文档库 最新最全的文档下载
当前位置:文档库 › 转基因苹果研究现状与展望

转基因苹果研究现状与展望

转基因苹果研究现状与展望
转基因苹果研究现状与展望

转基因苹果研究现状与展望

摘要:从转基因苹果受体基因型、选择标记基因、报告基因及外源基因等方面综述了转基因苹果研究现状,着重论述了外源基因在转基因苹果中的应用。同时综合文献提出了苹果转基因研究存在的问题和今后的研究方向。

关键词:苹果;转基因;基因型;外源基因;

Prospect and Research Status of Transgenic Apples

Abstract: This paper reviewed the present situation of transgenic apples from the genotype of transgenic apples receptors,selective marker gene,reporter gene and exogenous gene and so on,moreover,the application of exogenous gene in transgenic apples were mainly discussed.Meanwhile,problems in the study of transgenic apples and the research direction in the future were put forward by summarizing literature.

Key words: Apple;Transgenic;Genotype;Exogenous gene

苹果是世界四大水果之一,是我国第一大水果,在国民经济中占有重要地位。随着社会的发展,培育优良苹果品种已经成为广大消费者的迫切要求。目前,培育出的苹果品种虽然已有800 多个,但是培育具有综合农艺性状的品种仍然是一大难题。其主要原因是: ①苹果是高度杂合的树种,遗传背景比较复杂,有性杂交后代广泛分离,选育结果难以控制; ②苹果童期( 5 ~7 年) 比较长,育种周期长; ③苹果育种工作已有上百年的历史,长期的人为定向选育使苹果品种的遗传性趋于一致,基因型范围越来越窄。以上原因对苹果育种造成诸多不利影响,使培育具有优良综合农艺性状的苹果品种极为困难。

20 世纪80 年代发展起来的转基因技术为苹果品种的遗传改良提供了新的技术方法

首先,转基因技术只对个别性状进行改良即可获得理性个体; 其次,转基因植株不存在童期问题,可以缩短育种周期; 最后,转基因技术可以打破物种界限,极大地丰富基因来源转基因技术给苹果育种工作展现了良好的前景,笔者就苹果转基因方面的研究进展作一综述。

1 苹果转基因受体基因型

1989 年James 等首次获得转基因绿袖苹果,此后,苹果转基因研究迅猛发展迄今为止,用于苹果转基因研究的受体基因型越来越多,除绿袖外,还包括M26 、元帅、皇家嘎拉、嘎拉、Braeburn、Elstar、乔纳金、富士、辽伏、Marshall、McIntoshM.9、M29、粉红佳人( Pinkla-dy)、Jork9 Queen Cox 、王林( Orin)、金矮生( Jon-agored) 17 个品种。

2 选择标记基因

转化的植物中存在着转化细胞和未被转化的细胞,它们之间存在着生长竞争,需要插入选择标记基因来选择转化了的细胞以获得转化植株植物基因工程中常用的选择标记基因主要有两大类: 一类是编码抗生素抗性的基因,如新霉素磷酸转移酶基因Ⅱ( npt II)潮霉素磷酸转移酶基因( hpt) 和二氢叶酸还原酶基因( dhfr) 等; 另一类是编码除草剂抗性的基因,如草丁膦乙酰转移酶基因( bar) 在苹果转基因中应用最多的选择标记基因是nptⅡ,其作用原理是nptⅡ基因编码新霉素磷酸转移酶,通过酶促磷酸化使氨基糖苷类抗生素失活,从而解除毒性,使转基因植物对卡那霉素巴龙霉素等氨基糖苷类抗生素产生抗性。

3 报告基因

报告基因是指其编码产物能够被快速地测定,在转化的早期阶段可以快速检测外源基因是否成功导入受体细胞组织或器官,并检测其表达活性的一类特殊用途的基因在苹果转基因研究中,常用的报告基因有新霉素磷酸转移酶基因Ⅱ( nptII) β-葡萄糖醛酸乙酰转移酶基因( gus) 胭脂碱合成酶基因( nos)和绿色荧光蛋白基因( gfp) [19 ]等。

4 苹果品种改良基因

1989 年James 等首次获得转基因绿袖苹果后,苹果转基因研究迅猛发展,外源基因涉及到改良植物性状的目的基因范围也越来越广目前苹果改良基因研究有以下几个方向:

抗病虫害基因开花相关基因矮化植株基因促进生根基因抗除草剂基因耐贮藏基因及调控基因等。

4,1 抗病基因

在苹果的遗传转化中,抗病基因研究主要集中在抗火疫病( Erwinia amylovora) 方面

与此相关的有Cecropin B、Attacin A、SB- 37、Shiva- 1、Attacin E、hrpN、NPR1、MB39 gene、mbr4、等基因CecropinB Attacin A 和Attacin E 是从天蚕体内分离出来的细胞溶解酶蛋白; SB- 37 Shiva- 1 是人工合成的细胞溶解酶类似物此外还有抗真菌基因β- 1,3-葡聚糖酶双价基因、内切几丁质酶基因、stilbene synthase gene、PGIP 以及抗苹果黑星病基因pinB。

4,2 抗虫基因

到目前为止,导入苹果的外源抗虫基因有抗鳞翅类和鞘翅类昆虫的CpTI 基因、苏云金杆菌毒蛋白基因( Bt) 、生物素绑定蛋白基因、CpTI 对于许多害虫都具有抗性,广谱性是其应用于植物基因工程最主要的优点; Bt 是从苏云金杆菌分离出的杀虫结晶蛋白( ICP) 基因,ICP 以原毒素形式存在,昆虫取食后,在消化道被活化,与肠道上特异性结合蛋白结合,使ICP 全部或部分嵌合于细胞膜上,产生孔道,昆虫幼虫停止进食,最终死亡; 生物素绑定蛋白基因通过表达抗生物素蛋白或卵白素蛋白提高苹果的抗虫性。

4,3 开花相关基因

果树童期长的特点在很大程度上延长了果树的育种周期开花相关基因的研究,为缩短果树的童期,从而缩短育种周期提供了分子理论基础目前已经从多种植物上克隆到MdTFL、BpMADS4等基因,并应用到苹果的遗传转化中MdTFL 基因是从苹果( Malus ×domesti-ca Borkh.) 中克隆得到,该基因与拟南芥中的TERMINALFLOWER1( TFL1) 基因为同源基因,可以抑制花的分生组织形成Kotoda 等向苹果中转入反义MdTFL 基因可以抑制MdTFL 的表达,从而使苹果可以在嫁接8 ~15 个月后就可以开花BpMADS4 是从欧洲白桦( Betula pendula) 中克隆出的MADS- box 家族基因,其主要在欧洲白桦的花序茎尖和根尖中表达,作用主要是促进早起花的形成Flachowsky 等将BpMADS4 基因转入苹果Pinova 中,3 ~ 4 个月就可以开花

4,4 矮化基因

矮化栽培因具有结果早、品质好、管理方便、品种更新快等优点,已成为果树业发展的趋势。由于果树有很长的生命周期,使得传统的育种方法选育矮化品种非常缓慢,利用基因工程技术可以大大提高矮化品种培育的速率。目前已经从病原体农杆菌中鉴定和克隆出一些与矮化有关的基因,在苹果中得到应用的主要有rolA、rolC、phyB、gai基因等Holefors 等及Zhu 等将rolA 基因转入砧木M26,获得的转化植株与对照相比,树体矮小,节间缩短,树叶面积减小。Holefors 等获得的转化植株叶、根干重均降低,Zhu 等获得的转化植株的根明显缩短。Igarashi 等将从拟南芥中克隆出的rolC 基因转入Marubakaidou 砧木,获得的转基因植株有1 ~ 3 个拷贝的rolC 基因整合到基因组DNA 中,转基因植株的节间缩短、叶片面积减小、顶端优势减弱。2000 年Hole-fors 等将拟南芥phyB( 光

