文档库 最新最全的文档下载
当前位置:文档库 › 基于煤岩学的燃烧特征值预测

基于煤岩学的燃烧特征值预测

基于煤岩学的燃烧特征值预测
基于煤岩学的燃烧特征值预测

基于煤岩学指标的燃烧特征值预测

刘明锐 陈亚飞 姜英

(煤炭科学研究总院,北京煤化工研究分院,北京100013)

摘 要:根据前人的研究成果,本文提出了根据反射率和显微组分含量来预测煤

燃烧特征值的方程,并对方程中各个参数的权重进行了分析。该研究可深入了解显微组分以及反射率对燃烧特性的影响,并为煤燃烧特性的预判提供了理论依据。

关键词:反射率、显微组分、煤燃烧特征值、预测方程、权重 0 前言

煤是一种特殊的沉积岩,因成煤原始物质的不同和条件不同,呈现出复杂性和多样性,这种不均一性对煤化学性质和加工工艺特性均有很大的影响,运用煤岩学的方法评价煤的燃烧特性是十分必要的。前人对于不同煤岩组分的工艺特性的研究已经开展了很多年,取得了一定的成果,最主要的结论可以概述为镜质组的燃烧性能优于惰质组,镜质组的起燃温度低,燃尽温度也低,并且具有较高的最大失重速率[1] [2]。应用显微组分含量和反射率的大小来预测煤的燃烧特性的研究能够深入了解显微组分以及反射率对燃烧特性的影响,并为燃烧特性的预判提供理论依据。 1 实验部分

本文采用美国TA 公司所生产的Q500热重分析仪,在50℃/min 的升温速率,100ml/min 的空气流量条件下,对十三种不同变质程度的煤样进行了燃烧试验,各个煤样的煤岩学参数和燃烧特征点见表1:

表1煤样的煤岩学参数和燃烧特征点

镜质组反

射率(%)

max R

镜质组(%)

V X

惰质组(%)

I X

矿物质(%)

M X

着火温度(℃) i t

燃尽温

度(℃)

h t 最大失

重速率

(%/℃)

max r 白音华褐煤 0.37 79.60 9.20 11.20 304.38 450.08 0.52 印尼褐煤 0.40 81.47 12.23 6.30 311.30 404.10 0.80 补连塔长焰煤 0.54 72.40 26.80 0.80 396.94 537.63 0.65 兖州气煤

0.63

72.66

20.84

6.50

428.54

605.94

0.50

铁法长焰煤 0.65 64.80 31.20 4.00 387.10 545.53 0.45 东庞气肥煤 0.78 51.60 31.10 17.30 442.50 623.91 0.44 大同弱黏煤 0.80 35.10 59.10 5.80 467.01 625.21 0.49 乌海1/3焦 1.00 52.90 29.20 17.90 430.08 644.93 0.37 段王贫煤 1.70 41.40 37.90 20.70 516.13 786.99 0.33 葛泉贫煤 1.84 60.00 22.50 17.50 479.03 667.55 0.48 显德旺贫煤 2.12 56.30 20.80 22.90 539.42 821.90 0.30 潞安屯留无烟煤 2.50 59.32 38.32 2.36 513.00 748.00 0.38 章村无烟煤

4.93

43.67

30.79

25.54

587.32

778.23

0.34

2 预测模型的提出

本文希望在前人的研究结果基础上,提出一个基于煤岩学的燃烧特性研究方法的构想,即煤的燃烧特性主要取决于镜质组的含量和变质程度、惰质组的含量、矿物质的含量。其中惰质组和矿物质的性质随着变质程度的增加变化不大,但含量大小对燃烧特性贡献很大,而镜质组的变质程度和含量大小对燃烧特性都有很大影响。

本文提出的着火温度i T 、最大失重速率max r 、燃尽温度h T 的表达式如下:

c X X R X T M I V +++=32max 01i ααα (1) c X X R X R M I V +++=32max 01max βββ (2) c X X R X T M I V +++=32max 01h γγγ (3)

上述3个表达式中,α、β、γ分别为各个表达式的系数,c 为常数项 3 预测模型及其预测效果

利用规划求解的方法对上述公式进行求解,推导出的方程见表2,规划求解的确定系数较高,方程的预测效果见图1。

表2基于煤岩学的燃烧特性回归方程和确定系数 回归方程

确定系数 47.24314.270.216.1max i +++=M I V X X R X T R=0.924 29.7998.52-88.2.241-1000max max +-=?M I V X X R X r

R=0.884

17.31089.436.393.1max h +++=M I V X X R X T R=0.919

图1基于煤岩学的燃烧特性的回归结果与实际测定结果比较

对于煤的燃烧特性的回归方程大部分数据较为吻合,部分预测值与测定值有一定差异,着火温度和燃尽温度最高相差70℃,最大失重速率也相差0.15%/℃。由于相同煤种的相同显微组分的燃烧特性也有一定的差异,不同煤种的相同显微组分的燃烧特性差异则更大,所以预测值与实际值有一定的偏差。 4 结果与讨论

方程的第一项和第二项的权重系数有一定差异,但由于第一项不仅仅包含镜质组含量,还与反射率相关,所以在R 0max 为不同值时,镜质组和惰质组对着火温度的影响程度是不同的。

对于着火温度来说,当R 0max <2.5%时,镜质组含量增加,惰质组也随之减少,而惰质组含量对于着火的贡献大于镜质组含量对着火的贡献,因此着火温度下降。当R 0max >2.5%时,镜质组含量对于着火温度的贡献大于惰质组对于着火温度的贡献,当镜质组含量增加时,虽然惰质组含量减少,但是整体来说着火温度是增加的。

最 大 失 重 速 率 r m a x 实 测 值

最 大 失 重 速 率 r max

预 测 值

着 火 温 度 T i 实 测 值

着 火 温 度 Ti 预 测 值

燃 尽 温 度 T h 实 测 值

燃 尽 温 度 T h 预 测 值

对于最大失重速率来说,在R0

<2.5%时,随着镜质组含量增加,虽然镜质

max

组那一项使最大失重速率下降,但同时惰质组含量和矿物质含量也相应减小,而惰质组和矿物质的权重系数要大于镜质组,贡献较小,最后使最大失重速率增加。

>2.5%时,随着镜质组含量的增加,最大失重速率减少,主要是由于高变当R0

max

质程度阶段,镜质组和惰质组的差异不大的原因。另外,可以看到,当矿物质含量增加时,矿物质本身要很大程度上降低最大失重速率,而且镜质组和惰质组含量也要随之降低,使最大失重速率降低很多。

