文档库 最新最全的文档下载
当前位置:文档库 › #5机组汽轮机高中压缸汽封改造可行性研究报告20110808

#5机组汽轮机高中压缸汽封改造可行性研究报告20110808

#5机组汽轮机高中压缸汽封改造可行性研究报告20110808
#5机组汽轮机高中压缸汽封改造可行性研究报告20110808

技术改造项目

可行性研究报告

项目名称:#5机组汽轮机高中压缸汽封改造 建设单位:×××××××××

报告日期: ×××××

编 制: ×××

审 核:

批 准:

一.项目背景及概述

××××#5机组于2007年10月26日正式投产发电,汽轮机是哈尔滨汽轮机厂与日本三菱公司联合设计制造的超临界、一次中间再热、单轴、三缸四排汽、凝汽式汽轮机,型号为CLN60 0-24.2/566/566。高中压缸采用三菱公司成熟的技术制造,为合缸结构,汽封均采用传统的梳齿型汽封;汽轮机设计时制造厂确保启动过程中高中压转子过临界时不发生碰磨,通常将汽封间隙标准设定较大,尤其是高中压缸过桥汽封间隙标准设定更大,达到1. 10~1.30mm;如不进行汽封型式改造,检修中可适当将汽封间隙调小,但为保证汽轮机能安全启动,过桥汽封的间隙最小也只能调至0.90mm,过大的间隙造成高压缸调节级后的大量高压蒸汽通过高中压缸过桥汽封直接漏至中压缸而未经高压通流部分做功,从而增加机组热耗,降低经济性。

设备技术规范:

制造厂商:哈尔滨汽轮机有限公司

汽轮机型式:超临界、一次中间再热、单轴、三缸四排汽、凝汽式

额定功率: 600MW

额定主蒸汽温度:566℃

额定主蒸汽压力:24.2MPa

额定再热蒸汽温度: 566℃

额定排汽压力: 4.9KPa

额定工况主蒸汽流量:1663.76 t/h

给水温度: 275.4℃

高压部分级数:Ⅰ调节级+9级

中压部分级数:6级

低压部分级数: 2×2×7级

缸效率(高/中/低): 87.37%/93.70%/91.48%

热耗(THA): 7530.2 KJ/(KW?h)

回热加热级数:8级(3高压加+1除氧器+4低压)

末级叶片高度: 1000mm

转速: 3000r/min

转子旋转方向:从调端看顺时针

1. 存在问题:

高中压缸过桥汽封间隙大,造成高压缸调节级后的大量高压蒸汽通过高中压缸过桥汽封直接漏至中压缸,未经高压通流部分做功,导致机组热耗增加影响经济性。2009年6月由××××××对#5汽轮机进行了热力性能试验,试验结果为:600MW工况下高压缸效率为84.76 %(设计值87.37%)、中压缸效率为91.10%(设计值93.70%)、分别比设计值低2.61%、2.60%,修正后热耗为7672.90KJ/KW·h(设计值93.70%,比设计值高142.70KJ/KW·h。

2. 项目的必要性:

2010年2月委托×××××××对#5机组进行节能诊断,高中压缸过桥汽封漏汽量的试验值及其对热耗、煤耗的影响的诊断结果见下表:

项目单位设计值 #5机组

泄漏量 % 0.8 4.42 对热耗的影响量 KJ/(KW·h) - 77.5 对发电煤耗的影响量 g/(KW·h) - 2.9 #5汽轮机诊断试验结果表明:高中压缸过桥汽封漏汽量占再