敏色素B) 基因导入M26 获得13个株系的转基因植株,该基因在转基因植物体内过量表达。其中9 个株系主干明显缩短,13 个株系的茎、根和植物体干重均降低。此外,Zhu 等将从拟南芥中克隆出的gai 基因导入苹果砧木A2 以及栽培品种Gravenstein 和McIntosh 中,得到的转化植株大部分表现出矮化特征,同时还表现出节间距减小、节数变少等表型特征。转基因植株的矮化使得节数变少,但是否可以缩短童期尚未见报道

4.5 促进生根基因

受基因型的影响,有些苹果砧木采用扦插和压条繁殖时,生根极其困难利用转基因技术在一定程度上可以解决这一问题Welander 等将rolB 基因导入砧木M26 中,发现与对照相比,转基因植株根系对生长素的敏感性增强,生根能力也相应提高Igarashi 等将从拟南芥中克隆出的rolC 基因转入Marubakaidou 砧木,获得的转基因植株除了表现植株矮化性状外,其生根能力也有了相应提高

4.6 抗除草剂基因

随着生物技术的发展,现在已经有能力通过遗传工程的方法来培育耐除草剂的作物品种根据抗性机理不同,目前耐除草剂的基因工程主要有2 种策略: ①修饰除草剂作用的靶蛋白,使其对除草剂不敏感,或促使其过量表达以使植物吸收除草剂后仍能进行正常代谢; ②引入酶或酶系统,在除草剂发生作用前将其降解或解毒ALS 的靶位点突变体在自然界中普遍存在,人们已在细菌酵母植物细胞培养物及种植于田间的作物中发现了这种突变酶将来自拟南芥的als 基因,通过农杆菌介导转化皇家嘎拉苹果获得转基因植株在后续研究中,获得的种子用60 mg /L 绿贫隆( Glean) 喷洒检测其抗性,发现als 基因按1∶1 分离比例稳定遗传。

从链霉菌中分离出的编码乙酰CoA 转移酶的基因被称为bar 基因乙酰CoA 转移酶具有使除草剂草丁膦代谢失活的作用其作用机制在于在乙酰CoA 存在的情况下,乙酰CoA 转移酶催化乙酰CoA 与草丁膦的游离氨基结合,从而使草丁膦失去除草剂的活性Dolgov 等把bar 基因导入苹果砧木No.545 并获得抗除草剂转基因植株

4. 7 耐贮藏基因

苹果在贮藏过程中,由于果实熟化过程难以控制,常常导致过熟腐烂,造成极大的经济损失常规育种方法选育耐贮藏苹果品种周期太长效果不理想,不能满足生产的需求近年来,随着基因工程技术的发展,利用基因工程技术改良苹果贮藏性已经有了一定的成效

果实耐贮藏基因的研究主要集中在乙烯的合成途径相关基因的研究上,乙烯在对苹果果实的成熟转变扮演着重要角色Pesis 等向苹果绿袖中转入反义ACCS 和ACCO 基因,然后将转基因苹果果实0 ℃冷藏3 个月,之后转入20 ℃环境中存放结果表明,与未转化的苹果果实相比,转基因苹果的乙烯含量明显降低,转基因苹果对苹果贮藏过程中容易出现的虎皮病和苦陷病抑制效果不明显

4.8 调控基因

近20 年来利用转基因技术进行苹果的遗传改良取得了很大进展,外源基因涉及到改良植物性状的目的基因范围也越来越广很多转基因植株的性状在一定程度上得到了改良,但外源基因的表达强度不够,其效果尚不尽人意2000 年Gittins 等提出遗传改良作物转化基因的表达受限于组织特异性的编码活性他们将非同源的SSU RBCS3CP SRS1P 和CaMV35S 启动子,以及GUSA 标记基因连接转入到苹果绿袖中,研究了不同启动子启动的GUSA 在绿袖中不同组织的表达状况研究表明,SSU 启动子首先在苹果的绿色营养组织中起作用; 在根部RBCS3C启动子活性要远远高于SRS1 启动子; SRS1 启动子的活性在很大程度上依赖于光照2001 年Gittins 等又对Bras-sica napus extA 启动子的调控作用作了研究,结果表明该启动子在苹果茎段中的调控作用非常明显以上结果表明,不同基

因在不同组织中有特异的启动方式,因此,改进调控基因表达的特异启动子有助于提高目的基因的表达强度和减少表达蛋白的损耗。

5 存在问题及前景展望

5. 1 安全的转基因系统

目前由于转基因技术的一些限制性因素,在转基因过程中一般要与目的基因一起转入1个筛选标记基因常用的筛选标记基因为抗生素抗性基因和抗除草剂基因,大多数的筛选标记基因在转化后也同时存在于转基因植物中,因此引起了转基因植物安全性问题的讨论如人们担心抗生素抗性基因有可能从摄入的转基因食物转移到人体内,从而使人体的消化道内产生抗性菌株; 另外,除草剂抗性基因也有可能在野外引起基因扩散,造成超级杂草的出现尽管目前并没有证据证明其危害性,但公众对安全性的关注大大推迟了转基因作物的商品化和市场运作,从而阻碍了转基因研究的发展因此,探索一种新的无抗性筛选标记的转化系统,可以更好地激励植物基因工程技术尽快地应用到生产之中

5. 2 外源基因表达强度不够

尽管目前通过转基因方式获得了很多各种苹果改良转基因植株,如苹果的抗病虫害转基因虽然离体检测其抗性有了一定程度的提高,但其效果并不能达到人们所期望的目标所以应该从基因表达调控以及特异性表达的启动子方面进行研究,以尽可能地提高目的基因的表达强度

5. 3 品种改良基因型范围太窄

苹果转基因研究主要集中在抗病虫害方面,而抗病基因研究又主要集中在抗火疫病方面,抗其他病害的基因很少有报道; 以提高果实品质及抗逆性如抗寒抗盐碱等为目的的转基因研究也不多见

References

[1]JAMES D J,PASSEY A J,BARBARA D J,et al.Genetic transformation ofapple ( Malus pumila Mill)using a disarmed Ti- binary vector[J]. PlantCell Rep,1989,7: 658 -661.

[2]MAHESWARAN G,WELANDER M,HUTCHINSON J F,et al.Transforma-tion of apple rootstock M26 with Agrobacterium tumefaciens[J].J PlantPhysiol,1992,139( 5) : 560 -568.

[3]SRISKANDARAJAH S,GOODWIN P B,SPEIRS J.Genetic transformationof apple scion cultivar‘Delicious’via Agrobacterium tumefaciens[J].Plant Cell Tiss Org,1994, 36 ( 3) : 317 -329.

[4]JIA L Y,COHEN D,ATKINSON R,et al.Regeneration of transgenic plantsfrom the commercial apple cultivar Royal Gala [J].Plant Cell Rep,1995,14( 7) : 407 -412.

[5]SCHAART J G,PUITE K J,KOLOV A L,et al.Some methodological as-pects of apple transformation by Agrobacterium [J]. Euphytica, 1995,85( 1 /3) : 131 -134.

[6]PUITE K J,SCHAART J G.Genetic modification of the commercial applecultivars Gala,Golden Delicious and Elstar via an Agrobacterium tumefa-ciens- mediated transformation method[J].Plant Sci,1996,119 ( 1 /2) : 125-133.

[7]BONDT A D,EGGERMONT K,PENNINCKX I,et al.Agrobacterium medi-ated transformation of apple ( Malus domestica Borkh) : an assessment offactors affecting regeneration of transgenic plant[J].Plant Cell Rep,1996,15: 549 -554.

[8]裴东,田颖川,刘群禄等.苹果叶片再生的改进及抗虫基因植株的获得[J].河北农业大学学报,1996,19( 4) : 23 -27.[9]BOLAR J P,BROWN S K,NORELLI J L,et al. Factors affecting the trans-formation of‘Marshall McIntosh’apple by Agrobacterium tumefaciens[J].Plant Cell Tiss Org,1998,55( 1) : 31 -38.