<1.5%时,惰质组对最大失重速率贡献较大,随着镜对于燃尽温度,在R0

max

>1.5%时,镜质组含量对于着火温度的贡质组含量增加,燃尽温度下降。当R0

max

献大于惰质组对于着火温度的贡献,当镜质组含量增加时,虽然惰质组含量减少,但是整体来说燃尽温度仍然增加。

也有部分学者的研究[3]得到了相同的结论,认为惰性组是由成煤植物的木质纤维素在部分氧化或经森林失火而后转入无空气的环境下形成的氢含量低、碳含量高、挥发分低、孔隙度高的组分,难于着火。随煤化程度的加深,其挥发分进一步减少而使着火点升高,但在高变质阶段,挥发分逸出而形成多孔碳,增强了吸附能力,其表面可以充分吸附挥发分和氧,使两者充分集中而变得极易着火,因而在高变质阶段存在一个着火点下降阶段。而镜质组随煤化程度的加深而结构变得致密,挥发分含量也均匀减少,因而镜质组随着变质程度的提高,着火点逐渐升高[4] [5]。最大失重速率同燃尽点变化的原因同着火点类似。

5 结论

本文提出了基于煤岩学参数的煤燃烧特征值的预测模型,预测效果较好。为深入了解显微组分以及反射率对燃烧特性的影响和对燃烧特性的预判提供了理论依据。

通过回归方程的权重系数可以看出,在中低变质阶段,镜质组的燃烧特性要优于惰质组,而在高变质阶段则会得到相反的结论。

参考文献

[1]何宏舟,骆仲泱.龙岩煤不同宏观煤岩组分的颗粒及其燃烧性质实验研究[J].

燃料化学学报.2006(1):15-19.

[2]张小可,孙学信.岩相及煤阶对煤的燃烧特性的影响[J].燃料化学

报.1996(2):165-172.

[3]李小江.煤岩显微组分对着火点的影响规律[J].热力发电.1992(3):10-18.

[4]张小可,陈彩霞等.煤阶及显微组分对煤焦反应性的影响[J].华中理工大学学

报 1997年10月第25卷增刊.

[5]胡军,孔凡朔.基于岩相因子的煤粉燃烧预测模型[J].煤炭学

报.2004(2):213-215.

作者简介:刘明锐(1985-),男,内蒙古赤峰人,助理工程师,现从事煤质评价、煤燃烧等方面的工作。

近期焦炭质量分析报告

近期焦炭质量分析报告 自配比六十六生产优二级焦开始,我公司焦炭出现块小、焦块发酥等症状, 焦炭热强度始终达不到60以上,严重影响焦炭质量,给公司带来巨大的经济损 失,按照公司领导要求彻查原因及总结应对方案,现经过详细的数据对比分析、 现场勘查,总结原因及应对措施如下 一、数据分析: 1.其他非重要影响因素数据罗列及其分析 入炉煤指标统计 日期灰分挥发分硫分黏值细度6.15 9.41 27.38 0.82 76.67 91.27 6.16 9.31 27.03 0.80 75.97 90.99 6.17 9.40 27.22 0.77 76.75 90.86 6.18 9.51 27.14 0.76 75.50 89.95 6.19 9.70 27.47 0.76 76.20 91.72 6.20 9.89 28.17 0.75 78.57 91.90 焦化执行配比配比1:宁乐贫瘦17% 优质二级焦煤83% 配比2:宁乐贫瘦15% 优质二级焦煤85% 洗煤厂来煤指标统计 日期灰分挥发分硫分黏值 6.16 9.93 30.51 0.88 84.57 6.17 9.78 30.76 0.87 85.67 6.18 10.08 30.90 0.83 89.14 6.19 10.16 30.48 0.86 89.71 6.20 9.97 30.61 0.85 89.67 洗煤配洗方案 众利达13# 5.00 众利达13号15.00 众利达13# 15.00 青海低质煤10.00 青海低质煤10.00 青海低质煤10.00 策克15.00 策克15.00 策克15.00 沃石13下1 30.00 沃石13下1 20.00 沃石13下1 10.00 弘鼎13层10.00 华银11号5 10.00 迪雷10号10.00 蒙古原煤10.00 蒙古原煤10.00 蒙古原煤20.00 华银11#5 10.00 迪雷16#4 10.00 迪雷16号4 20.00 迪雷10号10.00 迪雷10# 10.00 06.15 06.17 06.18 由以上数据可以看出:从原料煤到配合煤及配比方案,各项指标都相对正常 不应该出现热强低于60的情况,且从焦炭的熔融状态上看也相对较好,同时验 证了煤质方面并无问题。