热蒸汽流量的份额为4.42%,是设计值的5.5倍,表明高中压缸过

桥汽封间隙比较大。

#5汽轮机汽封全部采用传统梳齿型汽封,在兼顾汽轮机经济

性的同时,为了保证汽轮机启动过程中不发生严重的动静碰磨影

响汽轮机的安全性,检修过程中通常汽封间隙不能调整的过小,

尤其是高中压缸过桥汽封位于高中压转子中部(挠度大),最易发

生碰磨;同时机组经过多次启停后,汽封齿不可避免的会有一定

程度的磨损造成间隙进一步增大,使得大量蒸汽做功能力降低,

使机组运行经济性下降。所以有必要对#5汽轮机高中压缸过桥汽

封及高中压缸部分隔板汽封进行技术改造,减少漏气量,降低机

组热耗,提高机组的经济性。

二.可行性方案及特点

方案一:将高中压缸过桥汽封及高压部分及隔板汽封改造成东汽

DAS汽封(东汽专利)。

1. 东汽DAS汽封的原理介绍:

东汽DAS汽封把常规铁素体汽封的两个长齿更换成两个宽

齿,并减小了汽封间隙。同时弹簧也进行了改进。如图1所示,1

为DAS汽封齿,2为铁素体汽封短齿,3为铁素体汽封长齿,A 为常规汽封齿设计间隙,B为DAS汽封齿设计间隙。

东汽DAS汽封结构中,汽封齿1与转子的间隙B比齿2、3与转子的间隙A小0.10~0.13mm,汽封齿1采用宽齿结构。在汽轮机启、停的过程中,由于过临界转速的影响,汽封齿有与转子产生摩擦的可能,因间隙B比间隙A小,所以汽封齿1应最先与

转子产生碰摩,汽封齿1推动汽封圈退让,保护了汽封齿2、3不与转子产生摩擦。在汽轮机正常运行时,齿2、3的间隙A可达到设计值,从而保证了设计的密封效果。另一方面,由于间隙B比间隙A小,且齿1采用宽齿结构,材料也耐磨,即使与转子发生碰磨,其磨损量也非常小,运行时间隙B远小于间隙A,整个汽封的泄漏量比传统设计的汽封泄漏量小,这样就可解决汽轮机各处汽封蒸汽泄漏量大的问题。

2.东汽DAS汽封的特点:

东汽DAS汽封的密封间隙减小,用在各处其强度能都保证,无特殊要求,多用在过桥(中间)汽封、或平衡盘处,可以承受前后较高压差。虽能保护其他齿形不遭破坏,但会与转子发生碰磨造成机组振动,严重时会威胁影响汽轮机的安全,同是动静碰磨后密封效果会有所下降。

东汽DAS汽封的业绩较少,主要是在东汽生产的汽轮机上有所应用,如安徽凤台电厂、安徽阜阳电厂,目前在哈汽生产的600MW汽轮机上无改造业绩,存在一定技术风险。

改造方案二:将高中压缸过桥汽封及高压部分及隔板汽封改造成布莱登汽封。

1.布莱登汽封的原理介绍:

布莱登汽封取消了传统汽封背部的板弹簧,在汽封弧段端面间安装四支螺旋弹簧,并且在每一个汽封弧段的背部进汽侧中间位置铣出一个进汽槽,以让上游来的蒸汽进入汽封弧段背面(见

图1、图2、图3),为保证汽封在关闭、打开的过程中不出现卡塞现象,增大了汽封弧块“脖颈”与汽封槽道处的间隙。

当机组启机时,压力蒸汽对汽封弧段产生一个蒸汽作用力,这个作用力随汽轮机蒸汽进入量的增加而增加。

布莱登汽封圈上的受力情况如下:

