C)Q;(D)W。 3下列叙述中正确的是()。 (A)只有等压过程,才有化学反应热效应;

热力学基础习题解答

本 章 要 点 1.体积功 2 1 d V V W p V = ? 2.热力学第一定律 21Q E E W E W =-+=?+ d d d Q E W =+ 3. 气体的摩尔热容 定容摩尔热容 2V i C R = 定压摩尔热容 (1)2 P i C R =+ 迈耶公式 C P =R+C V 4.循环过程 热机效率 2111Q W Q Q η= =- 制冷系数 22 12 Q T e W T T = =- 5. 卡诺循环 卡诺热机效率 211 1T W Q T η= =- 卡诺制冷机制冷系数 22 12 Q T e W T T = =- 6. 热力学第二定律定性表述:开尔文表述、克劳修斯表述;热力学第二定律的统计意义; 7. 熵与熵增原理 S=klnW 1 2ln W W k S =?≥0 2 211 d ( )Q S S S T ?=-= ? 可逆 习题10 一、选择题 10. A 二、填空题 1. 15J 2. 2/5 3. 4 1.610J ? 4. ||1W -; ||2W - 5. J ; J 6. 500 ;700 7. W /R ; W 2 7 8. 112 3 V p ;0

9. 22+i ; 2 +i i 10. 8.31 J ; J 三、计算题 1. -700J 2. (1)T C =100 K; T B = 300 K . (2) 400J AB W =; W BC = 200 J; W CA =0 (3)循环中气体总吸热 Q = 200 J . 3. (1) W da =-×103J ; (2) ΔE ab =×104 J ; (3) 净功 W = ×103 J ; (4)η= 13% 4. (1)10%η= ;(2)4 310bc W J =? 习题10 一 选择题 1. 1摩尔氧气和1摩尔水蒸气(均视为刚性分子理想气体),在体积不变的情况下吸收相等的热量,则它们的: (A )温度升高相同,压强增加相同。 (B )温度升高不同,压强增加不同。 (C )温度升高相同,压强增加不同。 (D )温度升高不同,压强增加相同 。 [ ] 2. 一定量理想气体,从状态A 开始,分别经历等压、等温、绝热三种过程(AB 、AC 、AD ), 其容积由V 1都膨胀到2V 1,其中 。 (A) 气体内能增加的是等压过程,气体内能减少的的是等温过程。 (B) 气体内能增加的是绝热过程,气体内能减少的的是等压过程。 (C) 气体内能增加的是等压过程,气体内能减少的的是绝热过程。 (D) 气体内能增加的是绝热过程,气体内能减少的的是等温过程。 [ ] 3. 如图所示,一定量的理想气体,沿着图10-17中直线从状态a ( 压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中: (A ) 气体对外做正功,向外界放出热量. (B ) 气体对外做正功,从外界吸热. (C ) 气体对外做负功,向外界放出热量. (D ) 气体对外做正功,内能减少. [ ] 图10-17 图10-18 4. 若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过 p (atm) p

第11章热力学基本原理

(3) 第11章热力学基本原理 一、选择题 1(B) , 2(C), 3(A) , 4(B) , 5(A) , 6(C), 7(D) , 8(C), 9(D) , 10(A) 二、填空题 (1) .等于,大于,大于. (2) .不变,增加 (3) .在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部 分热量. 500, 100 功变热,热传递 从几率较小的状态到几率较大的状态 ,状态的几率增大 (或熵值增加). 三、计算题 1. 温度为25 C 、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至 原来的3倍. (普适气体常量 R= 8.31 J^mol^.K 」,ln 3=1.0986) 计算这个过程中气体对外所 作的功. 假若气体经绝热过程体积膨胀为原来的 3倍,那么气体对外作的功又是多少? 绝热过程气体对外作功为 3V 0 3V 0 7 W = JpdV = p 0V 0' jV^dV V 0 3^-1 V 二 PT p 0V ' 3 =2.20X 103 J 2. 汽缸内有2 mol 氦气,初始温度为 27C ,体积为20 L(升),先将氦气等压膨胀,直至体 积加倍, (1) (2) (4). -|W 1 I , —IW 2 | (5). 500, 700 (6). 3 8.64X103 (7). 1 1 J 齐(或 ^n-1) (8). (9) . (10) .(1 ) ⑵ 解: (1) 等温过程气体对外作功为 V d p J 乂 =8.31 X 298 X 1.0986 J 3 =2.72 X 10 J 然后绝热膨涨,直至回复初温为止?把氦气视为理想气体?试求: 在P —V 图上大致画出气体的状态变化过程. 在这过程中氦气吸热多少? 氦气的内能变化多少? V 0

《热力学基本原理》答案

第11章 热力学基本原理 一、选择题 1(B),2(C),3(A),4(B),5(A),6(C),7(D),8(C),9(D),10(A) 二、填空题 (1). 等于,大于,大于. (2). 不变,增加 (3). 在等压升温过程中,气体要膨胀而对外作功,所以要比气体等体升温过程多吸收一部分热量. (4). ||1W -,||2W - (5). >0,>0 (6). AM , AM 、BM (7). 1 1+= w η (或11 -= η w ) (8). 500,100 (9). 功变热,热传递 (10). 从几率较小的状态到几率较大的状态 ,状态的几率增大 (或熵值增加). 三、计算题 1. 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状 态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((2 11A B A B V V p p W -+= =200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-= -=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2. 汽缸内有2 mol 氦气,初始温度为27℃,体积为20 L(升),先将氦气等压膨胀,直至体 233 ) 5

相关文档
相关文档 最新文档