[10]ZHU L H,HOLEFORS A,AHLMAN A,et al.Transformation of the applerootstock M.9 /29 with the rol B gene and its influence on rooting andgrowth[J]. Plant Sci,2001,160( 3) : 433 -439.

[11]SRISKANDDARAJAH S,GOODWIN P.Coditioning promotes regenerationand transformation in apple leaf explants[J].Plant Cell Tiss Org,1998,53( 1) : 1 -11.

[12]SEDIRA M,HOLEFORS A,WELANDER M.Protocol for transformation ofthe apple rootstock Jork 9 with the rolB gene and its influence on rooting[ J].Plant Cell Rep,2001,20( 6) : 517 -524.

[13]WILSON F M,JAMES D J.Regeneration and transformation of the premi-er UK apple ( Malus ×pumila Mill.)cultivar Queen Cox[J].The Journalof Horticultural Science and Biotechnology,2003,78: 656 -662.

[14]KANAMARU N,ITO Y,KOMORI S,et al.Transgenic apple transformedby sorbitol- 6- phosphate dehydrogenase cDNA:Switch between sorbitoland sucrose supply due to its gene expression[J].Plant Sci,2004,167( 1) : 55 -61.

[15]程家胜,鄂超苏,田颖川等.转Bt 抗虫基因苹果植株的再生[J].中国果树,1994( 4) : 14 -15.

[16]WELANDER M,PAWLICKI N,HOLEFORS A,et al.Genetic transforma-tion of the apple rootstock M26 with the rolB gene and its influence onrooting[J].Journal of Plant Physiology,1998,53: 371 -380

[17]HANKE V,HILLER I,KLOTSCHE G,et al.Transformation in apple forincreased disease resisitance[J].Acta Hort,2000,538: 611 -616.

[18]BOLAR J P,NORELLI J L,WONG K W,et al.Expression of endochiti-nase from Trichoderma harzianum in transgenic apple increases resistanceto apple scab and reduces vigor[J].Phytopathology,2000,90( 1) : 72 -77.

[19]HILY J M,LIU Z A.simple and sensitive high- throughput GFP screeningin woody and herbaceous plants[J].Plant Cell Rep,2009,28( 3) : 493 -501.

[20]NORELLI J,ALDWINCKLE H,DESET FANO- BELTR N L,et al.In-creasing the fire blight resistance of apple by transformation with genesencoding antibacterial proteins[J].Acta Hort,1993,338: 385 -386.

[21]NORELLI J L,MILLS J Z,JENSEN L A,et al.Genetic engineering of ap-ple for increased resistance to fireblight[J].Acta Hort,1998,484: 541 -546.

[22]ABDUL- KADER A M,NORELLI J L,ALDWINKLE H S,et al.Evaluationof the hrpn gene for increasing resistance to fire blight in transgenic apple[J].Acta Hort,1999,489: 247 -250.

[23]LIU Q,INGERSOLL J,OWENS L,et al.Response of transgenic Royal Ga-la apple ( Malus domestica Borkh.)shoots carrying a modified cecropinMB39 gene,to Erwinia amylovora[J].Plant Cell Rep,2001,20:306 -312.

[24]FLACHOWSKY H,PEIL A,ROLLINS J,et al. Improved fire blight resist-ance in transgenic apple lines by constitutive overexpression of the mbr4gene of Malus baccata[J].Acta Hort,2008.793: 287 -291.

[25]徐凌飞,王贵章,梁东,等.抗真菌病害基因转化苹果的研究[J].西北农林科技大学学报: 自然科学版,2007,35( 9) : 127 -131.

[26]SZANKOWSKI I,BRIVIBA K,FLESCHHUT J,et al.Transformation ofapple ( Malus domestica Borkh.)with the stilbene synthase gene fromgrapevine ( Vitis vinifera L.)and a PGIP gene from kiwi ( Actinidia deli-ciosa) [ J].Plant Cell Rep,2003,22( 2) : 141 -149.

[27]FAIZE M,SOURICE S,DUPUIS F,et al.Expression of wheat puroindo-line- b reduces scab susceptibility in transgenic apple ( Malus × domesticaBorkh.) [J].Plant Sci,2004,167( 2) : 347 -354.

[28]达克东,崔德才,张松,等.超强表达豇豆胰蛋白酶抑制剂基因( CpTI)转化苹果的研究[J].园艺学报,2001,28( 1) : 57 -58.

[29]MARKWICK N P,DOCHERTY L C,PHUNG M M,et al.Transgenic to-bacco and apple plants expressing biotin- binding proteins are resistant totwo cosmopolitan insect pests,potato tuber moth and lightbrown applemoth,respectively[J].Transgenic Res,2003,12( 6) : 671 -681.

[30]KOTODA N,IWANAMI H,TAKAHASHI S,et al.Antisense expression ofMdTFL1,a TFL1- like gene,reduces the juvenile phase in apple[J].J AmSoc Hortic Sci,2006, 131: 74 -81.

[31]ELO A,LEMMETYINEN J,TURUNEN M L,et al.Three MADS- boxgenes similar to APETALA1 and FRUITFULL from silver brich ( Betulapendula) [J].Physiol Plant,2001,112( 1) : 95 -103.

[32]FLACHOWSKY H,PEIL A,SOPANEN T,et al.Overexpression of Bp-MADS4 from silver birch ( Betula pendula Roth.)induces early- floweringin apple ( Malus x domestica Borkh.) [J].Plant Breeding,2007,126( 2) :137 -145.[33]HOLEFORS A,XUE Z T,WELANDER M.Transformation of the apple ro-otstock M26 with the rolA gene and its influence on growth[J].Plant Sci,1998,136( 1) : 69 -78.

[34]ZHU L H,WELANDER M.Growth characteristics of apple cultivar Grav-enstein plants grafted onto the transformed rootstock M26 with rolA androlB genes under non- limiting nutrient conditions[J].Plant Sci,1999,147( 1) : 75 -80.

[35]IGARASHI M,OGASAWARA H,HATSUYAMA Y,et al.Introduction ofrolC into Marubakaidou[Malus prunifolia Borkh.var.ringo Asami Mo 84-A]apple rootstock via Agrobacterium tumefaciens[J].Plant Sci,2002,16( 3) : 463 -473.[36]HOLEFORS A,XUE Z T,ZHU L H,et al.The Arabidopsis phytochrome Bgene influences growth of the apple rootstock M26[J].Plant Cell Rep,2000,19( 11) : 1049 -1056.

[37]ZHU L H,LI X Y,WELANDER M.Overexpression of the Arabidopsis gaigene in apple significantly reduces plant size [J].Plant Cell Rep,2008,27( 2) : 289 -296.

[38]WELANDER M,PAWLICKI N,HOLEFORS A,et al.Genetic transforma-tion of the apple rootstock M26 with the rolB gene and its influence onrooting[J].Plant Physiol,1998,153( 3 /4) : 371 -380.

[39]王关林,方宏筠.植物基因工程[M].北京: 科学出版社,2002: 56.

[40]YAO J L,COHEN D,ATKNSON R,et al.Regeneration of transgenicplants from the commercial apple cultivar Royal Gala [J].Plant Cell Rep 1995,14: 407 -412.

