文档库 最新最全的文档下载
当前位置:文档库 › 线性代数人大版课件2.4

线性代数人大版课件2.4

线性代数人大版课件2.4
线性代数人大版课件2.4

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

线性代数答案人大出版社第四版赵树嫄主编修订版

线性代数答案人大出版社第四版赵树嫄主编修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

线性代数习题 习题一(A ) 1,(6) 2222 2 2222 2 2 12(1)4111(1)2111t t t t t t t t t t t --+++==+--++ (7) 1log 0log 1 b a a b = 2,(3)-7 (4)0 4,234 10001 k k k k k -=-=,0k =或者1k =. 5,23140240,0210x x x x x x x =-≠≠≠且. 8,(1)4 (2)7 (3)13 (4) N( n(n-1)…21 )=(n-1)+(n-2)+…+2+1= (1) 2 n n - 10, 列号为3k42l,故k 、l 可以选1或5;若k=1,l=5,则N(31425)=3,为负号;故k=1,l=5. 12,(1)不等于零的项为132234411a a a a =

(2)(234...1)11223341,1...(1)!(1)N n n n n n a a a a a n n --=-=-! 13,(3) 2112342153521534215100061230 61230002809229092280921000280921000 c c r r --= (4)将各列加到第一列, 17,(1)从第二行开始每行加上第一行,得到 1 1 11 1111 111 10222 (8111) 10022 1111 0002 -===-----. (2)433221,,r r r r r r ---… (3)各列之和相等,各行加到第一行… 18,(3) 20,第一行加到各行得到上三角形行列式, 21,各行之和相等,将各列加到第一列并且提出公因式(1)n x - 11 0(1)1010 x x x x x x x n x x x x x x x -从第二行开始各行减去第一行得到 22,最后一列分别乘以121,,...n a a a ----再分别加到第1,2,…n-1列得到上三角形行列式 23,按第一列展开

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

线性代数答案(人大出版社,第四版)赵树嫄主编

线性代数习题 习题一(A ) 1,(6) 2222 2 2222 2 2 12(1)4111(1)2111t t t t t t t t t t t --+++==+--++ (7) 1log 0log 1 b a a b = 2,(3)-7 (4)0 4,234 10001k k k k k -=-=,0k =或者1k =. 5,23140240,0210x x x x x x x =-≠≠≠且. 8,(1)4 (2)7 (3)13 (4) N( n(n-1)…21 )=(n-1)+(n-2)+…+2+1=(1) 2 n n - 10, 列号为3k42l,故k 、l 可以选1或5;若k=1,l=5,则N(31425)=3,为负号;故k=1,l=5. 12,(1)不等于零的项为132234411a a a a = (2)(234...1)11223341,1...(1)!(1)N n n n n n a a a a a n n --=-=-! 13,(3) 2112342153521534215100061230 61230002809229092280921000280921000 c c r r --= (4)将各列加到第一列, 2() 2()2()x y y x y D x y x y x x y x y ++=+++1 2()1 1y x y x y x y x y x +=+---

12()0 0y x y x y x y x y x +=+---332()x y =-+ 17,(1)从第二行开始每行加上第一行,得到 1 11111111 1 110222 (811) 1 100221111 0002 -= ==-----. (2)433221,,r r r r r r ---… 43 1111111112340123 (113) 6 10013 614102001410 r r -== (3)各列之和相等,各行加到第一行… 18,(3) 21 34312441 224011201 1201120 42413541350 3550 164 232 2 312331230 483001052205120510 2110211r r r r r r r r r r --------+-----=+---------+ 4334433424 241 120112********* 1640 1640 164 1010 10 002100210002720 21100 1370 0114 r r r r r r r r r r r r ------+--------------- 3411200164 10 01140 0027 r r ----?--270=- 20,第一行加到各行得到上三角形行列式, 1230 262!0 032000n n n n n =L L L L L L L L L 21,各行之和相等,将各列加到第一列并且提出公因式(1)n x -

线性代数(完整版)

线性代数复习题 一、选择题 1、 课本P44第5题 四元素乘积243241k i a a a a 是四阶行列式ij a (i,j=1,2,3,4)中的一项,i,k 的取值及该项 前应冠以的符号,有下列四种可能情况: (1)i=3,k=1,前面冠以正号 (2)i=3,k=1,前面冠以负号 (3)i=1, k=3,前面冠以正号 (4)i=1.k=3,前面冠以负号 选项正确的是(C ) A 、1.3正确 B 、1.4正确 C 、2.3正确 D 、2.4正确 解:当i=3,k=1时,N(3241)+N(1432)=4+3=7,该项前面冠以负号 当i=1,k=3时,N(1243)+N(1432)=1+3=4,该项前面冠以正号 故选择C 2、 课本P44第7题 下列选项中不属于五阶行列式ij a (i,j=1,2…5)中的一项的是(C ) A 、 54 45322311a a a a a B 、25 34431251a a a a a - C 、4521345213a a a a a - D 、1122334455a a a a a 解:选项C 中,N(15324)+N(32415)=4+4=8,前面应该冠以正号,而选项中是负号,故不属于五阶行列式中的一项 3、 3、课本P45第9题 若行列式D=,133 32 31 232221 131211 =a a a a a a a a a 则行列式33 32 3131 23222121 13 1211111324324324a a a a a a a a a a a a D ---==( A ) A 、-12 B 、12 C 、-24 D 、24 解:33 32 31 232221 13121133 32 31 23222113111133323131 23222121 13121111 343434242424324324324a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---+=--- =33 32 31 232221 13 1211 )3(*40a a a a a a a a a -+=(—12)*1=—12

