文档库 最新最全的文档下载
当前位置:文档库 › Integrability of Schwinger-Dyson Equations in 2D Quantum Gravity and c 1 Non-critical Stri

Integrability of Schwinger-Dyson Equations in 2D Quantum Gravity and c 1 Non-critical Stri

Integrability of Schwinger-Dyson Equations in 2D Quantum Gravity and c  1 Non-critical Stri
Integrability of Schwinger-Dyson Equations in 2D Quantum Gravity and c  1 Non-critical Stri

a r

X

i

v

:h e

p

-

t

h

/95

3

1

9

v

1

2

8

M a

r

1

9

9

5

EPHOU-95002HUPS-94-5hep-th/9503190March 1995Integrability of Schwinger-Dyson Equations in 2D Quantum Gravity and c <1Non-critical String Field Theory Ryuichi NAKAYAMA ?and Toshiya SUZUKI ?Department of Physics,Faculty of Science,Hokkaido University,Sapporo 060,Japan Abstract We investigate the integrability of the Schwinger-Dyson equations in c =

1?6m (m +1)string theories.

String?eld theory[1]seems to be the most natural framework for studying the non-perturbative properties of string theory.Recently a new class of string?eld theory based on the transfer matrix formalism[2]for2d quantum gravity was proposed in[3]. In this string?eld theory the geodesic distance from the boundaries is used as a time variable.By using this time coordinate the world sheet of c=0string is cut into time slices and then decomposed into vertices and propagators.This string?eld theory is called string?eld theory in the temporal gauge[4][5].

This decomposition is also possible even when matter degrees of freedom are put on the worldsheet.The simplest model of string with matter is the Ising model on a random surface,i.e.,c=1/2string.The partition function and the loop amplitudes of the Ising model on a dynamically triangulated surface[6]are de?ned in terms of the two-matrix model[7]and the continuum theory is obtained by the double scaling limit [8],which also enables us to discuss the summation of string perturbation series.The most e?ective method for non-perturbative investigation of the loop amplitudes will be the Schwinger-Dyson equations(SDEs).The SDEs in the matrix model determine the loop amplitudes completely.

The string?eld theory can be constructed in such a way that the continuum version of the matrix model SDEs are derived from the SDEs in string?eld theory.In[9] the continuum limit of the SDEs in the two-matrix model was derived under some assumptions and the string?eld Hamiltonian was inferred from these equations.Such assumptions were then justi?ed by showing that W3constraints[10][11][12]can be derived from the continuum version of the matrix model SDEs.These results were also extended to c=1?6/(m(m+1))string.

The purpose of this letter is to investigate the integrability of the SDEs proposed in[9].The SDEs of c=0string are so-called Virasoro constraints on the partition function[10][11]and these SDEs are integrable because Virasoro algebra closes.The SDEs for c=1?6/(m(m+1))string proposed in[9]are more complicated than those for c=0string and the integrability of them is not obvious.We will show these SDEs are indeed integrable by exhibiting the algebra generated by these SDEs.This will give another justi?cation for the assumptions in[9].Contrary to our expectations, however,this algebra turns out to be not W∞but a larger one.Furthermore this algebra does not seem to contain W∞as a subalgebra.We will also include in the SDEs those terms corresponding to a process of removing the operator H(σ)from the boundary loops,which were not taken into account in[9].This operator changes the con?guration of spins locally.[9]We will then write down the Hamiltonian for c=1?6/(m(m+1))string in a more explicit way than in[9],where the meaning of the summation over conformal?eld theory(CFT)states|v>in the Hamiltonian was not completely speci?ed.

In[13]another type of c=1/2string?eld theory was constructed by changing

the de?nition of the time coordinate in such a way that the string does not cross the domain walls.It was shown the SDEs generate decoupled Virasoro algebras.In[14] and[15]temporal-gauge string?eld theory was extended to include open string?elds in two di?erent ways.It was also pointed out in[16]that the string?eld Hamiltonian can be derived from the stochastic quantization of the matrix model.The string?eld Hamiltonian was also deduced from the matrix model in[17].

Let us consider a two-matrix model de?ned by an action

S(A,B)=Ntr(1

2

B2?cAB?

1

N

trA m.Because the action(1)mixes A and B,

however,the SDEs in the two-matrix model do not close within this kind of loops but loops with mixed spin con?gurations appear.Therefore we have to consider correlation functions of the operator

W n(m1,m2,···,m n)=

1

length l of the loop and the state of the matter on the loop,which is a state in c= 1/2conformal?eld theory(CFT).The continuum limit of the simplest loop operator W0(m)=1

4.When a triangle is taken away at the point where the spin is down,the spin?ips

up.

5.A loop with vanishing length disappears.

From the point of view of string?eld theory process5is expressed by the tadpole terms.[9]Process4is a new one that was not taken into account in[9].Later we will incorporate such a process into(5).

In[9]it was shown that a combination of a subset of SDE(3)

T1(l)Z[J]|(J

n=0,n≥1)

≈0,

T2(l,0)Z[J]|(J

n=0,n≥1)

≈0(6) and the‘null’condition

D2(l,0)Z[J]|(J

n=0,n≥1)

≈0(7) is equivalent to the W3constraints[10][11][12].We can show that the commutator of T n(l1,···,l n)and D m(l′1,···,l′m?1,0)is given by a linear combination of terms of the form D n+m?1(l′′1,···,l′′n+m?2,0).Hence the‘null’condition D m(l1,···,l m?1,0)Z≈0 and the SDEs are compatible.

A central issue of this letter is the integrability of(3).SDEs in c=0string can be succinctly written as Virasoro constraints[10][11]and the closure of Virasoro algebra ensures the integrability of SDEs.For c=1/2string this algebra is replaced by W3 algebra[10][11][12]and we might expect(4)and(5)generate W3algebra.In[13]an alternative de?nition of the time coordinate is chosen in c=1/2string?eld theory and the resulting algebra is shown to be decoupled Virasoro algebras.We study whether T n generates a closed algebra,and if it does,what the algebra is.Here processes4and 5will be ignored and later we will take only process4into account.The calculation is straightforward and we will present only the results of long calculation.