酶学性质研究

1.6 酶学性质研究 (1)pH 的影响:分别测定粗酶液在pH3.0、4.0、5.0、6.0、7.0、8.0下的酶活力,确定其最适反应pH 值;将粗酶液用上述pH 缓冲液稀释后,45℃水浴保温4小时后,测定其剩余酶活力。 (2)温度的影响:分别在40~95℃下测定酶活力,确定其最适反应温度;将酶液在40~90℃范围内的不同温度下保温60 min 后,测定其剩余酶活力。 (3)金属离子的影响:在酶液中分别添加各种金属离子,使其浓度为4 mmol /L ,然后测定酶活力。 2.5 纤维素酶粗酶液酶学性质 2.5.1酶反应的最适pH 值和酶的pH 稳定性 粗酶液在不同pH 值下测得的酶活及在不同pH 值下处理4小时后测得的相对酶活示于图11。结果表明,CMCase 在pH 3.5~4.5有较高的酶活力,最适反应pH 值为4.0;β-Gluase 在pH 4.5~5.5酶活力较高,最适反应pH 值为5.0,同样方法测得FPA 最适反应pH 为5.0。可见,该菌株所产的各组分纤维素酶是酸性酶。 图11表明,该菌产CMCase 在pH3.0~6.0的范围内,β-Gluase 在pH3.5~5.5的范围内,酶活力均可保持在80%以上,说明该菌株所产酸性纤维素酶可在较宽的pH 值范围内保持其酶活力的稳定性。2.5.2 酶反应的最适温度和酶的热稳定性 在不同温度下直接进行酶促反应测得的酶活及在不同温度下热处理60 min 后于最适反应温度和最适pH 下测得的相对酶活(以4℃保存的酶液活力为100%)示于图12。结果表明,CMCase 、β-Gluase 及FPA 最适反应温度均为65℃。 c e l l u l a s e a c t i v i t y ( U .m l -1) pH r e l a t i v e y a c t i v i t y (%) c e l l u l a s e a c t i v i t y ( U .m l -1) temperature ( o C ) r e l a t i v e y a c t i v i t y (%) 图11 pH 值对酶活力及酶稳定性的影响 Fig.10 Effects of pH value on Cellulase activity and stability 图12 温度对酶活力及酶稳定性的影响 Fig.11 Effects of temperature on activity and stability of cellulase

二氧化碳驱油技术研究现状与发展趋势

二氧化碳驱油技术研究现状与发展趋势 随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而廉价的采油新技术一直是专家们不断探索的问题。 针对目前世界上大部分油田采用注水开发面临着需要进一步提高采收率和水资源缺乏的问题国外近年来大力开展了二氧化碳驱油提高采收率(EOR)技术的研发和应用。这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率 (一)二氧化碳驱油技术机理 1、降粘作用 二氧化碳与原油有很好的互溶性,能显著降低原油粘度,可降低到原粘度的1/10左右。原油初始粘度越高,降低后的粘度差越大,粘度降低后原油流动能力增大,提高原油产量。 2、改善原油与水的流度比 二氧化碳溶于原油和水,使其碳酸化。原油碳酸化后,其粘度随之降低,同时也降低了水的流度,改善了油与水流度比,扩大了波及体积。 3、膨胀作用 二氧化碳注入油藏后,使原油体积大幅度膨胀,便可以增加地层的弹性能量,还有利于膨胀后的剩余油脱离地层水以及岩石表面的束缚,变成可动油,是驱油效率升高,提高原油采收率。 4、萃取和汽化原油中的轻烃 在一定压力下,二氧化碳混合物能萃取和汽化原油中不同组分的轻质烃,降低原油相对密度,从而提高采收率。二氧化碳首先萃取和汽化原油中的轻质烃,随后较重质烃被汽化产出,最后达到稳定。 5、混相效应 混相效应是指两种流体能相互溶解而不存在界面,消除了界面张力。二氧化碳与原油混合后,不仅能萃取和汽化原油中轻质烃,而且还能形成二氧化碳和轻质烃混合的油带。油带移动是最有效的驱油过程,可使采收率达到90%以上。 6、分子扩散作用 多数情况下,二氧化碳是通过分子的缓慢扩散作用溶于原油。分子的扩散过程很

兽用中草药研究开发展望

中兽医医药杂志J TCVM 2005年第4期 综述专论兽用中草药研究开发展望 梁剑平1,张应禄2,李滋睿2 (1.中国农业科学院兰州畜牧与兽药研究所农业部新兽药工程重点开放实验室,甘肃兰州730050;2.中国农业科学院) 中图分类号:S85311文献标识码:A文章编号:1000-6354(2005)04-0021-03 兽用中草药被广泛应用于预防和治疗畜禽疾病,或促进动物生长,提高饲料报酬。由于它无药物残留,对人类健康不构成危害,所以受到了广大消费者和畜禽养殖者的欢迎。有关专家认为,兽用中草药由于不会对食品安全构成威胁,将在很大程度上逐步取代化学药品,有广阔的发展前景,使其开发商机凸现。兽用中草药是我国兽医药学的宝贵遗产,长期以来对畜禽的繁殖和发展做出了不可磨灭的贡献。它不仅在中国得到了继承和发展,而且在国际上也产生了巨大的影响,亚洲的很多国家和地区把兽用中草药当成提高畜禽健康质量的重要手段,与西方现代兽医药共同用于临床。欧美各国在/回归大自然0的口号影响下,也越来越重视兽用中草药的研究,一些兽用中草药的治疗作用逐渐得到了临床的认可。 1畜牧业发展对兽用中草药开发及其技术需求分析近些年来,食品安全、药残与耐药性等问题日益受到重视,许多发达国家已经禁用了许多兽用药品饲料添加剂。美国基于人畜交叉抗药性的顾虑而撤销了恩诺沙星与沙拉沙星在禽类使用的注册标准,并且在可预见的未来也不再审批任何氟喹诺酮类作为兽药。2000年7月23日,世界卫生组织在日内瓦召开会议,提出了限制对家畜使用化学抗菌药新建议。近年来发现化药、抗生素类具有毒副作用及其残留,严重地影响人类健康,甚至引起/三致0和损害免疫功能。自1987年以来,英国和法国植物药的购买力分别上升了70%和50%,而美国市场每年亦以高于20%的速度增长。日本的汉方制剂从90年代开始,每年都以15%以上的速度增长。国际植物药市场份额每年已达270亿美元。 标准化是我国传统医药进入国际市场的突破口,是兽用中草药现代化发展的必要条件。我国物种丰富,药物种植面积大,品种齐全,但所占市场份额还不足5%。其中最大的制约因素是我国中药标准化程度低,生产工艺较落后,缺乏科学规范的质量标准和质量控制手段。这是中兽药界的难点问题,同时也是制约中兽药走出国门,走向世界的/瓶颈0。因此,必须要建立健全中药材的质量规范标准,在现行的《中华人民共和国兽药典》所列的药材的基础上进一步完善。 2国内外科技发展水平比较分析 国外由于受到中药资源的限制,中兽药的发展起步较晚,主要是通过微生物发酵制备多糖、寡糖。多糖能提高动 收稿日期:2004-12-27 项目来源:/十五0国家攻关计划资助 作者简介:梁剑平(1963-),男,研究员,博士,主要从事兽药研究。物免疫力,其中消化道免疫占动物免疫系统的很大部分,因而能对消化道起到很好的保护作用,另外,肠道黏膜内的IgA 抗体还可通过其自身产生的抗体细胞毒素直接杀灭细菌。寡糖为1~9个单糖所组成,由于其能促进猪、鸡肠道内有益菌群优势形成,其中主要是拟杆菌、双歧杆菌及乳酸杆菌等,能有效地降低病原菌的致病力,结合吸收外源性病原菌及调节机体免疫系统,提高动物免疫力等功能,成为研究的热点。在国外寡糖是最有希望替代化药与抗生素的天然物质。其研究主要通过完成了菌种鉴定与系统发育分析、酶的生产条件、酶的纯化与特性、酶基因的克隆表达与序列分析、酶的高产菌株选育、寡糖的组分、结构及生理功能分析,以及酶和寡糖的工业生产试验等涉及多学科的系统工程,结合极端菌及极端酶的特性,以新的方法解决了酶的碱、盐、热稳定性、酶活力、寡糖生成率等,实现了极端B-聚糖酶以及寡糖的生产及应用。国内在多糖、寡糖研究方面也进行了诸多的研究,已通过对酵母菌培养,成功的生产出甘露寡糖。除多糖、寡糖研究外,中兽药主要是围绕我国丰富的中药资源进行了中药的方剂学,有效单体的提取、合成及结构修饰,与中兽药的稳定性方面进行了一系列的研究,因为在新兽药创制中,重要的环节是要保证有高质量的、稳定可控的中药材原料。 2.1中药资源开发取得新的进展 我国现有的中药资源种类已达12807种,其中药用植物11146种,药用动物1581种,药用矿物80种。仅对320种常用植物类药材的统计,总蕴藏量就达850万吨。全国药材种植面积超过580万亩,药材生产基地600多个,常年栽培的药材达200余种。野生变家种取得了积极成果,许多已成为主流商品。对珍稀濒危野生动植物品种开展了人工种植、养殖和人工替代品研究,对进口药材的引种也取得了可喜的成就,形成了一定的生产能力,药材进口的数量明显减少。云南西双版纳分布的植物锡生藤已合成新药/傣肌松0,与进口的/氯化箭毒碱0有相似的肌肉松弛作用。从进口药材的国产近缘植物中寻找代用品的实例还有很多,如以国产安息香代进口安息香;以国产马钱子代进口马钱子;以西藏胡黄连代进口胡黄连;以白木香代沉香等等,应用有效成分为指标,从近缘科、属中扩大药源,这方面中国已做了大量比较系统和深入的研究工作,已进行研究的主要种类有小檗属、薯蓣属、鼠尾草属、葛属、黄连属、大黄属、甘草属、石蒜属、丹参属、金银花属、莨菪类、蒿类、柴胡属、淫羊藿属、苦参属等植物。 2.2科研开发形成新的局面 2.2.1提取和合成制药在提取和合成制药的研究及生产 21