保温材料燃烧性能等级

保温材料燃烧性能等级 1.燃烧性能为A级的保温材料:岩棉、玻璃棉、泡沫玻璃、泡沫陶瓷、发泡水泥、闭孔珍珠岩、无机保温砂浆等 2.燃烧性能为B1级的保温材料:特殊处理后的挤塑聚苯板(XPS)/特殊处理后的聚氨酯(PU)、酚醛、胶粉聚苯粒等 3燃烧性能为B2级的保温材料:模塑聚苯板(EPS)、挤塑聚苯板(XPS)、聚氨酯(PU)、聚乙烯(PE)等 现有一保温装饰材料聚氨脂硬泡保温装饰复合板 防火等级达到国家等级A级 超薄石材系列| 玻化砖系列| 金属板系列| 清水混凝土板4种系列板材 其特点: (1) 超高的性价比,增加楼盘卖点(性价比高) 新型的保温材料、优良的保温性能、高雅的装饰效果,外加50年的使用年限,解决返修问题,减少维修费用和社会垃圾。 (2) 解决传统保温工艺的弊端(解决冻融,饰面开裂,脱落) 传统的苯板、挤塑板容易出现冻融现象,涂料饰面容易开裂;面砖饰面容易脱落;保温材料与墙体的粘接性不良,容易整体脱落。干挂幕墙存在冷桥等等问题。(讲解下聚氨脂复合板的特性) (3)优良的保温装饰效果(导热系数0.023w/(m*k)) 保温装饰一体化板将保温材料和装饰材料在工厂一次成型,保温材料为新型保温材料,饰面多种多样,一次性施工即能达到优良的保温装饰效果。 (4) 保温材料行业领先、性能一流 保温层采用第三代的保温材料---聚氨酯,为目前保温材料导热系数最小,密度、抗拉、抗压、吸水性、防火性等其他物理性能都比较优良的保温产品。 (5) 施工简单快捷、降低成本、提高效益 产品在工厂一次性复合,现场直接粘接施工,较传统工艺相比减少了施工工序,也随之减少了人为因素对工程质量的影响。缩短工期,降低成本,提高效益。 (6) 饰面石材为超薄石材,降低板材自重,减少墙体荷载。 (7) 因现场喷涂,形成整体防水层,没有接缝,仟何高分了卷材所不及,减少维修工作量。 (8) 使用寿命长,据国外已用工程总结和研究测试获知,耐老化年限可达30年之久。 (9) 空腔构造,抗风压能力强。 喷涂硬泡聚氨酯保温层与基层墙体牢固结合,与基层墙体形成一个有机的整体,无接缝、无空腔,减少了风压特别是负风压对高层建筑外墙外保温系统的破坏。 目前国内无机保温材料市场最好的牌子:JZ-C(无机活性)保温浆料,也是天意集团生产的。 天意牌JZ-C(无机活性)保温浆料是根据热物理学原理,运用自主创新和发明的物理成孔技术、果壳型轻骨料制造技术、多孔体烧结料温控技术、柔性释放应力的抗裂技术等,并采取气流成型最新工艺对多孔体烧结料、矿物纤维、活性硅等优质天然矿物进行精工制作而成的环保型高新技术产品,填补了国内空白。新产品所含三项核心技术已获得国家专利。专利号为:ZL200510017922.4;ZL200510107219.2;ZL200510017988.3 JZ-C(无机活性)保温浆料产品特点 无毒无害绿色环保 产品所用原材料全部是纯天然矿物质,能从根本上避免化工类和有机物材料与无机物材料混合类保温材料在自然老化、夏季高温情况下散发和释放有害物质侵害人身健康的问题。 防火绝燃杜绝火患 用JZ-C保温浆料制成模块放置明火上连续烧72小时,材料无变形损失现象。用手指放在材料背面可以承受,说明触火面温度在800℃以上,而背火面温度在100℃以内,隔热保温性能明显。

建筑材料的燃烧性能及耐火极限

一、建筑材料燃烧性能分级 (一)建筑材料及制品的燃烧性能等级 表2-3-2建筑材料及制品的燃烧性能等级 (二)建筑材料燃烧性能等级判据的主要参数及概念 二、建筑材料燃烧性能等级的附加信息和标识 (一)附加信息 建筑材料及制品燃烧性能等级附加信息包括产烟特性、燃烧滴落物、微粒等级和烟气毒性等级。对于A2级、B级和C级建筑材料及制品应给出产烟特性等级、燃烧滴落物/微粒等级(铺地材料除外)、烟气毒性等级;对于D级建筑材料及制品应给出产烟特性等级、燃烧滴落物/微粒等级。 (二)附加信息标识 当按规定需要显示附加信息时,燃烧性能等级标识示例:GB 8624 B1 (B-s1,d0,t1),表示属于难燃B1级建筑材料及制品,燃烧性能细化分级为B 级,产烟特性等级为s1级,燃烧滴落物/微粒等级为d0级,烟气毒性等级为t1级。 建筑构件的燃烧性能和耐火极限

建筑构件的耐火性能包括两部分内容:一是构件的燃烧性能,二是构件的耐火极限。 一、建筑构件的燃烧性能 二、建筑构件的耐火极限 (一)耐火极限判断条件 1)失去支持能力 构件在试验过程中失去支持能力或抗变形能力。 (1)外观判断:如墙发生垮塌;梁板变形大于L/20;柱发生垮塌或轴向变形大于h/100(mm)或轴向压缩变形速度超过3h/1000(mm/ min); (2)受力主筋温度变化:16Mn钢,510℃。 2)失去完整性 适用于分隔构件,如楼板、隔墙等。 失去完整性的标志:出现穿透性裂缝或穿火的孔隙。 3)失去绝热性 适用于分隔构件,如墙、楼板等。

失去绝热性的标志:下列两个条件之一 试件背火面测温点平均温升达140℃; 试件背火面测温点任一点温升达180℃; 建筑构件耐火极限的三个判定条件,实际应用时要具体问题具体分析: (1)分隔构件(隔墙、吊顶、门窗):失去完整性或绝热性; (2)承重构件(梁、柱、屋架):失去稳定性; (3)承重分隔构件(承重墙、楼板):失去稳定性或完整性或绝热性。 影响耐火极限的要素 不同耐火等级建筑中建筑构件耐火极限的确定 1、建筑构件的耐火极限是以楼板的耐火极限为基准。 2、88%火灾可在1.5h内扑灭,80%火灾可在1h内扑灭。 3、一级建筑物楼板耐火极限定为1.5h,二级建筑物楼板耐火极限定为1h。 练习题: 1、[单选题]临界热辐射通量为火焰熄灭处的热辐射通量或试验( )分钟时火焰传播到的最远处的热辐射通量