[T1(l),T1(?l)]=(l??l)T1(l+?l),(8)

[T n(l1,···,l n),T1(l)]=

n

j=1

l j T n(l1,···,l j?1,l j+l,l j+1,···,l n)

? l0dl′T n(l1+l′,l2,···,l n?1,l n+l?l′)

(n≥2),(9)

[T n(l1,···,l n),T m(?l1,···,?l m)]

= l10dl′T n+m?1(?l1+l′,?l2,···,?l m?1,?l m+l1?l′,l2,···,l n)

+n?1

j=2

l j

dl′T n+m?1(l1,···,l j?1,?l1+l′,?l2,···,?l m?1,?l m+l j?l′,l j+1,···,l n)

+ l n0dl′T n+m?1(l1,···,l n?1,?l1+l′,?l2,···,?l m?1,?l m+l n?l′)

?(n?m,l j??l j)(n,m≥2).(10) Hence the algebra closes and SDEs(3)are integrable.The algebra by itself is quite intriguing.While(8)is Virasoro algebra,the whole algebra including the other two, (9)and(10),is a new one and there seems to be no simple relationship to W3or W∞algebra.

Let us next incorporate process4.This will be done by adding to T n some terms proportional to D n?2so that the algebra(8)~(10)remains unchanged.We replace T n(n≥2)by the following operator?T n.

?T 2(l1,l2)=T2(l1,l2)+{a+b(?l

1

+?l

2

)}{(δ(l1)+δ(l2))D0(l1+l2)},(11)

?T

n

(l1,···,l n)=T n(l1,···,l n)+

{a+b(?l

1+?l

n

)}{δ(l1)D n?2(l n+l1+l2,l3,···,l n?1)

+δ(l n)D n?2(l n?1+l n+l1,l2,···,l n?2)}

(n≥3).(12)

T1is left unchanged:?T1(l)=T1(l).The second terms in(11)and(12)describe process 4.(?gs3and4)Here a and b are constants.These constants are proportional to positive powers of the cosmological constant t and the powers are determined as follows.The scaling dimension of the disk amplitude0can be estimated by KPZ-DDK argument[18][19]to be L?7/3,where L stands for the dimension of the boundary length.0can be obtained from0by insertion of the oper-ator H(σ),which has dimension L?4/3,at n distinct points of the boundary.[9]Hence D n(l1,···,l n)and T n(l1,···,l n)have dimension L?(7+4n)/3.Because t has dimension L?2,we?nd a and b are proportional to t5/6and t1/3,respectively.Higher derivative terms are not included because the coe?cients will become negative powers of t.It is non-trivial but straightforward to show?T n(l1,···,l n)also satis?es(8)~(10).

Process5corresponds to the tadpole terms in the view point of string?eld theory.[9] Such terms contain the procuct of delta functionsδ(l j)and their derivatives multiplied by a functional of the source functions J n.[20]It is rather di?cult to determine those terms solely by integrability conditions and we will not pursue this problem here.

We now turn to string?eld theory.The continuum version of the matrix model SDE is closely related to the string?eld Hamiltonian and general form of the Hamiltonian in c<1string?eld theory was presented in[9].The expression of the Hamiltonian

was,however,rather formal because the meaning of the summation over CFT states |v >was not completely speci?ed.Here we will write down the string ?eld Hamiltonian more explicitly.For detailed discussion of the string ?eld theory in the temporal gauge we refer the reader to [9][3][13]

[21].General prescription is to express the generating functional in the form

Z [J ]=

lim D →∞<0|e ?DH e S source |0>,(13)S source = ∞

0dlJ 0(l )Ψ?0(l )+

∞ n =1 ∞0dl 1··· ∞0dl n J n (l 1,···,l n )Ψ?n (l 1,···,l n ).(14)

Here H is the string ?eld Hamiltonian and D is the geodesic distance from the bound-

aries.Ψ?0(l )and Ψ?n (l 1,···,l n )are the creation operators of the loops ?w

0(l )and ?w n (l 1,···,l n ),respectively,and these satisfy the usual commutation relations with the corresponding annihilation operators Ψ0and Ψn .

[Ψ0(l ),Ψ?0(l ′)]

=δ(l ?l ′),[Ψn (l 1,···,l n ),Ψ?n (l ′1,···,l ′n )]=

1?D <0|e ?DH e S source |0>=lim D →∞<0|e ?DH He S source |0>=0.(17)

Now Ψn and Ψ?n in H can be replaced by J n and D n ,respectively,and (17)can be rewritten as a di?erential equation for Z [J ].

?HZ [J ]=0(18)

Here ?H is a di?erential operator with respect to J ’s.The string ?eld SDE (18)and the matrix model SDE will be equivalent under suitable boundary conditions [3]if ?H is chosen as follows.

?H = ∞

0dlJ 0(l )l ?T

1(l )+∞ n =1n ∞

0dl 1··· ∞0dl n +1J n (l 1+l n +1,l 2,···,l n )?T

n +1(l 1,···,l n +1).(19)

This yields the following string ?eld Hamiltonian.

H =H 1+H 2+H 3+H 4+H 5,

(20)

H 1= ∞0dl 1 ∞

0dl 2Ψ?0(l 1)Ψ?0(l 2)Ψ0(l 1+l 2)(l 1+l 2)+2

∞ n =1n ∞0dl ∞0dl 1··· ∞0dl n Ψ?0(l )Ψ?n (l 1,···,l n )Ψn (l 1+l,l 2,···,l n )l 1+∞ n =1∞ m =1

(n +m ) ∞0dl ∞0dl ′ ∞0dl 1··· ∞0dl n ∞0dl ′1··· ∞0dl ′m Ψ?n (l 1+l,l 2,···,l n )Ψ?m (l ′1+l ′,l ′2,···,l ′m )Ψn +m (l 1+l ′,l 2,···,l n ,l ′1+l,l ′2···,l ′m ),

H 2=g ∞

0dl 1 ∞

0dl 2Ψ?0(l 1+l 2)Ψ0(l 1)Ψ0(l 2)l 1l 2+2g

∞ n =1n ∞0dl ∞0dl 1··· ∞0dl n Ψ?n (l 1+l,l 2,···,l n )Ψn (l 1,···,l n )Ψ0(l )ll 1+g

∞ n =1∞ m =1nm ∞0dl ∞0dl ′ ∞0dl 1··· ∞0dl n ∞0dl ′1··· ∞

0dl ′m

Ψ?n +m (l 1+l,l 2,···,l n ,l ′1+l ′,l ′2,···,l ′m )Ψn (l 1+l ′,l 2,···,l n )Ψm (l ′1+l,l ′2,···,l ′m ),