《线性代数》同济大学版 课后习题答案详解

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个)

最新清华版线性代数课件线性代数§电子教案

例2计算 n 阶行列式副对角线以上的元素全为0 其中表示元素为任意数解由定义有递推关系递推公式由以上结论容易得到四n 阶行列式的性质行列式 DT 称为行列式 D 的转置行列式记性质1 行列式的行与列互换其值不变即 DT D 性质1说明行列式对行成立的性质都适用于列下面仅对行讨论由性质 1 和前面关于下三角行列式的结果马 上可以得到上三角行列式主对角线以下的元素全为0 的值等于主对角元的积即性质2 行列式按任一行展开其值相等即其中是 D 中去掉第 i 行第 j 列的全部元素后剩下的元素按原来的顺序排成的 n-1 阶行列式称为的余子式称为的代数余子式即性质3 线性性质 1行列式的某一行列中所有的元素都乘以同一数k 等于用数 k 乘此行列式 2 若行列式的某一行 列的元素都是两数之和那么该行列式可以写成两个行列式的和例如 1 若行列式的某一行列的元素都是 n 个数之和那么该行列式可以写成 n 个行列式的和例如说明 2 若行列式的某 m 行列的元素都是两例如说明个数之和那么该行列式可以写成个行列式的和由性质3马上得到推论1 某行元素全为零的行列式其值为零性质4 行列式中两行对应元素全相等其值为 零对行列式的阶数用数学归纳法证明证明当D为二阶行列式时结论显然成立假设当 D 为 n-1 阶行列式时结论成立设行列式 D 的第 i 行和第 j 行元素对应相等则当D为 n 阶行列式时将 D 按第k 行展开得其中为 k-1 阶行列式且有两行元素对应相等故由归纳假设知推论2 行列式中两行对应元素成比例其值为零由性质 3 和性质 4 马上得到性质5 在行列式中把某行各元素分别乘以数 k再加

线性代数答案(人大出版社-第四版)赵树嫄主编

线性代数习题 习题一(A ) 1,(6) 2222 2 2222 2 2 12(1)4111(1)2111t t t t t t t t t t t --+++==+--++ (7) 1log 0log 1 b a a b = 2,(3)-7 (4)0 4,234 10001 k k k k k -=-=,0k =或者1k =. 5,23140240,0210x x x x x x x =-≠≠≠且. 8,(1)4 (2)7 (3)13 (4) N( n(n-1)…21 )=(n-1)+(n-2)+…+2+1=(1) 2 n n - 10, 列号为3k42l,故k 、l 可以选1或5;若k=1,l=5,则N(31425)=3,为负号;故k=1,l=5. 12,(1)不等于零的项为132234411a a a a = (2)(234...1)11223341,1...(1)!(1)N n n n n n a a a a a n n --=-=-! 13,(3) 2112342153521534215100061230 61230002809229092280921000280921000 c c r r --= (4)将各列加到第一列, 2() 2()2()x y y x y D x y x y x x y x y ++=+++1 2()1 1y x y x y x y x y x +=+---

12()0 0y x y x y x y x y x +=+---332()x y =-+ 17,(1)从第二行开始每行加上第一行,得到 1 1 11 1111 11110222 (811) 1 10022 1111 0002 -===-----. (2)433221,,r r r r r r ---… 431111 111 112340123 (113) 6 10013 6 14102001410 r r -== (3)各列之和相等,各行加到第一行… 18,(3) 21 34312441 224011201 1201120 42413541350 3550 164 232 2 312331230 483001052205120510 2110211r r r r r r r r r r --------+-----=+---------+ 4334433424 241 120112********* 1640 1640 164 1010 10 002100210002720 21100 1370 0114 r r r r r r r r r r r r ------+--------------- 3411200164 10 01140 0027 r r ----?--270=- 20,第一行加到各行得到上三角形行列式, 1230 262!0 0320 n n n n n = 21,各行之和相等,将各列加到第一列并且提出公因式(1)n x -

相关文档
相关文档 最新文档