焦炭质量评价指标

焦炭质量指标 焦炭是高温干馏固体产物,主要成分是碳,具有裂纹和不规则孔孢结构体(或孔孢多孔体)。裂纹多少直接影响到焦炭粒度和抗碎强度,指标一般以裂纹度(单位体积焦炭内裂纹长度多少)来衡量。衡量孔孢结构指标主要用气孔率(焦炭气孔体积占总体积百分数)来表示,它影响到焦炭反应性和强度。不同用途焦炭,对气孔率指标要求不同,一般冶金焦气孔率要求 40 ~ 45% ,铸造焦要求 35 ~40% ,出口焦要求 30% 左右。焦炭裂纹度与气孔率高低,与炼焦所用煤种有直接关系,如以气煤为主炼得焦炭,裂纹多,气孔率高,强度低;而以焦煤作为基础煤炼得焦炭裂纹少、气孔率低、强度高。 焦炭强度用抗碎强度和耐磨强度表示。焦炭抗碎强度是指焦炭能抵抗受外来冲击力而不沿结构裂纹或缺陷处破碎的能力,用 M40 表示;焦炭耐磨强度是指焦炭能抵抗外来摩檫力而不形成碎屑或粉末的能力,用 M10 表示。焦炭裂纹度影响其抗碎强度 M40 值,焦炭孔孢结构影响耐磨强度 M10 值。 M40 和 M10 值测定方法我国采用德国米贡转鼓试验方法。 焦炭质量评价 1 、硫分:硫是生铁冶炼有害杂质之一,使生铁质量降低。在炼钢生铁中硫含量大于 0.07% 即为废品。由高炉炉料带入炉内的硫有 11% 来自矿石; 3.5% 来自石灰石; 82.5% 来自焦炭,所以焦炭是炉料中硫主要来源。焦炭硫分高低直接影响高炉炼铁生产。当焦炭硫分大于 1.6% ,硫份每增加 0.1% ,焦炭使用量增加 1.8% ,石灰石加入量增加 3.7%, 矿石加入量增加 0.3% 高炉产量降低1.5 - 2.0%. 冶金焦含硫量规定不大于 1% ,大中型高炉使用冶金焦含硫量小于0.4 - 0.7% 。 2 、磷分:炼铁用冶金焦含磷量应在 0.02 - 0.03% 以下。 3 、灰分:焦炭灰分对高炉冶炼影响显着。焦炭灰分增加 1% ,焦炭用量增加 2 - 2.5% 。 4 、挥发分:根据焦炭挥发分含量可判断焦炭成熟度。如挥发分大于 1.5% ,则表示生焦;小于 0. 5 - 0.7%, 则表示过火,一般成熟冶金焦挥发分 1% 左右。 5 、水分:水分波动会使焦炭计量不准,从而引起炉况波动。此外,焦炭水分提高会使 M04 偏高, M10 偏低,给转鼓指标带来误差。 6 、筛分组成:我国过去对焦炭粒度要求:对大焦炉( 1300 - 2000 平方米)焦炭粒度大于 40 毫米;中、小高炉焦炭粒度大于 25 毫米。但一些钢厂试验表明,焦炭粒度 40 - 25 毫米为好。大于 80 毫米焦炭要整粒,使其粒度范围变化不大。这样焦炭块度均一,空隙大,阻力小,炉况运行良好。 焦碳用途具体指标如下: 固定炭83以上;硫0.5以下;挥发分1.5以下;灰分15左右 : 机制焦:{冶金用;试用于钢厂}; 捣鼓焦粒度8cm-150cm: {化铁水;用于电机壳、暖气片、机械配重的铸造}; 肥煤焦:{化铁水;用于电机壳、暖气片、机械配重的铸造}; 大块改良焦:{用于普通铸造;机械配件等粗略部件适用于2-3.5吨的炉型}; 定型焦粒度25cm:{用于普通铸造和稍严格的铸造产品;如水泵管件消防扣件等}; 固定炭85以上;挥发分1.5.;灰分13.5;硫0.5以下 :

常用建筑内部装修材料燃烧性能等级划分

精品文档,放心下载,放心阅读 1、总则 1.0.1 为保障建筑内部装修的消防安全,贯彻“预防为主,防消结合”的消防工作方针,防止和减少建筑物火灾的危害,特制定本规范。 1.0.2本规范适用于民用建筑和工业厂房的内部装修设计。本规范不适用于古建筑和木结构建筑的内部装修设计。精品文档,超值下载 1.0.3建筑内部装修设计应妥善处理装修效果和使用安全的矛盾,积极采用不燃性材料和难燃性材料,尽量避免采用在燃烧时产生大量浓烟或有毒气体的材料,做到安全适用,技术先进,经济合理。 1.0.4本规范规定的建筑内部装修设计,在民用建筑中包括顶棚、墙面、地面、隔断的装修,以及固定家具、窗帘、帷幕、床罩、家具包布、固定饰物等;在工业厂房中包括顶棚、墙面、地面和隔断的装修。注:(1)隔断系指不到顶的隔断。到顶的固定隔断装修应与墙面规定相同。 (2)柱面的装修应与墙面的规定相同。 (3)兼有空间分隔功能的到顶橱柜应认定为固定家具。 1.0.5建筑内部装修设计,除执行本规范的规定外,尚应符合现行的有关国家标准、规范的规定。

2、装修材料的分类和分级 2.0.1装修材料按其使用部位和功能,可划分为顶棚装修材料、墙面装修材料、地面装修材料、隔断装修材料、固定家具、装饰织物、其他装饰材料七类。 注:(1)装饰织物系指窗帘、帷幕、床罩、家具包布等; (2)其他装饰材料系指楼梯扶手、挂镜线、踢脚板、窗帘盒、暖气罩等。 2.0.2装修材料按其燃烧性能应划分为四级,并应符合表 2.0.2的规定: 装修材料燃烧性能等级表 2.0.2 2.0.3装修材料的燃烧性能等级,应按本规范附录A的规定,由专业检测机构检测确定。B3级装修材料可不进行检测。

阻燃型电线电缆燃烧性能检测方法分析

阻燃型电线电缆燃烧性能检测方法分析 摘要电线电缆作为基础性配套产品,广泛应用于各行各业,其中有一大部分用于民用工程。随着近年来我国基础设施的大规模建设,对电线电缆的防火性能要求越来越高,普遍开始使用阻燃耐火电线电缆。因此,在电线电缆的选择上,必须详细了解其主要的性能和检测方法,保证阻燃型电线电缆的质量过关,才能促进电力事业的稳健发展。本文通过对电线电缆的燃烧性能进行分析,阐述了对燃烧性能检测的具体方法。 关键词阻燃;电线电缆;燃烧性能;检测方法 1 阻燃性能分析和检测 1.1 阻燃性能分析 阻燃性能是材料本身具有的一种性能,对火焰的发生和蔓延能够自行阻止。其中最为常见的聚合物阻燃机理有两种:第一,气相阻燃机理。阻燃剂在受到热量影响后,产生能够增加燃烧反应链增长的自由基,并对燃烧过程中发挥链增长效果的自由基进行抑制,从而阻止火焰的燃烧。例如在聚合物制作的过程中,加入一定比例的含卤阻燃剂,就是利用的这个机理。第二,凝聚相阻燃机理。聚合物在处于固相状态时,尽量保证聚合物不会发生热分解,同时控制可燃气体的释放量。在聚合物制作过程中,可以在其中按照比例加入一些磷化合物,就可以达到这种效果。阻燃过程相当复杂,要想实现阻燃的效果,一般都是几种阻燃机理相结合才能完成。同时,电线电缆的阻燃也可以使用其他的不同方法来完成,如通过截面结构设计来实现等。 1.2 阻燃性能检测 阻燃性能检测最常用的检测方法是单根垂直燃烧法。这种方法主要用于单个电线或者单根电缆的阻燃性能的检测,能够有效地评价单根电线电缆的实际阻燃性能。IEC 60332-1-2规定了1 kW预混合型火焰的常规用法,不适用于测试总截面小于0.5 mm2的小规格单根电线电缆,因为其导体在试验结束之前会被熔化,也不适用于细光缆,因为在试验结束前光缆会断裂。在这些情况下,试验方法可参照IEC 60332-2这里的所用的电线电缆的实心铜导体一般的直径为0.4-0.8毫米,而截面一般为0.1-0.5毫米的2绞合铜导体。在实际建筑中,会将电线电缆捆绑成束再进行敷设,还应采用特殊的装置来预防。成束电线电缆阻燃性的研究(见IEC 60332-3系列标准)是大规模燃烧实验,与实际的使用更加吻合,能够更好地反映出成束电缆的阻燃性能[1]。 2 耐火性能的分析和检测 2.1 耐火性能的分析