H 3= ∞

0dl Ψ?1(l )Ψ0(l )l

+

∞ n =1

n ∞

0dl 1··· ∞0dl n +1Ψ?n +1(l 1,···,l n +1)Ψn (l 1+l n +1,l 2,···,l n ),H 4=2a [

∞0dl Ψ?0(l )Ψ1(l )+

∞ n =2n

∞0dl 1··· ∞0dl n Ψ?n ?1(l n +l 1,l 2,···,l n ?1)Ψn (l 1,···,l n )]+b [2

∞0dl {?l Ψ?0(l )·Ψ1(l )?Ψ?0(l )·?l Ψ1(l )}

+∞ n =2

n ∞0dl 1··· ∞0dl n {(?l 1+?l n )Ψ?n ?1(l n +l 1,l 2,···,l n ?1)·Ψn (l 1,···,l n )?Ψ?n ?1(l n +l 1,l 2,···,l n ?1)·(?l 1+?l n )Ψn (l 1,···,l n )}],

H 5= ∞0dlρ0(l )Ψ0(l )

+

∞ n =1 ∞0dl 1··· ∞

0dl n ρn (l 1,···,l n )Ψn (l 1,···,l n ).

(21)

Here we introduced the string coupling constant g,which has dimension L?14/3.The di-mensions of?elds are[Ψ?n]=L?(7+4n)/3(n≥0),[Ψ0]=L4/3and[Ψn]=L(7+n)/3(n≥1).The tadpole terms H5are also included in H although the explicit form ofρn is left undetermined.It is clear H n describes process n.

The string statesΨ?0(l)|0>andΨ?n(l1,···,l n)|0>which appear in the above string ?eld theory do not cover the whole space of string states.There exist more general mixed spin con?gurations

1

N tr(

m?1

i=1

V i(M i)?c

m?2

i=1

M i M i+1).(23)

It is obvious that if we consider correlation functions of the operator

1

where a0and b0do not depend on the cosmological constant t.Because the string?eld Hamiltonian is the same for any c,it might be possible to go beyond the c=1barrier by investigations along this line.

The constants a0and b0in(25)remain unknown.The tadpole termsρn are unde-termined,either.To determine these we need to compute various amplitudes of?w n. Necessity of relative angle integrations in matrix chain models hinder the calculation of loop amplitudes with mixed spin con?gurations on the loop boundaries and these problems are left to the future investigations.

To recapitulate,we demonstrated that continuum SDEs(3)are integrable and they generate a closed algebra(8)~(10).Apparently this algebra does not seem to be related to W∞but it will certainly be important to pursue its connection to W∞further.We also derived string?eld Hamiltonian from SDEs(3)and this Hamiltonian was found to be universal for all c=1?6/(m(m+1))strings.Because there are already two di?erent choices of the time coordinate[13][9]in constructing c<1string?eld theory, there may exist another choice in terms of which SDEs and string?eld Hamiltonian have a manifest W∞structure.

R.N.thanks N.Ishibashi and H.Kawai for discussions.

References

[1]M.Kaku and K.Kikkawa,Phys.Rev.D10(1974)1110,1823;

W.Siegel,Phys.Lett.B151(1985)391,396;

E.Witten,Nucl.Phys.B268(1986)253;

Hata,K.Itoh,T.Kugo,H.Kunitomo and K.Ogawa,Phys.Lett.B172(1986)186, 195;

A.Neveu and P.West,Phys.Lett.B168(1986)192;

M.Kaku,Int.J.Mod.Phys.A9(1994)139.

[2]H.Kawai,N.Kawamoto,T.Mogami and Y.Watabiki,Phys.Lett.306B(1993)

19.

[3]N.Ishibashi and H.Kawai,Phys.Lett.B314(1993)190.

[4]M.Fukuma,N.Ishibashi,H.Kawai and M.Ninomiya,Nucl.Phys.B427(1994)139.

[5]R.Nakayama,Phys.Lett.B325(1994)347.

[6]V.A.Kazakov,I.K.Kostov and A.A.Migdal,Phys.Lett.66(1991)2051;

J.Ambj?rn,B.Durhuus and J.Fr¨o hlich,Nucl.Phys.B257[FS14](1985)433;

F.David,Nucl.Phys.B257[FS14](1985)543.

[7]V.A.Kazakov,Phys.Lett.A119(1986)140;

D.V.Boulatov and V.A.Kazakov,Phys.Lett.B186(1987)379.

[8]E.Br′e zin and V.Kazakov,Phys.Lett.B236(1990)144;

M.Douglas and S.Shenker,Nucl.Phys.B335(1990)635;

D.J.Gross and A.Migdal,Phys.Rev.Lett.64(1990)127.

[9]M.Ikehara,N.Ishibashi,H.Kawai,T.Mogami,R.Nakayama and N.Sasakura,

Phys.Rev.D50(1994)7467.

[10]M.Fukuma,H.Kawai and R.Nakayama,Int.J.Mod.Phys.A6(1991)1385.

[11]R.Dijkgraaf,E.Verlinde and H.Verlinde,Nucl.Phys.B348(1991)435.

[12]E.Gava and K.S.Narain,Phys.Lett.B263(1991)213.

[13]N.Ishibashi and H.Kawai,Phys.Lett.B322(1994)67.

[14]T.Mogami,Temporal-gauge String Field with Open Strings,preprint KEK-TH-

426(Dec1994).

[15]I.K.Kostov,Loop Space Hamiltonian for c≤1Open Strings,Saclay preprint

SPht/95-001.

[16]A.Jevicki and J.Rodrigues,Nucl.Phys.B421(1994)278.

[17]Y.Watabiki,Construction of Non-critical String Field Theory by Transfer Matrix

Formalism in Dynamical Triangulation,preprint,INS-1017,(Dec1993).

[18]V.G.Knizhnik,A.M.Polyakov and A.B.Zamolodchikov,Mod.Phys.Lett.A3

(1988)819.

[19]J.Distler and H.Kawai,Nucl.Phys.B321(1989)509;

F.David,Mod.Phys.Lett.A3(1988)1651.

[20]M.Ikehara,The Continuum Limit of the Schwinger-Dyson Equations of the One

and Two Matrix Model with Finite Loop Length,preprint KEK-TH-424(Dec1994).

[21]M.Ikehara,N.Ishibashi,H.Kawai,T.Mogami,R.Nakayama and N.Sasakura,

A Note on String Field Theory in the Temporal Gauge,proceedings of tne work-

shop Quantum Field Thoery,Integrable Models and Beyond,Yukawa Institute for Theoretical Physics,Kyoto University,14-18Feb1994,preprint KEK-TH-411 (Aug1994).