基因工程的现状及发展

基因工程的现状及发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因工程的现状及发展 研究背景: 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 目的意义: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型。 内容摘要: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 成果展示:

转基因研究的现状及发展

转基因研究的现状及发展 转基因作物是当今世界各国现代生物技术产业研究的热点,中国的转基因生物技术发展一、我国转基因作物的发展现状迅速,由于科学界对转基因作物对人类及生态环世界上最早的转基因作物诞生于年,是一境利与弊的争论,措政府应制定相应的政策、施对到种含有抗生素药类抗体的烟草。世纪年代,其进行安全管理。本文论述了转基因作物在国际农业生物技术已逐渐成为各国现代生物技术产业研国内的发展现状,分析了转基因作物对人类及生态环境的利与弊以及关于我国转基因作物安全管究的热点。 转基因技术的应用 1.在畜牧兽医中的应用 应用于动物抗病育种转基因技术可以用于动物抗病育种,通过克隆特定基因组中的某些编码片段,对之加以一定形式的修饰以后转入畜禽基因组,如果转基因在宿主基因组能得以表达,那么畜禽对该种病毒的感染应具有一定的抵抗能力,或者应能够减轻该种病毒侵染时对机体带来的危害。(其用于遗传育种,不仅可以加速改良的进程,使选择的效率提高,改良的机会增多,并且不会受到有性繁殖的限制。)例如Clements等将绵羊髓鞘脱落病毒的表壳蛋白基因转入绵羊,获得的转基因动物抗病力明显提高;丘才良把一种寒带比目鱼抗冻基因成功地转移到大西洋鲑中,为提高某些鱼类的抗寒能力做了积极的尝试。 2.在医学领域中的应用 用于生产药用蛋白用转基因动物的乳腺生产重组蛋白(乳腺生物反应器)可能是转基因动物的最大应用,这也是世界范围内转基因研究的热点之一。Swamdom (1992)用β-球蛋白的4个核酸酶I的高敏位点与人的两个基因相连,融合基因产生的转基因猪与鼠的原型相似。目前,把转基因动物当作生物反应器来生产药用蛋白已经受到国际社会的极大关注,不仅各国政府投资,一些私人集团也不惜投入大量资金加以研究和开发。 3.转基因的应用存在的问题及展望 (1)转基因表达水平低,许多转基因的表达强烈地位受着其宿主染色体上整合位点的影响,往往出现异位表达和个体发育不适宜阶段表达,影响转基因表达能力或基因表达的组织特异性,从而使大部分转基因表达水平极低,极少部分基因表达水平过高。 (2)难以控制转基因在宿主基因组中的行为,转基因随机整合于动物的基因组中,可能会引起宿生细胞染色体的插入突变,还会造成插入位点的基因片段丢失,插入位点周围序列的倍增及基因的转移,也可能激活正常状态下处于关闭状态的基因。 (3)不了解哪些基因控制多数生理过程,不了解基因表达的发育控制和组织特异性控制的机制。 (4)制作转基因动物的效率低,这是目前几乎所有从事转基因动物研究的实验室都面临的问题,也是制约着这项技术广泛应用的关键。 (5)对传统伦理是一种挑战,对人类的生存有一定的负面作用等。 当然,我们不能因为这些缺点的存在就否定转基因技术的研究价值。因为它作为一种新兴的生物技术,配合其他相关的生物技术将具有广阔的应用前景。随着这一技术日趋成熟,许多问题有望逐步得到解决。

重油加氢技术特点和发展趋势

113重油加氢技术特点和发展趋势 卜蔚达 (中国石油大学(北京)化学科学与工程学院,北京 102249) 摘要:本文针对重油加氢技术的重要性和应用情况,从工艺和催化剂角度分别介绍了固定床、悬浮 床、沸腾床、移动床加氢技术的特点和发展现状,通过对四个工艺优缺点的分析提出了重油加氢的研 究方向和发展趋势。 关键词:重油加氢;固定床;悬浮床;沸腾床 引言 随着原油的变重、变稠以及轻质油品的需求量不断增大,重油加工成为现代炼厂面临的主要问题。目前重油加工主要有延迟焦化、减粘裂化、重油催化裂化和重油加氢4个工艺过程[1]。延迟焦化和减粘裂化属于热加工过程,其特点是可以处理各种渣油,但是液体产物的质量差、焦炭产率高。重油催化裂化对原料的要求较高,无法处理劣质的渣油。重油加氢一方面可以处理高硫、高残炭、高金属的劣质渣油,另一方面可以提高液收率和液体产物的质量。同时可以和其它工艺进行组合,特别是重油加氢和催化裂化组合工艺。我国在重油加氢方面和国外存在着较大的差距,但是随着国内环保机制的日益严格化,对油品的质量提出了更高的要求,提高重油加氢技术显得尤为迫切。 1 重油加氢技术 1.1 固定床加氢技术 固定床渣油加氢技术的应用最为广泛,工业化过程也最多。我国引进和自行设计开发的渣油固定床加氢工艺如下[2,3]: 1.1.1 VRDS工艺 我国第一套渣油固定床加氢工艺,于20世纪90年代初由齐鲁石油化工公司从美国Chevoron公司引进。最初的设计以孤岛减压渣油为原料,以生产低硫燃料油为目的,后来发展成VRDS-RFCC组合工艺,即减压渣油经固定床加氢处理后给重油催化裂化提供原料。采用组合工艺后,其渣油能够全部转化,加工深度高,轻质油收率高。 1.1.2 ARDS工艺 我国从UOP公司引进的中东含硫原油常压渣油加氢脱硫装置。对常压渣油进行加氢脱硫、脱氮、脱金属、脱残炭等使加氢后的重馏分可在催化裂化等装置中进一步轻质化。 1.1.3 S-RHT工艺 茂名石油化工公司渣油固定床加氢脱硫装置是我国自行设计开发的固定床加氢处理技术,洛阳石油化工工程公司承担此项目的工程开发、工程设计,设计原料为中东含硫原油的减压渣油及部分减压蜡油混合料,主要产品为少量石脑油、柴油和大量的脱硫改质催化裂化进料。 固定床重油加氢的优点是工艺成熟,产品收率高,精致深度高,脱硫率可以达到90%[4]以上,工艺和设备结构简单,易操作。缺点是无法及时更新催化剂,在处理高金属和高沥青质、高胶质含量的原料时,催化剂减活和结焦较快,床层也易被焦炭和金属有机物堵塞。只能加工金属<200μg/g,残炭<15%的渣油[4],因此对原料的适应性较差。固定床反应器是非等温反应器,对于放热的加氢反应容易产生飞温现象。另外,固定床加氢工艺单程转化率低(20%-50%)[4],需要有较大的重油催化裂化、柴油加氢精制装置进行配套,产品中柴汽比较低。1.2 悬浮床加氢技术 我国悬浮床加氢工艺还处于研究和开发阶段,目前主要有两种工艺过程,即[1]。 1.2.1 FRIPP的悬浮床工艺 该工艺采用空筒式反应器和高活性水溶性多金属分散催化剂、现场乳化分散、硫化剂直接加入到原料中,在加热过程中催化剂进行预硫化的方式操作,催化剂具有较强的抑焦功能,可实现长周期连续运转。催化剂水溶液被乳化分散在原料油中直接通过反应器,流程简单、操作方便,克服了早期的悬浮床工艺尾油中含有大量固体颗粒从而难以 2010年第3期2010年3月 化学工程与装备 Chemical Engineering & Equipment