焦炭质量标准与检验

焦炭质量标准与检验 焦炭现货市场的标准化程度较高,质量指标体系和检验方法都有国家标准依据,现货市场普遍接受,实际执行情况较好,争议解决方式也较规范。 一、焦炭国家标准符合现货市场的需求 1.焦炭国标按用途来构建质量指标体系 国家标准GB/T 1996—2003《冶金焦炭》设定了高炉冶金焦炭的质量指标体系,包含三类指标:一是灰分Ad、硫分St,d、挥发分Vdaf、水分Mt这些反映焦炭基本组成成分的指标;二是是冷态的抗碎强度M40和耐磨强度M10、热态的反应后强度CSR和反应性CRI这些反映高炉内工作强度和工况的指标;三是粒度、焦末这些反映物理大小和形态的指标。 2.焦炭质量的检验也有国家标准作为依据 焦炭的抽样、制样以及所有指标化验方法都有国家标准作为依据。其中,样品的采样、制备可依据GB/T 1997《焦炭试样的采取和制备》;焦炭水分、灰分、挥发分指标的化验可依据GB/T 2001—1991《焦炭工业分析测定方法》;焦炭的焦末和粒度指标的检测可依据GB/T2005—1994《冶金焦炭的焦末含量及筛分组成的测定方法》;焦炭的机械强度M40和M10的测定可依据GB/T 1996—2003《冶金焦炭》中的附录;焦炭硫分指标的测定可依据GB/T 2286—1991《焦炭全硫含量测定方法》;焦炭热性质指标的测定可依据GB/T 4000—1996《焦炭反应性及反应后强度的测定方法》。 二、现货市场企业和机构普遍采用和认可焦炭国家标准 现货企业普遍参照国家标准来签订贸易合同,按国标的质量体系来定义商品的质量等级。 1.焦化厂出厂检验,钢厂到货检验,质检机构委托检验 大型焦化厂通常以同一批出炉的焦炭作为一个检验批次,依国标的指标体系对焦炭进行全指标的检验。大型焦化厂一般都具备热性质指标的检验设备,能够保证对每个生产班组的焦炭检验一次CSR和CRI。一些中小型焦化厂不具备热性质指标的检验能力,当客户有特殊要求时,一般会委托其他机构代为检验。钢厂对外采购时,不同焦炭厂家的不同生产批次都算作不同批次。每一批次的焦炭入厂时,钢厂都对上述所有指标进行检。 2.焦炭质量指标检验存在误差

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

A级燃烧性能材料

酚醛泡沫防火保温材料,酚醛泡沫是一种新型难燃、防火低烟保温材料,导热系数仅为0.023W/m.k左右,最突出的特点是难燃、低烟、抗高温歧变。 它可以制成板材、管壳及各种异型产品,具有质轻、施工方便等特点。 酚醛泡沫制品用途广泛,它适用于大型冷库、贮罐、船舶及各种保温管道和建筑业。如果用于防火要求严格的厂矿及机械设备,更能突出它难燃、低烟、抗高温歧变的特点。如:轮船、军舰、火车、装甲车的保温以及造纸、化工、制药等方面。 酚醛泡沫简介: 酚醛泡沫保温材料常简称为酚醛泡沫。酚醛泡沫是以酚醛树脂和阻燃剂、抑烟剂、固化剂、发泡剂、及其它助剂等多种物质,经科学配方制成的闭孔型硬质泡沫塑料。 酚醛泡沫具有以下优异的性能: 1 优异的防火性能:聚氨酯和聚苯等有机保温材料,燃烧后,会产生浓烟和剧毒,容易造成人员死亡,同时也增加灭火难度。而酚醛泡沫遇火不燃,燃烧性能最高达A级,最高使用温度为180℃(允许瞬时250℃),100 mm厚的酚醛泡沫抗火焰能力可达 1 小时以上而不被穿透。在火焰的直接作用下具有结碳、无滴落物、无卷曲、无熔化现象,火焰燃烧后表面形成一层“石墨泡沫”层,有效保护层内的泡沫结构。 2 优良的绝热性能:导热系数低(<0.025W/m×K,为聚苯的2倍多,与聚氨酯相近),为保温、隔热的优良材料; 3 抗腐蚀抗老化:几乎能够耐所有无机酸、有机酸、有机溶剂的侵蚀。长期暴露于阳光下,无明显老化现象,因而具有较好的耐老化性; 4 密度小、重量轻:酚醛泡沫材料的密度为80㎏/m3以下,可达到50㎏/ m3左右。可减轻建筑物的自重,降低建筑物的载荷,减少结构造价,且施工简便、快捷,可提高工效; 5 吸声性能:酚醛泡沫具有优良的吸声性能,开孔型的泡沫结构更有利于吸声; 6 环保:岩棉、玻璃棉对环境和人有伤害,聚氨酯、聚苯乙烯燃烧受热时会分解出氰化氢、一氧化碳等剧毒气体。而酚醛泡沫采用无氟发泡技术,无纤维,符合国家、国际的环保要求。 酚醛泡沫的应用领域: 由于聚苯乙烯泡沫和聚氨酯泡沫都易燃,不耐高温,在一些工业发达国家中正受到消防部门的限制使用,对防火要求严格的场所,政府部门已有明文规定只