(1)关闭力:进汽侧蒸汽压力p1作用于汽封弧段背部产生的作用力F1,出汽侧蒸汽压力p2作用于汽封弧段背部产生的作用力F2。

(2)开启力:蒸汽流过汽封齿与转子轴向间的通道时,对汽封产生的作用力F3和汽封弧段端面间压弹簧产生的作用力F4。

(3)摩擦力:汽封弧块闭合或张开时与汽封槽道间的摩擦力F5。

在汽轮机启动时,由于进入的蒸汽量少,相应进入汽封弧段背部的蒸汽量也少,作用于汽封弧段背部的关闭力就小,这时:F1+F2

汽封块在开启力的作用下,各汽封处于张开状态,远离转子,使汽封齿与转子的间隙保持在较大状态(最大值为汽封退让间隙

与机组正常运行时的汽封间隙之和。汽封退让间隙1.8~2.5mm),从而避免了过临界转速时转子与汽封齿的碰磨。

随着汽轮机通流部分蒸汽进入量的增加,作用于汽封弧段背部的关闭力克服作用于汽封齿侧的开启力及摩擦力,即

F1+F2>F3+F4+F5

汽封弧块在关闭力的作用下逐级关闭,并最终实现汽封块的关闭,使汽封齿与转子的间隙减到最小值,并予以保持。

布莱登汽封在机组启动时,当蒸汽流量在3~30%设计流量下汽封块开始跳跃式关闭;在停机时,蒸汽流量减少到2~3%,汽封全部张开。这样,布莱登汽封通过汽封弧段的自动开启和关闭,实现了在机组启、停机过程中汽封与转子的间隙可调,避免了由于振动产生的动静碰磨,在机组正常运行中汽封与转子的间隙始终保持在较小的范围内,甚至低于设计值。

2.布莱登汽封的特点:

很好的解决机组启、停机过程中过临界转速时汽封与转子产生动静碰磨使汽封与转子间隙增大,能适应机组负荷的变化自动调整密封间隙,有效地避免汽封与转子的碰磨提高机组运行的安全性,避免由于碰磨造成汽封的磨损,同时还减少每次大修更换大量汽封备品和缩短大修工期的费用。

某电厂改造布莱登汽封五年后揭缸汽封齿无磨损图

布莱登汽封是由美国布莱登工程公司提供设计图纸,技术成熟可靠,国内改造成功案例较多,迄今位置国内已有300余台机组进行了改造。

经过对上述两种方案的对比,参照国内同类型汽轮机的改造经验,推荐采用第二种改造方案(即将高中压缸汽封改成布莱登汽封)。该方案技术较成熟、业绩较多、经济效益明显,不仅能提高机组的经济性,还能保证机组长期安全运行。

三.工程规模和主要内容

保持汽封材质和尺寸不变,由厂家负责将高压进汽平衡环5

道汽封、中压进汽平衡环1道汽封、高压排汽平衡环3道汽封、

高压隔板前4道汽封更换成布莱登汽封,并将各部汽封间隙调整0.35±0.05mm。

序号改造部位数量(圈)汽封改造型式材质

1 高压进汽平衡环汽封 5 布莱登汽封 1Cr12Mo

2 中压进汽平衡环汽封 1 布莱登汽封 1Cr12Mo

3 高压排汽平衡环汽封 3 布莱登汽封 1Cr12Mo

4 高压隔板汽封 4 布莱登汽封 1Cr12Mo 四.项目实施进度计划

1、2011年08月10日前完成可行性研究报告编制

2、2011年08月31日前可研报告上报中电国际董事会审批

3、2011年10月31日前完成技术规范书编写

4、2012年06月30日前完成项目招标工作

5、2012年09月30日前完成设备的加工制造

6、2012年12月31日前设备发货到厂

7、2013年01月31日前完成竣工报告编写

8、2013年02月31日前完成工程结算

五. 项目投资估算/概算明细表

1、项目投资估算/概算汇总表 单位:99.5万元 前期费

设备费 99.5 材料费

施工费 设计费

其它费 项目总投资 99.5

2、项目投资估算/概算明细表 项目 序 号 名称 单位数量 单价(元) 总价(元)

备注 1 前

期 费 合计

1 设

备 费 合计

1 高压进汽平衡环汽封 圈 5

2 中压进汽平衡环汽封 圈 1

3 高压排汽平衡环汽封 圈 3

4 高压隔板汽封 圈

4 995000 材 料 费 合计

1 设

计 费 合计

1 施

工 费 合计

1 … 其

它 费 合计

总计

995000

六.项目总体预期效果 效益分析

序号改造部位

预计改

造前汽

封间隙

(mm)

改造后

布莱登

汽封间隙

(mm)

预计热耗

降低值

kJ /(KW·h)

影响

煤耗

g /(KW·h)

1 高压进汽平衡环汽封 0.9 0.3 14.46

2 中压进汽平衡环汽封 1.1 0.