Figure Captions

Fig.1Processes1~3involved in SDE T1(l)Z[J]≈0.The cross on the left hand side represents the position of deformation.The solid curve stands for the portion of the loop on which the spins are up and the dot for insertion of H which changes the con?guration of spins.

Fig.2Processes1~3involved in SDE T n(l1,···,l n)Z[J]≈0(n≥2).

Fig.3Process4to be added to T2(l1,l2)Z[J].If the position of deformation coincides with the position of H,i.e.,l1=0,H may be removed.

Fig.4Process4to be added to T n(l1,···,l n)Z[J](n≥3).

信号强度DB

关于手机信号强度单位db和dBm【转帖】 (2010-05-21 13:51:51) 转载▼ 标签: it 关于手机信号强度单位db和dBm 最近做android开发,在wifi模块遇到手机信号的问题,设计到强度的计算,于是就有了db和dbm两个单位。 dB,dBm 都是功率增益的单位,不同之处如下: dB 是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面的计算公式:10log (甲功率/乙功率),如果采用两者的电压比计算,要用20log(甲电压/乙电压)。[例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。 dBm dBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。 [例] 如果功率P为1mw,折算为dBm后为0dBm。 [例] 对于40W的功率,按dBm单位进行折算后的值应为: 10log(40W/1mw)=10log (40000)=10log4+10log10000=46dBm。 总之,dB是两个量之间的比值,表示两个量间的相对大小,而dBm则是表示功率绝对大小的值。在dB,dBm计算中,要注意基本概念,用一个dBm减另外一个dBm时,得到的结果是dB,如:30dBm - 0dBm = 30dB。 手机上显示的数字的单位是dBm(可以用ALT+NMLL就可以让手机显示出当前的接收信号值了).这个值是负的,也就是说手机会显示比如 -67(dBm),那就说明信号很强了.这里还说一个小知识:中国移动的规范规定,手机接收电平>=(城市取 -90dBm;乡村取-94dBm) 时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求.-67dBm要比-90dBm信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会好的多(当然也包括EDGE/GPRS上网的速度那些 ). 所以,那个值越大信号就越好,因为那是个负值,而且在你手里的时候它永远是负值 ,如果你感兴趣且附近有无线基站的天线的话,你也可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于 0了(0是达不到的,这里的0的意思也不是说手机没信号了)

柯南人物简介英文版

Conan Welcome to Conan`s world

?writer:Gosho Aoyama 青山刚昌 ?Introduction:Japanese cartoonist漫画家. Born in 1963. After high school, entered Nihon University Arts College. 1986 "Youth Sunday" published his first works, from then the official debut开始. 1994, "Detective Conan" In "Youth Sunday" began serialization 连载,in 2001," Detective Conan "comics have been the 46th Junior Prize. His comics are juvenile comics, warm and meaningful , so although not much work,but each one popular. Works: "Gosho Aoyama short set,"青山刚昌短篇集"4 3 base"4号3垒,"YAIBA", "Magic fast fighting,"魔术快斗"Detective Conan" ?this is the mark of Gosho Aoyama

?Conan theatre:In 1997, the first Movie is premiere ,Until now a total of 13 Movie exhibition,there are 《Timing detonated skyscrapers》《14 Fan goals 》《end of the century magician》《Captured in Her Eyes》《the countdown leading to heaven》 《Bake Street, the souls》《Labyrinth of the crossroads》《Silver Wing's Magic》《Horizontal line plot》 《Detectors of Zhenhun Ge》《Gan Bi the coffin》《Full music of Fear》《black Chaser》,In 2010, the new version of Movie 《The sky's death ship》will join their ranks.Conan Movie badges

企业员工的情商管理及培训技巧

企业员工的情商管理及培训技巧 众所周知,情商第一个就是要认识自我,认识自己的感情和情绪,同时要控制激励自己。每当看不到希望的时候,一定要鼓励自己,激励自己前进,谭小芳在近段的培训过程中,发现这是现在很多大学生、青年员工缺少的。 六七月份,办公室照例会进来一批刚刚毕业的新人。一段日子相处下来,老员工开始抱怨:现在的年轻人缺席不请假,受助不道谢……新员工觉得委屈:都好几个月了,似乎还是不能融进自己所在的团体。用人单位于是指出,刚出校门的学生,虽然都有很高的学历,但是情商却有些低,不会与人相处,缺少团队合作的意识。作为新人,你平时注意自己的情商培养吗?还是办公室菜鸟的时候,你有没有因为情商低而苦恼过? 在西方企业里,人们普遍认为“IQ决定录用,EQ 决定提升”。这一形象的说法在某种程度上也意味着员工除自身应加强情商训练外,企业也应通过一定的情商训练,帮助员工提高情商指数。建议新员工:既然我们进了企业的门,那么,下一步,就让我们来看看决定你升职的EQ培训吧。 首先,什么是情商和职业情商?笔者认为,情商就是一个人的掌控自己和他人情绪的能力。从情商的一般内涵来看,情商包含五个方面的情绪能力:(1)了解自己情绪的能力;(2)控制自己情绪的能力;(3)自我激励的能力;(4)了解他人情绪的能力;(5)维系良好人际关系的能力。职业情商就是以上五个方面在职场和工作中的具体表现,职业情商更加侧重对自己和他人的工作情绪的了解和把握,以及如何处理好职场中的人际关系,是职业化的情绪能力的表现。

我们一般来说,高情商的人具有强烈的目标导向,在思考生命意义的过程中,他们“独上上高楼,望尽天涯路”,他们高瞻远瞩,目光远大,他们绘制自己生命的蓝图,他们点燃自己生生不息的明灯。 目前许多企业在招聘新员工时,也越来越重视考察应聘人员的情商素质,通过心理测试或情商测验等手段来测试应聘者情商的高低。一个人的知识、经验和技能等智力因素固然重要,但是,进入一个单位之后,影响和决定一个人职业发展的关键因素却是情商素质的高低,一个人事业成功与否,通常认为20%取决于智商因素,80%取决于情商因素。谭小芳老师认为,提升职业情商,主要有下面三方面功课: 1、心态修炼 了解自己在工作中的情绪是为了控制自己的情绪,保持良好的工作心态。职业情商对职业情绪的要求就是保持积极的工作心态。谭小芳老师建议员工对工作要有强烈的自信心,相信自己的能力和价值,肯定自己。只有抱着积极的信念工作的人,才会充分挖掘自己的潜能,为自己赢得更多的发展机遇。 2、思维修炼 对工作中消极的情绪要学会掌控。掌控情绪就是掌握情绪和控制情绪两个层次的含义,而不是单纯的自我控制。因为控制情绪说起来容易,往往做起来很难,甚至遇到对自己情绪反应激烈的问题时,根本就忘了控制自己。要驾驭自己的情绪,还必须要从改变思维方式入手改变对事物的情绪,以积极的思维方式看待问题,使消极的情绪自动转化为积极的情绪,从而实现自我控制自己的情绪。 3、习惯修炼 通过心态、思维方式、行为的修炼培养出良好的职