国内焦炭的质量指标及评价综合知识

国内焦炭的质量指标及评价综合知识 ------------------------------------------------------------ 一、焦炭定义 烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦。由高温炼焦得到的焦炭用于:高炉冶炼、铸造和气化。炼焦过程中产生的经回收、净化后的焦炉煤气既是高热值的燃料,又是重要的有机合成工业原料。 冶金焦是高炉焦、铸造焦、铁合金焦和有色金属冶炼用焦的统称。由于90%以上的冶金焦均用于高炉炼铁,因此往往把高炉焦称为冶金焦。 铸造焦是专用与化铁炉熔铁的焦炭。铸造焦是化铁炉熔铁的主要燃料。其作用是熔化炉料并使铁水过热,支撑料柱保持其良好的透气性。因此,铸造焦应具备块度大、反应性低、气孔率小、具有足够的抗冲击破碎强度、灰分和硫分低等特点。 二、焦炭分布 从我国焦炭产量分布情况看,我国炼焦企业地域分布不平衡,主要分布于华北、华东和东北地区。 三、焦炭用途 焦炭主要用于高炉炼铁和用于铜、铅、锌、钛、锑、汞等有色金属的鼓风炉冶炼,起还原剂、发热剂和料柱骨架作用。炼铁高炉采用焦炭代替木炭,为现代高炉的大型化奠定了基础,是冶金史上的一个重大里程碑。为使高炉操作达到较好的技术经济指标,冶炼用焦炭(冶金焦)必须具有适当的化学性质和物理性质,包括冶炼过程中的热态性质。焦炭除大量用于炼铁和有色金属冶炼(冶金焦)外,还用于铸造、化工、电石和铁合金,其质量要求有所不同。如铸造用焦,一般要求粒度大、气孔率低、固定碳高和硫分低;化工气化用焦,对强度要求不严,但要求反应性好,灰熔点较高;电石生产用焦要求尽量提高固定碳含量。 四、焦炭的物理性质 焦炭物理性质包括焦炭筛分组成、焦炭散密度、焦炭真相对密度、焦炭视相对密度、焦炭气孔率、焦炭比热容、焦炭热导率、焦炭热应力、焦炭着火温度、焦炭热膨胀系数、焦炭收缩率、焦炭电阻率和焦炭透气性等。 焦炭的物理性质与其常温机械强度和热强度及化学性质密切相关。焦炭的主要物理性质如下:

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

建筑防火案例分析解题思路

建筑防火案例分析解题思路 厂房、仓库等工业建筑防火案例 对于厂房、仓库等工业建筑防火案例,在理解题目中情景描述之后,主要以厂房仓库生产或储存物品的种类数量、厂房仓库的火灾危险性分类(甲、乙、丙、丁、戊类)、耐火等级为依据,从建筑物层数、防火分区的最大允许面积,厂房仓库内设置内办公室(休息室)的要求、中间仓库布置的要求、防火间距、消防车道的布置、构造防火(防火门、墙体、楼板等的耐火极限)、安全疏散设施(安全出口、楼梯间、疏散走道的形式、位置、宽度、距离)等知识点考虑问题的答案。 民用建筑防火案例 对于民用建筑防火案例,在理解题目中的情景描述之后,主要以建筑物的功能(住宅、人员密集场所、老人儿童场所、歌舞游戏娱乐放映场所等)、建筑物的分类(单多层、一类高层、二类高层)为依据,从耐火等级、防火分区的最大允许面积、防烟分区的最大允许面积、建筑物平面布置的要求、防火间距、消防车道的布置、消防登高面和登高操作场地的设置要求、构造防火(防火门、墙体、楼板等的耐火极限)、安全疏散设施(安全出口、楼梯间、疏散走道等的形式、位置、宽度、距离)、室内各部位的装修材料燃烧性能(A\B1\B2\B3)的选取等知识点考虑题的答案。 消防设施应用案例分析解题思路 建筑消防设施配置方面的案例 对于建筑消防设施配置方面的案例,在理解题目中情景描述之后,以建筑物类型(工业建筑、民用建筑、单多层)、建筑物耐火等级为依据,从室内外消火栓给水系统,自动喷水灭火系统(根据使用场所的情况采用开式、闭式、干式、湿式、预作用、水幕等系统)、气体灭火系统、泡沫灭火系统、防排烟系统、火灾自动报警及联动系统、建筑灭火器、消防电梯、消防水泵、管道、消防水池、消防水箱、应急照明和疏散指示标志等方面根据现行规范要求考虑问题的解答。 建筑消防设施检测与验收方面的案例 对于建筑消防设施检测与验收方面的案例,在理解题目中的情节描述之后,以各消防设施设置、功能要求为依据,主要从验收资料、系统安装质量和技术检测要求及检测办法、系统调试要求、功能性调试、联动调试、安装中常见的问题和错误、合格判定标准等知识点考虑问题解答。对于建筑消防设施维护管理与保养方面的案例,在理解题目中情景描述之后,主要从各消防设施的日常巡查内容、巡查方法及要求、巡查周期、年度季度月度检查项目、年度检测项目及要求、系统常见故障的原因及处理方法等知识点考虑问题解答。 消防安全评估案例分析解题思路 消防性能化设计评估案例 对于消防性能化设计评估案例,在理解题目中情景描述之后,主要从性能化设计评估的管理流程、性能化设计评估消防安全总目标选取、火灾场景的设定、疏散场景的设定、模拟软件的选取,人员疏散安全判据的选定,防止火灾辐射蔓延准则的选定,建筑内可燃物的状况及火灾荷载密度、防止火灾辐射蔓延的措施,烟控系统的量化指标、疏散时间的组成及选取、疏散通道的有效宽度等

建筑材料燃烧性能及分级(正式版)

文件编号:TP-AR-L3732 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 建筑材料燃烧性能及分 级(正式版)

建筑材料燃烧性能及分级(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 建筑材料的燃烧性能直接关系到建筑物的防火安全,很多国家均建立了自己的建筑材料燃烧性能分级体系。我国从1985年起启动了建筑材料燃烧性能分级体系及相关试验方法的研究,并于1987年首次发布了强制性国家标准《建筑材料的燃烧性能分级方法》GB 8624—87,同时还制定了相关的试验方法标准。经过多年的实践,该标准对我国防火规范的贯彻实施发挥了重要的作用。经多次修订,目前,《建筑材料及制品燃烧性能分级》GB 8624—2012(以下简称GB 8624)已发布实施。 一、建筑材料燃烧性能分级