3 8.21

3 高压排汽平衡环汽封 1.0 0.3 10.22

4 高压隔板汽封 0.9 0.3 10.30

1.41

经过布莱登汽封改造后,机组热耗可以降低43.1kJ/(KW·h),对应机组煤耗可降低1.41g/(KW·h),按照年平均发电量30亿千瓦时、标煤价格600元/吨计算,每年可为企业直接获得税后利润约为280.87万元,6个月即能回收全部投资。

七.专家审查意见

如进行技术专家审查,附专家审查意见。主要内容包括项目是否有必要进行、项目方案是否可行、投资估算是否合理、项目是否存在改进的问题等。专家需签字

八.主管部门审查意见

九.主管领导意见

十.项目组织管理一览表

项目名称:

项目主管部门生产技术部项目负责人可研报告编制人×××技术主管人项目设计单位(拟)

外部技术专家

内部技术专家

汽轮机改造方案分解

汽轮机改造方案 技 术 协 议 山东九鼎环保科技有限公司 2014.01

一、项目背景及改造方案 1.1 项目背景2 1.2 改造方案2目录2 二、6MW抽汽凝汽式汽轮机概况、主要参数及供货范围 2 2.1 机组概况2 2.2 改造后抽凝机组主要参数2 2.3 供货范围2 2.4 改造工作内容2 三、汽轮机拆机方案2 3.1 概述2 3.2 拆除方案2 四、汽轮机基础改造2 五、汽轮机安装与调试 5.1 汽轮机安装方案2 5.2 汽轮机调试方案2 六、施工、验收及质保 七、工期22 2

一、项目背景及改造方案 1.1 项目背景 本项目所在区域为一开发区,发展迅速,有限公司电站目前为2 台40t/h 的锅炉+2 台纯凝汽式汽轮机(12MW 和6MW 各1 台),为响应泰安市政府拟对开发区进行冬季供热的号召,泰安中科环保电力有限公司对现6MW 的纯凝汽式汽轮机改造为抽汽供热汽轮机的方式,实现对开发区换热站供蒸汽,然后由开发区换热站转换成热水后向附近热用户供热。 1.2 改造方案 本项目将对泰安中科环保电力有限公司的原6MW 纯凝汽式汽轮机改造为6MW 抽汽供热凝汽式汽轮机,同时对汽轮机基础进行改造,以实现抽汽供热汽轮机的安装、汽轮机对外供热、满足周边用户的用热需求。 二、6MW 抽汽凝汽式汽轮机概况、主要参数及供货范围 2.1 机组概况 C6-3.43/0.981 型汽轮机,系单缸,中温油压,冲动,冷凝,单抽汽式汽轮机,额定功率为6000kW。 2.2 改造后抽凝机组主要参数