我国转基因食品的现状

我国转基因食品的现状 自1994年世界首例转基因农作物西红柿(美国)种植以来,转基因农作物相继在一些国家得到了很大的发展。国际农业生物技术应用服务组织(ISAAA)的资料显示,1996年全球共有6个国家种植转基因农作物,包括美国、阿根廷、加拿大、中国、澳大利亚和墨西哥;种植的农作物种类有大豆、玉米、烟草、棉花、油菜籽、西红柿和土豆;种植总面积170万公顷(表1)。与1996年相比,2008年全球转基因农作物商业化程度进一步加深。转基因食品种植国由6个增加到25个,包括美国、阿根廷、巴西、加拿大、印度、中国、巴拉圭、南非、乌拉圭、菲律宾、澳大利亚、西班牙、墨西哥、哥伦比亚、智利、洪都拉斯、捷克、葡萄牙、德国、斯洛伐克、罗马尼亚、波兰、布基纳法索、埃及、玻利维亚;种植农作物的种类由7个扩充到13个,分别为大豆、玉米、棉花、油菜籽、南瓜、木瓜、木薯、康乃馨、土豆、白杨、矮牵牛、甜椒和甜菜;种植总面积由170万公顷上升到1.25亿公顷。在这两项资料中,美国转基因农作物种植总面积均居世界第一位,特别是2008年,其种植总面积高达6250万公顷,转基因农作物种类占去2008年种类总和的一半以上(大豆、玉米、棉花、油菜籽、南瓜、木瓜、土豆、木薯和甜菜,表1)。 而我国2008年以种植总面积380万公顷位居世界第六

位,转基因农作物的种类包括棉花、烟草、杨树、矮牵牛、木瓜、甜椒和大豆7项(表1)。除此之外,我国目前处于田间实验种植阶段的农作物有水稻、玉米、小麦、棉花、马铃薯、番茄、大豆、甘蓝、花生、甜瓜、番木瓜、甜椒、辣椒、油菜和烟草等。其中值得一提的是,我国农业部已经授予两种转基因抗虫水稻“华恢1号”和“Bt汕优63”以及转基因植酸酶玉米的生物安全证书,经品种审定并获得种子生产许可证和种子经营许可证后将进入商业化生产,但由于一时间反对声颇多暂时搁浅。在我国转基因食品商业化过程中,除自力更生性的研究开发、种植一些作物品种外,我国每年还要从美国进口一些转基因食品(主要包括玉米、大豆和油菜籽)以满足国内市场的需求,其中玉米主要用于饲料的加工、生产,大豆和油菜籽主要用于加工食用油。

尘肺病临床治疗研究概况

实、叙述的写作手法来记录检查的情况,切忌在笔录中作评论、推断。现场笔录应该是执法人员在现场所看、所听的实录,而不应是询问笔录。2.2 贴近案情 可以采取“由大到小”、“由粗到细”的方法,首先简要描述大环境、方位地点,再收缩到具体需要重点检查的位置;从物品总体摆放、堆码再聚焦到具体商品数量,包装标签及现场痕迹等等。同时,对现场从业人员在从事何种活动,也要作好记录。对与具体案情关联不大的内容,可以简写,而对于与案情关联紧密的商品、标识、人员作业情况、工具、原料、广告、检查过程,甚至能证明案件事实的地面污水痕迹、废弃损毁物品的状况都应详记,并尽可能地加以固定、提取。2.3 抓住重点 现场检查中,往往可以意外地发现一些对定案十分关键的证据,要注意策略,可以采取以虚掩实、迂回反抄的方法将这些证据予以固定、提取。3 制作要点 3.1 当事人在被检查场所开展经营活动的由来或 当事人与被检查场所的关系。3.2 场所的概况。情况复杂的场所应交代方位,必 要时绘图说明。 3.3 与违法行为有关的物品、工具、设施的名称、规格、数量、状况、摆放位置、使用情况及相关的书证、物证。3.4 与违法行为有关的人员的活动情况,包括当事人及其职工、帮工以及顾问、消费者的情况。3.5 检查人员检查的活动及结果。3.6 当事人在检查活动中的异常表现及其行为。3.7 交代现场询问当事人、旁证人员,现场摄影、录像、绘图,当事人主动提交的证据的情况。3.8 交代抽样取证、强制措施的情况。情况复杂、 规模较大的场所,可以按照分工,由检查人员按照各自的检查任务,分别制作笔录,但最后应制作汇总笔录,总结整个检查情况。3.9 《现场检查笔录》应在现场检查时当场制作,不能今天检查,第二天才完成笔录。3.10 笔录写好后要交给当事人阅读或向其宣读,并由当事人签章(逐页)。当事人拒绝签名或不能签名的应当注明原因,并且由2名以上执法人员在笔录上签字。有其他人在场时,可由其他人签名。法律、法规和规章对现场检查笔录的制作形式另有规定的,从其规定。 ?综 述? 尘肺病临床治疗研究概况 崔 萍,侯 强 (山东省职业卫生与职业病防治研究院,山东 济南 250002) [收稿日期]2007204230 山东省医药卫生计划科技项目 项目号:(2003-133) [摘要] 我国尘肺病是危害人数最多的职业病,发病率约占所有职业病的80%,建国以来,政府对尘肺病的防治一直十分重视,开展了大量的研究工作,作者回顾了近50年尘肺病临床治疗的几个主要阶段,从基础治疗(营养、运动)、西药、中药、肺灌洗几个方面,分别概述了与其相关的药物成分、作用机制、临床研究和疗效。提倡目前依病人的病情进行肺灌洗、抗纤维化、减轻非特异性炎性反应、调节免疫功能、抗脂质过氧化、对症支持等综合治疗措施。提出霜桑叶有望成为疗效高、无毒副作用、价格低廉、依从性好治疗尘肺病的新药。 [关键词] 尘肺病;治疗方法;药物疗法;中医中药;肺灌洗 [中图分类号]R13512 [文献标识码]A [文章编号]1007-6131(2007)0320226204 尘肺病是由于在职业活动中长期吸入生产性粉尘并在肺内潴留而引起的以肺组织弥漫性纤维化为 主的全身性疾病。尘肺病被称为中国头号职业病,卫生部称截至2005年,中国尘肺累积病例607570

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。?在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。?随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。? 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。?目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