随着火灾科学和消防工程学科领域研究的不断深入和发展,材料及制品燃烧特性的内涵也从单纯的火焰传播和蔓延,扩展到材料的综合燃烧特性和火灾危险性,包括燃烧热释放速率、燃烧热释放量、燃烧烟密度以及燃烧生成物毒性等参数。国外(欧盟)在火灾科学基础理论发展的基础上,建立了建筑材料燃烧性能相关分级体系,分为A1、A2、B、C、D、E、F七个等级。按照GB 8624—2012,我国建筑材料及制品燃烧性能的基本分级为A、B1、B2、B3,规范中还明确了该分级与欧盟标准分级的对应关系。 (一)建筑材料及制品的燃烧性能等级 建筑材料及制品的燃烧性能等级见下表2-3-2。 表2-3-2建筑材料及制品的燃烧性能等级 燃烧性能等级名称 A 不燃材料(制品)

建筑防火分析

第1章建筑防火分析 1.1工程概况: 本设计为濮阳市某机关办公楼的消防给水系统设计,此建筑是一栋地下2层地上24层的办公楼,其属于一类高层公共建筑。总建筑高度为96.6m。地上共二十四层,地下两层,负二层层高3.9m,建筑面积4101.16平方米,设有风机房,弱电机房,水泵房,消防水池等,负二层战时为人防工程,非战时为停车库。负一层层高4.8 m,建筑面积3910.36平方米,负一层为停车库。一楼到四楼设有展厅和办公室,地上五层至地上二十四层为办公室区域和敞开式办公室区域,一层层高4.8m,,设置有消防控制室。二至四层层高为4.2m,五~七层层高为3.9m,八层层高4.8 m,九~二十四层层高为3.9m。建筑共设有两部楼梯,五部电梯,其中一部为消防电梯。 1.2建筑分类和耐火等级: 根据《建筑设计防火规范》GB 50016-2014对建筑进行分类

该综合楼建筑总高度为9606m,可知该建筑为一类高层公共建筑。 根据《建筑设计防火规范》GB 50016-2014,一类高层公共建筑耐火等级不应低于一级,故该建筑耐火等级为一级。 1.3防火分区和防烟分区的划分 1.3.1防火分区的划分 根据《建筑设计防火规范》GB 50016-2014,耐火等级为一级的高层民用建筑其防火分区的最大允许面积为1500㎡。根据《自动喷水灭火系统设计规范》GB50084-2017,高层民用建筑综合楼火灾危险等级为中危一级。 表2.2 每个防火分区的允许最大建筑面积 表2.3 汽车库防火分区的允许最大建筑面积(㎡)

建筑内设有自动灭火系统时,最大允许建筑面积可按上述表中增加一倍,局部设置时,增加面积可按局部面积一倍计算。 由于该建筑配置有自动灭火系统,故地上部分建筑防火分区最大允许建筑面积为3000平方米,地下室防火分区最大允许建筑面积为5000平方米。 地下室一层建筑面积为3910.36平方米,可划分为一个防火分区。地下室二层,建筑面积为4101.16平方米,可划分一个防火分区。 根据《建筑设计防火规范》GB 50016-2014,当建筑内设有自动灭火系统时,最大允许面积可增加一倍,故防火分区的最大允许面积为3000㎡,其一至四层面积均为1062㎡,五至十五面积均为629.28㎡,故每个楼层划分为一个防火分区。 1.3.2防烟分区的划分 本办公楼地上建筑部分,九至二十四层为标准层,一至八层为开敞式办公区域,单个防烟分区最大允许保护面积为500平方米。 负一层及负二层为地下室,其中,负一层为机动车库,地下机动车库单个防烟分区最大允许保护面积为2000平方米,故地下一层应划分为三个防烟分区。地下二层为机动车库及人防共设,故地下二层应划分为三个防烟分区。 1.4人员疏散分析 1.4.1安全出口 安全出口是提供人员安全疏散用的楼梯间、室外楼梯的出入口或直通室内外安全区域的出口。该建筑一至四层共3个安全出口,五至二十四层每层分别 2个安全出口。符合《建筑设计防火规范》(GB 50016-2014)第5.5.9条规定,建筑面积在1000 ㎡以上的防火分区,直接通往室外的安全出口最少要有2个;建筑面积在1000 ㎡以下的防火分区,最少有一个直通室外的安全出口。

焦炭质量预测

焦炭质量预测 1 焦炭灰分、硫分预测 在生产状况稳定的条件下,焦炭的灰分、硫分与配合煤的灰分、硫分存在较好的线性关系。一般预测模型为: Y=aX+b 应用数理统计中最小二乘法确定方程中的回归系数a,b,并以此控制配合煤的灰分、硫分,以及调整单种煤使用的比例和为选择煤源提供参考。 2 焦炭冷态强度预测 焦炭冷态强度(指M40、M10)预测所采用的指标一般为煤化度指标和粘结性指标。预测方法基本可以分为三类:第一类以煤的工艺指标为参数,如Vdaf与C.I.、MF、G、y的组合,一般常用Vdaf与G的组合,因为这两个因素对焦炭质量起决定性作用。一般Vdaf为28%~32%,G为88%~72%或y为14~18mm。配煤的挥发分升高,焦炭裂纹增多,强度下降,特别是M40,配煤挥发分每变化±1%,M40变化±2.0%,M10变化±0.2%;第二类是以煤岩指标为参数进行预测;第三类在考虑配合煤指标的同时,也考虑炼焦煤准备和炼焦工艺条件。 3 热态性质预测法 焦炭的热态性质通常采用焦炭的反应性指数(CRI)和反应后强度(CSR)来表示。预测方法有三种:(1)焦炭冷态指标预测法:这类方法主要基于焦炭冷态性质指标,如焦炭强度(M40、M10)、气孔率与气孔分布、光学组织等来预测。(2)配合煤指标预测法:该方法依据配合煤反射率、粘结性、惰性物含量以及配合煤其他性质,如灰分、挥发分、灰组成等进行预测。多数预测模型仅限于生产实践数据或实验数据的统计分析,适用范围也局限于各自炼焦煤种(3)单种煤性质预测法:冯安祖等从单种煤性质入手,研究了不同单种煤的煤化度指标(挥发分、镜质组最大反射率)、粘结性指标、灰组成与其焦炭热性质的关系。认为煤的挥发分与焦炭的反应性和反应后强度有非常密切的关系。挥发分位于22%~26%以及Rmax为1.1~1.2 左右,单种焦的热性质最佳。单种煤的粘结指数(G)、胶质层厚度(y)、全膨胀(a+b)、基氏流动度(lgMF)与焦炭热反应性和反应后强度之间存在基本一致的规律性。