常用单位换算公式集合大全

常用单位换算公式集合大全,果断收藏! 面积换算 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2) 1公顷(ha)=10000平方米(m2)=2.471英亩(acre) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.764平方英尺(ft2) 1平方码(yd2)=0.8361平方米(m2) 1平方英里(mile2)=2.590平方公里(km2) 1亩约等于667平方米 1平方公里(km2)=100公顷(ha)约等于1500亩 点击?工程资料免费下载 体积换算

1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1) 1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234立方米(m3) 1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1) 10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3) 1百万立方英尺(MMcf)=2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3) 1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter) 1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl) 质量、密度换算 质量换算 1长吨(long ton)=1.016吨(t)1千克(kg)=2.205磅(lb) 1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g) 1短吨(sh.ton)=0.907吨(t)=2000磅(lb) 1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton) 密度换算 1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3)

《管理者情商及团队管理》

《管理者情商及团队管理》 【课程收益】 ●高情商主管的角色定位及职责使命 ●高情商主管的高效自我管理 ●高效的沟通技巧 ●团队建设及团队管理 ●有效激励和辅导员工的方法 【课程对象】 中高层管理人员 【课程时长】 1天(6小时/天) 【培训形式】 主题讲授、互动讨论、角色扮演、视频播放、案例分析、实践体验。【培训要求】 专用教室、投影仪、音箱(含音频线)、白板、A4纸。 【课程大纲】 一、高情商管理者的角色认知 1、管理就是“管”+“理” 2、用“理”的快乐解决管的“痛苦” 3、知己(自己)与知彼(企业) 4、认清权利和责任的关系

二、高情商管理者的职责使命及自我高效管理 1、高情商主管态度、思维方式与价值观念 ?成功者与失败者的成就欲特征 ?发现自己的优势,挖掘自己的潜能 2、高情商主管的情绪控制能力及品格影响力与创造力 ?相信自己,做情绪控制高手 ?以榜样为参照进行自我激励,保持积极而健康的心态 ?主动承担责任是为自己负责 ?对结果负责,没有任何借口 ?从细节处做起 三、高情商主管高效的沟通技巧 1、沟通技巧是管理者必备的要素 2、沟通是“心”与“理”的博弈 3、沟通重在“勾心” ?笑:有笑才有“效” ?看:先看才能“侃” ?听:能听才得“挺” ?问:会问才多“闻” ?说:巧说才显“烁” 4、换位重在“移情” 5、性格与沟通 四、有效激励和辅导员工的方法

1、心理学中的激励理论 ?动机激发理论; ?管理中的惩罚与奖励理论; ?需要理论; ?中国式激励理论; 2、团队管理中的实用激励方法 ?有效的沟通; ?愉悦温暖的团队文化; ?承认和适度满足员工的合理需要; ?引导员工去实现高级心理需要; ?注意员工的心理保健因素,消除不满情绪; 3、用惊喜和感动创造员工忠诚 ?善用小礼物创造惊喜 ?病人最容易记住别人的关切 ?记住他的重要纪念日 4、辅导员工过程中的赞美与批评技巧 ?巧用欣赏赞美的力量 赞美是发自于内心 做一个美好事物的发现者 赞美对方行为和品性 赞美他人的方法技巧 a、欣赏对方的特征

常用的工程单位换算表.

常用的工程单位换算表 2007-09-01 14:56 长度单位面积单位1 in = 25.4 mm 1 in2 = 6.45 cm2 cm3 1 ft = 0.3048 m 1 ft 2 = 0.09 3 m2 1 micron = 0.001 mm cm3 体积单位 1 litre = 0.001 m3 1 cu.ft. = 0.0283 m3 1 cu.in. = 16.39 cm3 1 fluid oz.(imp) = 28.41 mL 1 fluid oz.(us) = 29.57 mL 1 gal(imp) = 4.546 L 1 gal(us) = 3.79 L 温度单位 (°F-32)X5/9=℃ K-273.15 = ℃ 功及能量单位 1 Nm = 1 J 1 kgm = 9.807 J 1 kW/hr = 3.6 MJ 1 lbft = 1.356 J 功率单位 1 Nm/sec = 1 W 1 lbft/sec = 1.356 W 1 kgm/sec = 9.807 W 1 Joule/sec = 1 W 1 H.P.(imp) = 745.7 W 质量单位 1 lb = 453.6 g 1 tonne = 1000 kg

1 ton(imp) = 1016 kg 1 ton(us) = 907. 2 kg 流量计算公式 Q = Cv值 X 984 = Kv值X 1100 Cv = So ÷ 18 力单位 1 kgf = 9.81 N 1 lbf = 4.45 N 1 kp(kilopound) = 9.81 N 1 poundal = 138.3 mN 1 ton force = 9.964 kM 力矩单位 1 kgm = 9.807 Nm 1 ft. poundal = 0.0421 Nm 1 in lb = 0.113 Nm 1 ft lb = 1.356 Nm 压力单位 1 psi = 6.89 kPa 1 kgf/cm 2 = 98.07 kPa 1 bar = 100 kPa 1 bar = 14.5 psi 1 mm mercury = 133.3 Pa 1 in mercury = 3.39 kPa 1 Torr = 133.3 Pa 1 ft water = 0.0298 bar 1 bar = 3.33 ft water 1 atmosphere = 101.3 kPa 1 cm water = 97.89 Pa 1 in water = 248.64 Pa 换算表 1psi=6.895kPa=0.07kg/cm2=0.06895bar=0.0703atm 1standard atmosphere=14.7psi=101.3kPa=1.01325bar 1kgf/cm2 = 98.07kPa=14.22psi = 28.96ins mercury