含油污泥的处理现状及展望

含油污泥的处理现状和展望 摘要 含油污泥会对环境造成二次污染,必须进行无害化处理和资源化利用。针对含油污泥处理现状,分析了国内外处理含油污泥方法上存在的问题,综述了国内外含油污泥的处理技术现状、及含油污泥处理技术的研究进展。资源化利用将成为含油污泥处理技术的发展趋势。关键词:含油污泥;资源化;除油;综述 Abstract: Oily sludge may do harm to the production and the environment and must be treated harmlessly and be utilized comprehensively.n view of the present situation of oily sludge treatment, the problems existing in oily sludge treatment at home and abroad are analyzed.This article summarized the present situation about domestic and foreign oily sludge treatment, and forecast the development direction about technology of oily sludge treatment. Resources utilization of oily sludge will be the dominant technique for oily sludge treatment in the future. Key Words: oily sludge、comprehensive utilization、oil removal、detoxification 1含油污泥的危害和来源 含油污泥是石油生产的伴随品,是石油生产的主要污染源之一,也是影响油田及周边环境质量的一大难题。含油污泥中大量的有机物和丰富的氮、磷、硫等营养物质,不加稳定处理的污泥任意排入水体,污泥中的有机物和氨氮将大量消耗水体中的氧,导致水体水质恶化,严重影响水生物的生存,营养物质又会使水体富营养化,在沿海海域造成赤潮和绿潮。除此,不同成分的含油污泥对环境和人类造成的危害是不同的。 1.1含油污泥的危害 油田含油污泥的组成成份极其复杂,是一种极其稳定的悬浮乳状液体系,含有大量老化原油、蜡质、沥青质、胶体、固体悬浮物、细菌、盐类、酸性气体、腐蚀产物等,还包括生产过程中投加的大量凝聚剂、缓蚀剂、阻垢剂、杀菌剂等水处理剂[1]。并因其体积庞大,排放后不但占用大量耕地,而且对周围土壤、水体、空气都将造成污染。我国现已对含油污泥的排放加强了重视[2],目前明确规定,肆意排放未经处理的含油污泥将处以1 000元/ m3·d 的罚款。这样虽然限制了部分污染物的排放,但仍然不能从根本上解决问题。所以含油污泥

提高采收率研究的现状及近期发展方向

?油气开发总论? 提高采收率研究的现状及近期发展方向 杨普华 (中国石油天然气集团公司石油勘探开发科学研究院) 摘要 介绍了国外提高油气采收率(EOR )方法的应用现状、应用规模、增油量及其在总产量中的比例;介绍了美国能源部支持的三次采油基础研究情况;分析了EOR 方法与油价的关系;分析了我国在聚合物驱、复合驱、注气、微生物采油等方面的技术状况和应用规模,对近期的发展思路提出了建议。 主题词 提高采收率 方法 研究 分析 1 国外提高采收率技术现状 据1998年美国《油气杂志》 (O il &Gas J ou rnal A p r .20,1998)资料,在1998年初,全世界来自提高采收率(EOR )和重油项目的石油产量大约为213×106b d ,比1996年初的212×106b d 稍有增长,这个数量相当于世界石油产量的315%。美国EOR 产量比两年前增加5%,达到760000b d ,为美国石油年产量的12%。其他各国的EOR 和重油产量为:加拿大,400000b d ;中国,280000b d ;前苏联,200000b d ;其他国家,700000b d 。 111 热采 热采(蒸汽,地下燃烧)仍是最主要的方法。美国EOR 产量中约60%来自热采,其他绝大多数来自注气(轻烃、二氧化碳和氮气)。化学驱主要在我国得到发展,其他国家基本处于停滞状态。热采,尽管实施的项目数有所减少,但自1986年以来产量一直保持稳定,在EOR 产量中始终保持在60%以上。 图1 美国EOR 产量 112 注二氧化碳 近年来,在低油价下,各种提高采收率方 法实施的项目都在减少,只有二氧化碳混相驱 项目一直在稳定增加(见图1)。一方面是由于 美国有十分丰富的天然二氧化碳气源,并在高 油价下已修好了三条输送二氧化碳的管道,可 以把二氧化碳从产地直接输送到二氧化碳的 用地T exas 州;另一方面,二氧化碳驱的技术 得到很快的发展,其成本大幅下降,使一些较 小的项目也有利可图,从而促进了二氧化碳驱 收稿日期:1999207201 改回日期:1999208223 杨普华,教授级高工,博导,享受政府特殊津贴,长期从事油层物理和提高采收率科研工作,石油勘探开发科学研究院副总工程师兼采收率研究所所长。1第6卷 第4期 油气采收率技术

转基因食品的利与弊

转基因食品的利与弊 有利的方面 1 、过去改变植物的品种主要是通过育种,这种传统的育种方式需要的时间长,杂交出的品种不易控制,目的性差,其后代可能高产但不抗病,也可能抗病但不高产,也许是高产但品质差,所以必需一次一次地进行选育。而转基因技术就不同了,可以选择任何1个目的基因转进去,就可得到1个相应的新品种,不精品文档,你值得期待 用再花那么长的时间筛选了。 2 、传统的育种只能是水稻对水稻,玉米对玉米,进行杂交,不能水稻对玉米,水稻更不能和细菌进行杂交。而转基因技术不但可以把不同植物的基因进行组合,而且还可以把动物的基因,甚至人的基因组合到植物里去。比如:科学家看中了一种北极熊的基因,认为它有抵抗冷冻的作用,于是将其分离取出,再植入番茄之中,培育出耐寒番茄。 ●通过转基因技术可培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等特性的作物新品种,以减少对农药化肥和水的依赖,降低农业成本,大幅度地提高单位面积的产量,改善食品的质量,缓解世界粮食短缺的矛盾。例如:马铃薯植人天蚕素的基因后,抗清枯病、软腐病的能力大大提高,过去这两种病每年会带来近3成的减产,一种抗科罗拉多马铃薯甲虫的马铃薯,可使美国每年少用37万kg的杀虫剂;阿根廷播种转基因豆种后,大豆抗病和抗杂草能力大为增加,使用农药和除草剂的量减少,生产成本比原来下降了15%。 ●利用转基因技术生产有利于健康和抗疾病的食品。杜邦和孟山都公司即将推出多种可榨取有益心脏的食用油的大豆。两大公司还将联手推出味道更鲜美且更容易消化的强化大豆新品种。艾尔姆公司与其他公司合作,正在研究高含量抗癌物质的西红柿,以及可用于生产血红蛋白的玉米和大豆。此外,含疫苗的香蕉和马铃薯也正在加紧研究中;日本科学家利用转基因技术成功培育出可减少血清胆固醇含量、防止动脉硬化的水稻新品种;欧洲科学家新培育出了米粒中富

酶学研究中的诺贝尔奖

酶学研究中的诺贝尔奖 标签:教育酶学研究诺贝尔奖分类:生物学史与学家 酶学研究中的诺贝尔奖 学习感悟:科学家对酶的研究也经历了很长时间,教材中也有简单的酶的发现过程,学习过程中也涉及到很多酶,今天看到生物学通报中完整的诺贝尔奖中对酶的研究达到了10次,现摘录如下以供学习。 酶在生命体的新陈代谢过程中占有重要地位,几乎所有细胞的生命活动都需要酶的参与。19世纪30年代德国化学家Liebig和他的同事Wohler从苦杏仁汁中发现了一种催化物质,后被命名为苦杏仁酶(emulsion),这是最早发现的酶之一。随后又有许多酶被相继发现,酶学研究也进入飞速发展时期。 从1907年比希纳获得酶学研究史上的首个诺贝尔奖开始,在酶学领域中先后有多次诺贝尔奖获奖记录。 1.1907年诺贝尔化学奖获奖者爱德华·比希纳(德国)获奖理由发现无细胞发酵现象 20世纪初德国科学家爱德华·比希纳利用细沙和酵母菌作为实验材料,混合并加以研磨,随后加上矽藻土,用水力压榨机制备酵母榨出液,利用这种液体为浓蔗糖溶液防腐,经过反复实验发现酵母榨出液引起了蔗糖的发酵。但此榨出液中没有活的酵母细胞。随后,为确保实验结果的准确性,他又利用乙醇和丙酮杀死活的酵母细胞,仍然引起了蔗糖的发酵。1897年他发表题为《无细胞的发酵》论文,引起了学术界的轰动。论文否定了发酵作用是“生命现象”的概念,建立了微生物的生命活动和酶化学之间的联系。 爱德华·比希纳的研究推动了生物化学、微生物学、发酵生理学和酶化学的发展,并获得了1907年的诺贝尔化学奖,这在酶学研究史上是一次巨大的飞跃,开创了微生物生化研究的新篇章。 2.1929年诺贝尔化学奖获奖者亚瑟·哈登(英国)和汉斯.冯·奥伊勒-凯尔平(瑞典)获奖理由阐述了糖发酵过程中酶的作用 亚瑟·哈登(Harden Sir Arthur)是英国生物化学家。1904年他将酵母提取物放入半渗透薄膜袋内进行渗析时发现,酵母酶的活性消失,它不再使糖发酵。然而,如果将渗析至袋外的水加入袋内的物料中,则酵母酶活性又会恢复。同时观察到渗析开始时,酵母提取物迅速将葡萄糖分解并产生二氧化碳,但是随着时间的推移,其活性逐渐降低。他推测酵母酶是由2部分组成的,一部分是小分子,另一部分则是大分子。两者单独作用都不会使糖发酵。只有共同作用才有发酵的效果。如果将袋内的物料煮沸,则活性消失,即使袋内加入了袋外的水也是如此。实验证明大分子是蛋白质,小分子经受住了煮沸,因而多半不是蛋白质。这种小分子是“辅酶”发现的首个实例,它是一种非蛋白质结构的小分子,这种小分子对于酶的作用是不可或缺的。 汉斯.冯·奥伊勒一凯尔平是杰出的瑞典生物化学家。他在访问比希纳的实验室后对发酵产生了浓厚兴趣。由于哈登发现了发酵过程需要酶和辅酶共同发挥作用,因此经过10年潜心