特征值和特征向量的物理意义

特征向量体现样本之间的相关程度,特征值则反映了散射强度。 特征向量的几何意义.矩阵(既然讨论特征向量的问题.当然是方阵.这里不讨论广义特征向量的概念)乘以一 个向量的结果仍是同维数的一个向量.因此.矩阵乘法对应了一个变换.把一个向量变成同维数的另一个向量.那么变换的效果是什么呢?这当然与方阵的构造有密切关系.比如可以取适当的二维方阵.使得这个变换 的效果就是将平面上的二维向量逆时针旋转30度.这时我们可以问一个问题.有没有向量在这个变换下不 改变方向呢?可以想一下.除了零向量.没有其他向量可以在平面上旋转30度而不改变方向的.所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量).所以一个变换的特征向量 是这样一种向量.它经过这种特定的变换后保持方向不变.只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax= cx.你就恍然大悟了.看到了吗?cx是方阵A对向量x进行变换后的结果.但显然cx和x的方向相同).而且x是特征向量的话.ax也是特征向量(a是标量且不为零).所以所谓的特征向量不是一个向量而是一个向量族. 另外.特征值只不过反映了特征向量在变换时的伸缩倍数而已.对一个变换而言.特征向量指明的 方向才是很重要的.特征值不是那么重要.虽然我们求这两个量时先求出特征值.但特征向量才是更本质的 东西! 比如平面上的一个变换.把一个向量关于横轴做镜像对称变换.即保持一个向量的横坐标不变.但纵坐标取相反数.把这个变换表示为矩阵就是[1 0,0 -1].其中分号表示换行.显然[1 0,0 -1]*[a b]'=[a -b]'. 其中上标'表示取转置.这正是我们想要的效果.那么现在可以猜一下了.这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变.显然.横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像 对称变换.那镜子表面上(横轴上)的向量当然不会变化).所以可以直接猜测其特征向量是[a 0]'(a不为0).还有其他的吗?有.那就是纵轴上的向量.这时经过变换后.其方向反向.但仍在同一条轴上.所以也被认为是方向没有变化。 综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。 Spectral theorem的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是: T(V)=λ1(V1.V)V1+λ2(V2.V)V2+λ3(V3.V)V3+... 从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握在我手中,你还吊什么吊? 我们知道,一个变换可由一个矩阵乘法表示,那么一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,用图来表示的话,可以想象就是一个空间张开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量(可以想象成从各个角度上伸出的长短,越长的轴就越可以代表这个空间,它的“特征”就越强,或者说显性,而短轴自然就成了隐性特征),因此,通过特征向量/值可以完全描述某一几何空间这一特点,使得特征向量与特征值在几何(特别是空间几何)及其应用中得以发挥。 关于特征向量(特别是特征值)的应用实在是太多太多,近的比如俺曾经提到过的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法;近的比如Google公司的成名作PageRank,也是通过计算一个用矩阵表示的图(这个图代表了整个Web各个网页“节点”之间的关联)的特征向量来对每一个节点打“特征值”分;再比如很多人脸识别,数据流模式挖掘分析等方面,都有应用,

建筑材料燃烧性能分级方法

建筑材料燃烧性能分级方法 GB 8624—1997 国家技术监督局1997—04—04批准 1997—10—01实施 前言 本标准是GB 8624—88的修订版。在技术内容上非等效采用德国标准DIN 4102—81第一部分。 本修订版与GB 8624—88相比,增设了A级复合(夹芯)材料,并根据我国具体情况,增加了对特定用途的铺地材料、窗帘幕布类纺织物、电线电缆套管类塑料材料和管道隔热保温用泡沫塑料的具体规定。上述特定用途的材料若作为墙面或吊顶材料使用时,仍必须按本标准第4章和第5章的规定进行检验和分级。 本标准自生效之日起,原GB 8624—88即为失效。 本标准由中华人民共和国公安部提出。 本标准由全国消防标准化技术委员会第七分委员会归口。 本标准由公安部四川消防科学研究所负责起草。 本标准主要起草人:钱建民、马祥林、卢国建。 本标准首次发布于1988年2月。 1主题内容与适用范围 本标准规定了建筑材料燃烧性能的评定和分级标准。 本标准适用于各类工业和民用建筑工程中所使用的结构材料和各种装饰装修材料。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 2406—93 塑料燃烧性能试验方法氧指数法 GB/T 2408—80 塑料燃烧性能试验方法水平燃烧法. GB/T 4609—84 塑料燃烧性能试验方法垂直燃烧法 GB/T 5454—85 纺织织物燃烧性能测定氧指数法 GB/T 5455—85 纺织织物阻燃性能测定垂直法 GB/T 5464—85 建筑材料不燃性试验方法 GB/T 8332—87 泡沫塑料燃烧性能试验方法水平燃烧法

煤的水分、灰分、挥发分和发热量对燃烧性能的影响

煤的水分、灰分、挥发分和发热量对燃烧性能的影响 煤的水分、灰分、挥发分和发热量对燃烧性能的影响 人们通常把开发煤炭资源的企业称作煤矿,把开采出来的煤矿产品称为煤炭。我国古代曾称煤炭为石涅,或称石炭。它是植物遗体埋藏在地下经过漫长复杂的生物化学、地球化学和物理化学作用转化而成的一种固体可燃矿产。它不仅是工农业和人民生活不可缺少的主要燃料,而且还是冶金、化工、医药等部门的重要原料。据统计,在我国能源生产和消费构成中,煤炭一直居于主导地位,1995年,生产占75.5%,消费占75.0%。在国民经济中,工业、农业、交通运输的发展都离不开煤炭。随着近代科学技术的发展和新工艺、新方法的应用,煤炭的用途和综合利用价值将会越来越大。可以预计,在未来相当长的时期内,煤炭在我国国民经济中都将占有相当重要的地位。 一、矿物原料特点 (一) 煤的物理性质 煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。 1.颜色 是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。 2.光泽 是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。 3.粉色 指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。 4.比重和容重 煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。 5.硬度 是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5;无烟煤的硬度最大,接近4。 6.脆度 是煤受外力作用而破碎的程度。成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。 7.断口 是指煤受外力打击后形成的断面的形状。在煤中常见的断口有贝壳状断口、参差状断口等。煤的原始物质组成和煤化程度不同,断口形状各异。 8.导电性 是指煤传导电流的能力,通常用电阻率来表示。褐煤电阻率低。褐煤向烟煤过渡时,电阻率剧增。烟煤是不良导体,随着煤化程度增高,电阻率减小,至无烟煤时急剧下降,而具良好的导电性。 (二) 煤的化学组成

相关文档
相关文档 最新文档