单位换算进率表

单位换算进率表 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

单位换算的进率 才子辅导班 一、长度 从大到小:千米(km)米(m), 分米(dm), 厘米(cm),毫米(mm) 米与分米之间的进率是10,米与厘米之间的进率是100,米与毫米之间的进率为1000; 分米与厘米的进率是10,分米与毫米的进率是100; 厘米与毫米的进率是10 1m=10dm 1dm=10cm 1cm=10mm 1dm=0.1m 1cm=0.1dm 1mm=0.1cm 1m=10dm=100cm=1000mm 1dm=10cm=100mm 1mm=0.1cm=0.01dm=0.0001m 1cm=0.1dm=0.01m 千米与米的进率是1000 1km=1000m 1m=0.001km 二、面积 从大到小:平方米(㎡), 平方分米(㎡),平方厘米(㎡),平方毫米(㎡) 平方米与平方分米的进率是100,平方米与平方厘米的进率是10000,平方米与平方毫米的进率是1000000; 平方分米与平方厘米的进率是100,平方分米与平方毫米的进率是10000; 平方厘米与平方毫米的进率是100 1㎡=100d㎡ 1d㎡=100c㎡ 1c㎡=100m㎡ 1 d㎡ =0.01㎡ 1c㎡ =0.01d㎡ 1d㎡ =0.01c㎡ 1㎡=100d㎡=10000c㎡=1000000m㎡ 1d㎡=100c㎡=10000m㎡ 1m㎡=0.01c㎡=0.0001d㎡=0.000001㎡ 1c㎡=0.01d㎡=0.0001㎡

三、重量 从大到小:吨(t)千克(kg)克(g)毫克(mg) 千克与克的进率是1000,千克与毫克的进率是1000000; 克与毫克的进率是1000 1t=1000kg 1kg=1000g 1g=1000mg 1kg=0.001t 1g=0.001kg 1mg=0.001g 1t=1000kg=1000000g 1mg=0.001g=0.000001kg=0.000000001t 四、时间 从大到小:小时(h)分钟(min)秒(s) 小时与分的进率是60,小时与秒的进率是3600;分钟与秒的进率是60 1h=60min, 1min=60s, 1h=60min=3600s 五、金钱 从大到小:元角分 元与角的进率是10,元与分的进率是100,角与分的进率是10 1元=10角 1角=10分 1元=10角=100分1角=0.1元 1分=0.1角 1分=0.1角=0.01元五、其他 1平方千米=100公顷 1公顷=0.01平方千米 1公顷=10000平方米 1平方米=0.0001公顷

常用单位换算大全

常用单位换算大全 面积 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2) 1公顷(ha)=10000平方米(m2)=2.471英亩(acre) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2) 1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.764平方英尺(ft2) 1平方码(yd2)=0.8361平方米(m2) 1平方英里(mile2)=2.590平方公里(km2) 体积换算 1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1) 1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234立方米(m3) 1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1) 10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=2 83.17亿立方米(m3) 1百万立方英尺(MMcf)=2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3) 1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter)

1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)长度换算 1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd) 1厘米(cm)=0.394英寸(in)1英寸(in)=2.54厘米(cm) 1海里(n mile)=1.852千米(km)1英寻(fm)=1.829(m) 1码(yd)=3英尺(ft)1杆(rad)=16.5英尺(ft) 1英里(mile)=1.609千米(km)1英尺(ft)=12英寸(in) 1英里(mile)=5280英尺(ft)1海里(n mile)=1.1516英里(mile)质量换算 1长吨(long ton)=1.016吨(t)1千克(kg)=2.205磅(lb) 1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g) 1短吨(sh.ton)=0.907吨(t)=2000磅(lb) 1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton) 密度换算 1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3) API度=141.5/15.5℃时的比重-131.5 1磅/英加仑(lb/gal)=99.776千克/米3(kg/m3) 1波美密度(B)=140/15.5℃时的比重-130 1磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3) 1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3) 1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3)

wifi 信号强度单位dBm

wifi 信号强度单位dBm 总结一下: 简单的说dBm值肯定是负数的,越接近0信号就越好,但是不可能为0的ASU的值则相反,是正数,也是值越大越好 按规定,只要城市里大于-90,农村里大于-94就是正常的,记住负数是-号后面的值越小就越大 具体情况就是:-81dBm的信号比-90dBm的强,-67dBm的信号比-71dBm 的强低于-113那就是没信号了 关于dBm和ASU换算的关系是dBm=-113+2乘以ASU 比如我们看到信号为-67dBm 23ASU的时候, 他们的关系就是-113+2*23ASU=-67dBm 反之就是{-113-(-67dBm)}/2 =23ASU 有错误大家及时更正啊 第一篇: 关于手机信号强度单位db和dBm 最近做android开发,在wifi模块遇到手机信号的问题,设计到强度的计算,于是就有了db和dbm两个单位。 dB,dBm 都是功率增益的单位,不同之处如下: dB 是一个表征相对值的值,纯粹的比值,只表示两个量的相对大小关系,没有单位,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面的计算公式:10log (甲功率/乙功率),如果采用两者的电压比计算,要用20log(甲电压/乙电压)。[例] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。反之,如果甲的功率是乙的功率的一半,则甲的功率比乙的功率小3 dB。 dBm dBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。 [例] 如果功率P为1mw,折算为dBm后为0dBm。 [例] 对于40W的功率,按dBm单位进行折算后的值应为:10log (40W/1mw)=10log(40000)=10log4+10log10000=46dBm。 总之,dB是两个量之间的比值,表示两个量间的相对大小,而dBm则是表示功率绝对大小的值。在dB,dBm计算中,要注意基本概念,用一个dBm减另外一个dBm时,得到的结果是dB,如:30dBm - 0dBm = 30dB。 手机上显示的数字的单位是dBm(可以用ALT+NMLL就可以让手机显示出当前的接收信号值了).这个值是负的,也就是说手机会显示比如-67(dBm),那就说明

名侦探柯南(中英)