转基因动物及其在医学中的应用

转基因动物及其在医学中的应用 转基因动物是指通过加减特定的DNA片段而改变了基因构成和性状 的动物,也可以认为是指体内基因组中稳定地整合有外源基因的动物。该项技术始于80年代初,很快便成为研究动物基因表达特性及其功能的重要手段,在基因表达的调控机制等方面的基础理论研究、家畜家禽的遗传性状改造、培育能为人类提供器官移植材料的家畜、培育人类疾病的模型动物、作为生物反应器主产工业和医学所需要的珍贵生物活性蛋白等方面被广泛应用。本文主要对其在人类医学方面的应用现状及前景作以论述。 1转基因动物的制备技术 用以培育转基因动物的技术叫做转基因技术或基因转移。其总体过程是:首先从某种动物分离目的基因或人工构建该目的基因,把该目的基因在体外进行重组和扩增,然后再把加工好的目的基因设法导入另一个同种或异种动物受精卵的原核内(或细胞质内),使其稳定地整合到受体细胞的基因组中,最后使该受精卵发育成携带外源目的基因的个体,即产生了转基因动物。目前常用的转基因技术主要有: 1)原核内显微注射法是将在体外构建的目的基因,在显微操作仪下用极细的微吸管注射到处于原核时期的受精卵的原核中,让这种外源基因通过某种方式整合到受体细胞的基因组中去,以实现转基因的目的。 2)转染技术主要以RNA病毒或DNA病毒为载体,在体外将目的基因或连同启动子等序列一同重组到病毒的核酸载体上。再让该病毒感染受精卵或胚胎于细胞,利用载体病毒具有主动整合到受体细胞基因组中去的特性,让其连同所携带的目的基因等也一同整合到受体细胞的基因组上去。 90年代后又出现了两种较新的方法,即基因剔除和基因楔入技术。 3)细胞载体技术主要使用胚胎干细胞(ES)作为操作对象。胚胎干细胞是从哺乳动物早期胚胎的内细胞团中分离得到的一种二倍体细胞,可在体外培养并保持全能分化的潜能,一旦回复到适当的环境条件下即可形成胚系集落。可以用转基因技术将外源目的基因转移到胚胎干细胞中,通过同源重组或转换的方法使外源基因整合到胚胎干细胞的基因组中。而且,还可以根据由于外源基因的插入所产生的基因表达方面的改变,来对胚胎干细胞进行预筛选,从而大大提高转基因的成功率。被转基因后的胚胎干细胞经鉴定后可被移植到正常发育的囊胚中,再将囊胚导入假孕的代理母亲子宫内发育而产生出嵌合体动物,然后与正常的雄性动物交配即可获得生殖系携带外源基因的纯合转基因动物。 目前还有用快速分裂的哺乳动物乳腺肌上皮细胞或小鼠精子作为细胞载体。 2转基因动物在医学中的应用

动物转基因技术的研究现状与应用

动物转基因技术的研究现状与应用 课程:基因工程姓名:迪丽努尔·尼扎木墩学号:2013081605 摘要转基因动物就是指通过人工的方法将外源基因导人动物染色体基 因组,使之稳定表达并能遗传给后代的一类动物。转基因技术的一般方法有原核期胚胎的显微注射法(Microjection)、逆转录病毒载体法、精子载体法、体细胞核移植技术、胚胎干细胞介导的基因转移,这几种方法各有其公优缺点,在动物转基因上均有不同的应用,目前在动物抗病育种、建立诊断和治疗人类疾病的动物模型、利用转基因动物生产药用蛋白质等方面应用越来越广泛。 关键词转基因技术方法研究现状 转基因动物(transgenicanimal)指通过基因工程技术将目的基因导入生殖细胞、早期胚胎干细胞和早期胚胎,并整合到受体细胞的基因组中,它们经过各种发育途径形成所有细胞都包含目的基因的个体,称转基因动物(也称个体表达系统)。导入的基因称为转入基因(transgene),而整个技术则称为转基因技术(transgenictechnology或transgenesis)[1]。现代转基因动物(tx-ansgenicanimal)研究始于20世纪80年代以后,1980年,Gordon等首次获得转基因小鼠目前除转基因小鼠外,转基因兔、绵羊、猪、牛及转基因山羊、转基因鸡、转基因大鼠、转基因猴等陆续育成[2,3]。本文将从转基因动物的原理、主要方法和应用等方面作一综述。 1转基因技术的一般方法

能否将在细胞中进行的遗传修饰过渡到整体以及实现向后代的传递,主要取决于所进行修饰的细胞类型和与其相应的育种技术。迄今为止,能够被有效地用来进行转基因动物研究的途径主要有以下几种[4]: 1.1原核期胚胎的显微注射法(Mi-crojection) 该法由美国人Gordon发明,其主要步骤包括:(1)分离、克隆和重组外源基因,构建载体;(2)将融合基因注入受精卵的原核(一般是雄原核);(3)将微注射后的受精卵移入假孕母畜的输卵管继续发育。Palmiter等(1982)将带有小鼠金属硫蛋白I基因启动子的大鼠生长激素基因导入小鼠的受精卵,获得“巨型小鼠”,在生命科学领域引起了不小的轰动。按照转基因小鼠的思路,转基因兔、转基因绵羊、转基因猪、转基因山羊都相继成功。显微注射方法相对简单,整合率高,是目前应用比较广泛,效果比较稳定的制作转基因动物的方法之一。但该方法的整合位点随机,整合一般是多拷贝首尾串联相接,不利于研究基因的结构、功能及表达调控。 1.2逆转录病毒载体法 1.2.1逆转录病毒载体感染发育早期的动物胚胎:该方法主要利用逆转录病毒的长末端重复序列(longtermi-nalrepeats,LTRs)区域具有转录启动子活性以及逆转录病毒可以直接整合到宿主染色体上的特点,将外源基因连接到LTRs下部,构建重组载体,直接感染受精卵或微注入囊胚腔中。达到外源基因在宿主染色体上的整合、表达。Salter和Haskell等分别用此方法作出了转基因鸡和牛[5]。 1.2.2逆转录病毒载体注射MⅡ期的卵母细胞:Anthony等[6](1998)对逆转录病毒载体感染发育早期的动物胚胎的方法进行了改进。他认为逆转录病毒载体介导的基因整合的关键在于细胞分裂时出现核膜分解。有丝分裂时核膜降解的时间很短。细胞分裂完成后,核膜很快重新形成。而处于减数分裂中期(MⅡ)的卵母

相关文档