开头 《名侦探柯南》是日本漫画家青山刚昌的一部以侦探推理情节为主题的漫画作品,讲述了高中生侦探工藤新一被神秘的黑衣组织灌下代号为APTX4869的毒药后身体缩小为小学生,因此隐瞒身份,调查组织的同时不断解决各类案件的故事。初始创作于1994年,目前仍在日本小学馆的漫画杂志《周刊少年Sunday》上连载。 Style, a number of characters between the popular love description,Conan Edokawa character set has been widely support from readers. Forty-sixth primary school children back to the museum manga award to the Department awards in 2001. Adaptation of the animation works since 1996,the broadcast has maintained a high popularity, the annual drama theater version can also come out in front in the box office charts. Since its inception in 1994, work has been running for 19 years, but still enduring, is a miracle of Japanese anime industry. 作品的创作契机是1992年在《周刊少年Magazine》开始连载的《金田一少年之事件簿》所引发的推理漫画热潮。青山在其前一部作品《剑勇传说》连载结束后的仅4周时间(其中的前两周是在为游戏《狂飙骑士》进行人物设定的工作,实际时间为两周左右)的作品构思后,《名侦探柯南》的连载就开始了。[1]对新一与柯南的构思来源于赤川次郎著的推理小说《三毛猫福尔摩斯》中“真相被蒙蔽的推理”的思路。 下面为大家介绍一下《名侦探柯南》的主要内容 The story is about a 17-year-old genius detective named Shini chi Kudo who gets poisoned by a mysterious underground crime orga nization and shrinks into his 7-year-old body. He's forced to hid e his true identity, and fools his almost-girlfriend Ran into bel ieving that he's just a 7-year-old boy named Conan Edokawa. He en ds up living with Ran and her father in their home slash private de tective agency. He continues to try and find a cure to un-shrink his body, solving various mystery

常用公式大全(单位换算表)

长度单位转换公式 公里(km) 千米(km) 米(m) 分米(dm) 厘米(cm) 毫米(mm) 微米(um) 纳米(nm) 1 公里(km) =1千米 (km) 1 公里(km) = 1000 米(m) 1千米 (km) =1000米(m) 1米(m)=10分米(dm) 1分米(dm)=10厘米(cm) 1厘米(cm)=10毫米(mm) 1微米(um)=0.000 001米(m) 1纳米(nm)=0.000 000 001米(m) 1米(m)= 10 分米(dm) =100厘米(cm) = 1000 毫米(mm) 1 毫米(mm) = 1000 微米(um) = 1000000 纳米(nm) 1公里(km)=1千米(km)=1000米(m)=10000分米(dm) =100000厘米(cm) =1000000毫米(mm) 重量单位换算 吨( t ) 千克 (kg) 克( g ) 1千克 (kg)=1公斤 (kg) 1千克 (kg)=1000克( g ) 1吨( t )=1000千克 (kg) 1吨( t )=1000千克 (kg) =1000000克( g ) 1公斤=500克 1市斤=10两 1两=50克 时间单位换算 1世纪=100年1年=12月 大月(31天)有:1、3、5、7、8、10、12月 小月(30天)的有:4、6、9、11月 平年2月28天,平年全年365天,闰年2月29天闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 人民币单位换算 1元=10角 1角=10分 1元=100分 面积换算 平方公里(km2)公顷(ha)平方米(m2) 1平方千米(平方公里)=100公顷=1000000平方米=100000000平方分米=10000000000平方厘米=1000000000000平方毫米 1 公顷 = 0.01 平方公里(平方千米) 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1公顷=15亩=100公亩=10000平方米 1公亩=100平方米 1亩=60平方丈=6000平方尺 1(市)亩=666.66平方米 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2)1平方米(m2)=10.764平方英尺(ft2)

常用单位换算表大全

常用单位换算表大全 常用单位换算表大全 力 1牛顿(N)=0.225磅力(lbf)= 0.102千克力(kgf) 1千克力(kgf)= 9.81牛(N) 1磅力(lbf)= 4.45牛顿(N)1达因(dyn)= 10-5牛顿(N) 压力 1巴(bar)= 105帕(Pa) 1千帕(kPa)= 0.145磅力/英寸2(psi) = 0.0102千克力/厘米2(kgf/cm2) = 0.0098大气压(atm) 1磅力/英寸2(psi)= 6.895千帕(kPa) = 0.0703千克力/厘米2(kg/cm2) =0.0689巴(bar)= 0.068大气压(atm) 1物理大气压(atm)= 101.325千帕(kPa)= 14.696磅/英寸2(psi)= 1.0333巴(bar) 1工程大气压= 98.0665千帕(kPa) 1毫米水柱(mmH2O)= 9.80665帕(Pa)1毫米汞柱(mmHg)= 133.322帕(Pa) 1托(Torr) = 133.322帕(Pa)1达因/厘米2(dyn/cm2)= 0.1帕(Pa) 温度 K=5/9(°F+459.67)K = ℃+273.15 n°F= [(n-32)×5/9]℃n℃= (5/9×n+32)°F1°F= 5/9℃(温度差) 1千米(km)= 0.621英里(mile) 1米(m)= 3.281英尺(ft)= 1.094码(yd) 1厘米(cm)= 0.394英寸(in) 1埃(A)= 10-10米(m) 1英里(mile)= 1.609千米(km) 1英寻(fm)= 1.829(m)1英尺(ft)= 0.3048米(m) 1英寸(in)= 2.54厘米(cm)

《余世维—管理者的情商EQ》

中文名称:余世维—管理者的情商EQ 资源类型:RMVB 版本:RM 发行时间:2005年 地区:大陆 语言:普通话 简介: [已通过安全检测] NORTON企业版本,9.0.1客户端,病毒库8月31日。 [已通过安装测试] Windows XP+SP2 简体中文专业版本 共享服务时间:本人每天在线时间基本可以24小时,电信线路,如果是意外停电或其它不可抗拒原因,可能停机较长。 共享服务器:随机 原书名:管理者的情商EQ 原出版社:上海音像出版社 作者:余世维 内容:6部分 版次:1 出版日期:2005-4 使用RealPlayer 10 来播放。暴风影音可能无法播放。 基本内容:

讲师介绍: 余世维,北京时代光华教育发展有限公司诚聘特级培训师,哈佛大学企业管理博士后、牛津大学国际经济博士后、美国诺瓦大学公共决策博士;曾任美国雅黛公司副总裁、日航副总裁;现任美国富顿集团中国总经理、上海慧泉企业管理咨询有限公司董事、总经理;曾服务的客户有日本航空、飞利浦、柯达、联合利华、西门子、摩托罗拉、中国电信等著名企业,是目前中国培训界最受推崇的培训大师。 为什么学习本课程 在激烈竞争的环境中,能力与成功并非等号。作为一名成功的经理人,你不仅要有面对挫折、问题和冲突的能力,还要与客户、同事、合作伙伴和供应商建立良好的人际关系,提高您的情绪商数,管理好情绪,运作好人际关系,是您成功的重要环节,也是本课程之目的所在。 谁需要学习本课程 1、企业高层决策者 2、企业中层管理者 3、人力资源管理者 本课程学习目标 1.什么是管理者的情商 2.如何用“情商”来解释实际管理问题 3.如何培养管理者情商 书籍目录: 一、三Q的差异及关联

各种单位换算表

各种单位换算表

◆功率单位换算表 ◆热功单位换算表

◆传热系数/热导率单位转换表 ◆质量单位换算表

常用压力计量单位及其标识符号: ▲兆帕(MPa); 千帕(kPa); 帕(Pa) ※: 压力单位的兆帕符号为 MPa 不要书写为 Mpa mpa ; 千帕符号 kPa 不要书写为 KPa Kpa 或 kpa; 帕的符号 Pa 不要书写为 pa ▲磅力/英寸 2 (lbf/in 2 , psi) ※: 压力单位的磅力/英寸 2 符号为 lbf/in 2 , psi 不要书写为 Ibf/ln 2 Psi ; ▲毫米汞柱(mmHg) ※: 压力单位的毫米汞柱符号为 mmHg 不要书写为 mmhg ; ▲英寸汞柱(inHg) ※: 压力单位的英寸汞柱符号为 inHg 不要书写为 inhg ; ▲毫米水柱(mmH 2 O) ※:压力单位的毫米水柱符号为 mmH 2 O 不要书写为 mmh 2 O ; ▲英寸水柱(inH 2 O) ※: 压力单位的英寸水柱符号为 inH 2 O 不要书写为 inh 2 O ; ▲千克力/厘米 2 (kgf/cm 2 ) ※: 压力单位的千克力/厘米 2 符号为 kgf/cm 2 不要书写为 Kgf/cm 2 ; ▲物理大气压(atm) ※: 压力单位的物理大气压符号为 atm 不要书写为 Atm ; ▲巴(bar); 毫巴(mbar) ※: 压力单位的巴和毫巴符号为 bar 和 mbar 不要书写为 Bar 和 mBar ; ●托(Torr) ※: 压力单位的托符号为 Torr 不要书写为 torr . ● psi PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi

柯南英文介绍 两则

Detective Conan a new high school detective Kudo, known as the savior of the Japanese police, Heisei era of Sherlock Holmes. Time in the hair with childhood amusement park Leland to play, the way found two bizarre Men in Black. Kudo one of the new track until the underground scene, but because of too much focus on it did not see another black person from the back, under a clubbing. Later, he was forced to sink under the black people called "APTX-4869" the mysterious poison, the body back to its early development status of children. If black people know that a new Kudo is still alive, will make friends around the lives of their loved ones are threatened, so a new alias for "Conan" with host father is a detective of the blue Maori Kogoro home. Dr. enterprises in Afghanistan with the help of Detective Conan continued life - upon discovering the truth waiting for an opportunity to use the gun to watch Maori Kogoro type of narcotic sleep, and then with the bow-tie voice-changer to imitate the sound of Kogoro reasoning to solve a number of cases of . At the same time, he also has been looking for the whereabouts of black people, hope that one day will change back to the original appearance of this criminal organization to justice. 以下是中文翻译: 名侦探柯南高中生侦探工藤新一,被称为日本警察的救世主,平成年代的的福尔摩斯。一次在与青梅竹马的毛利兰去游乐园游玩时,途中发现了两个诡异的黑衣人。工藤新一跟踪其中一个直至地下交易现场,但由于太过专注,没有察觉另一个黑衣人从后面一棒打下。之后,他被黑衣人强迫灌下一种名为“APTX-4869”的神秘毒药,身体回到发育期的孩童状态。要是黑衣人知道工藤新一还活着,必将使周围的亲人好友的生命受到威胁,于是新一化名为“柯南”寄住在父亲毛利小五郎是侦探的兰家。在阿笠博士的帮助下,柯南继续着侦探生活——发现真相后伺机用手表型麻醉枪让毛利小五郎睡着,然后又用领结型变声器模仿小五郎的声音来推理,解决了许多案件。与此同时,他也在一直寻找黑衣人的下落,希望有朝一日变回原来的样子并将此犯罪组织绳之以法 A grade 11 student named Shinich hopes to be a detective.He solves challenging mysteries for police.One day,he met Gin & Vodka and they give Shinich which bring him to a child.Dr. Agasa discover shinich turn into child and Dr. Agasa call him to keep this secret.Shinichi prevends to be Conan Edogawa and live in his friend's house,Ran Mouri. Ran's father,Kogorou Mouri,also is a detective but a stupid detective.Conan help kogorou using a changing voice bow tie and his watch to help kogorou to solve case. Intro: "Detective Conan" is a detective mystery manga created by Goushou Aoyama in 1994. It's serialized in the weekly shounen magazine "Shounen Sunday." There's also an anime series based on the manga. Both manga and anime are wildly popular in Japan, and they are both still ongoing. There are 47+ volumes of the manga published so far, and 300+ episodes of the anime aired. The manga and anime are being released in North America under the name "Case Closed" by VIZ. See the Americanization section below.

常用单位换算表

常用单位换算表 压力、压强和应力单位换算表 注:1托(Torr)=1毫米汞柱(mmHg)=133.32Pa 1巴(bar)=105Pa=1.0197kg/cm 2=14.50psi 1kg/cm2=14.22 ib/in2 (psj) 1磅力/英尺2(1bf/ft2)=47.88Pa 1磅力/英寸2(1 bf /in2)=6894.8Pa=0.07031kg/cm2=0.06895bar 长度换算表 注:1托(Torr)=1毫米汞柱(mmHg)=133.32Pa 1巴(bar)=10 5Pa=1.0197kg/cm 2=14.50psi 1kg/cm2=14.22 ib/in2 (psj) 1磅力/英尺2(1bf/ft2)=47.88Pa 1磅力/英尺2(1bf/in2)=6894.8Pa=0.07031kg/cm2=0.06895bar 功率单位换算表

质量单位换算表 注:1.千克又名公斤;英吨又名长吨(long ton);美吨又名短吨(short ton) 2.另有单位克拉(×)=0.2053克(g) 力的换算表 达因(dn)牛顿(N)公斤力(kgf)磅力(lbf) 1 10×105 1.02×10-6 2.248×10-6 10×105 1 0.10197 0.22485 9.81×1059.8066 1 2.2046 4.448×105 4.4483 0.4536 1 体积和容积单位换算表

各种线规对照表:

注:工程界以CM(圆密尔)表示导线大小,系自250,000圆密尔,即250MCM,(M代表罗马值1000)。1MCM=0.5607mm2

相关文档