2.3 供货范围 1)包括C6-3.43/0.981 2 2.4 改造工作内容

汽轮机汽封间隙调整及解决方法

汽轮机汽封间隙调整及解决方法 【摘要】在进行汽轮机本体安装和检修工作中,汽轮机汽封间隙调整是其中最为关键的工序之一,他直接关系到整个汽轮机组的安全性和经济性,在我们参加的10多台大型国产汽轮机组安装、检修过程中发现很多由于施工人员经验和工作方法不正确而导致的机组运行的不稳定,现将易出现的问题整理如下,跟大家共勉。 【关键词】汽轮机;汽封调整;方法 引言 汽封调整的目的是通过对汽缸部套、汽封块的调整,在保证安全的前提下,使汽封间隙处于标准范围内并趋向最小值。这样才能保证多级汽轮机各级间减少漏汽损失,提高机组热效率。汽封间隙的测量调整工作在轴系中心及隔板和轴端汽封套洼窝中心调整好之后进行。测量汽封径向间隙通常有两种方法:一是贴胶布法:二是压铅丝法。两种测量方法中,第二种要比第一种测量准确,而且比较真实。对于汽封间隙调整出现偏差,找出了现行调整工艺存在的主要问题有: (1)未考虑猫爪热膨胀对汽封间隙的影响; (2)加工、测量偏差对调整的影响 (3)施工人员工艺水平对调整造成的影响; (4)转子垂弧对汽封间隙的影响 (5)未考虑转子垂弧对汽封间隙的影响: 2 存在的问题分析及解决措施 2.1 猫爪热膨胀对汽封间隙的影响 高压汽轮机的汽缸尽管在汽缸结构上各不相同,但其支承分为下汽缸猫爪支承和上汽缸猫爪支承二种。下汽缸猫爪支承方式,汽缸猫爪的支持平面低于机组的中心线,则运行时猫爪温度将高于轴承座的温度,使缸内汽封洼窝中心抬高,造成汽封下部间隙减小,甚至产生碰磨。猫爪支承处轴封洼窝中心抬高的数值大小跟猫爪的尺寸、猫爪的温度和支持形式有关。假如猫爪高度H为t50m/m,猫爪平均温度为250℃,相应这部分轴承座的温度为80℃,线膨胀系数取Q=L 2×lo-5/℃。则轴封洼窝中心的抬高值为:△H=Q HA t=1.2×10-5×150×(250—80)=0.3[m/m,即轴封洼窝下部间隙将减少0.3lm/m,而上部间隙将增大0.3tm/m。因此缸内汽封洼窝将随时发生变化,危及机组安全经济运行。所以应该查阅汽轮机厂家的资料、图纸,根据《安装说明书》中关于猫爪膨胀值的要求,

高中压缸扣缸报告

扣缸报告 工程项目:信阳华豫电厂#1机组A级检修 单项名称:#1汽轮机本体高中压缸检修 检修单位:河南第一火电建设公司 检修项目负责人:范成刚 批准人2013年月日设备部2013年月日设备部专业负责人2013年月日监理2013年月日检修专业负责人2013年月日编写人2013年月日

扣缸报告 信阳华豫电厂汽轮机机组系东方汽轮机厂生产的D300K-B00003AZM型机组。本次检修检修等级A级。机组于2013年10月20日正式开始A级检修,高中压缸检修工作从25日正式开始,经过25天的精细检修,已具备回装条件,现申请高中压缸回装验收,请监理公司和设备部验收批准。 现就高中压缸扣缸资料汇报如下,本报告共分八个部分: 第一部分:设备简介及高中压缸检修项目完成情况 第二部分:修前状况和检修中发现主要问题及对策 第三部分:汽缸、隔板及轴封检修情况及数据 第四部分:转子检修情况及数据 第五部分:遗留问题原因论述 第六部分:汽轮机扣盖前自检情况 第七部分:扣缸组织机构 第八部分:扣缸安全技术措施

扣缸报告 第一部分:设备简介及高中压缸检修项目完成情况 一、本次低压缸A 级检修安排: 信阳华豫电厂#1机组A 级检修计划检修时间为2013年10月20日-—12月5日,预定基本工期为55天。按预定#1机组2013年10月20日正式开始检修,高中压缸于10月25日停盘车,10月25日汽机本体高中压缸检修工作全面展开。截止到11月19日,汽机本体高中压部分的检查修理工作已经结束,已具备扣缸条件。 二、#1汽轮机主要设计规范: 序号 名称 参数(规范) 序号 名称 参数(规范) 1 型号 D300K-B00003AZM 14 额定热耗 2 型式 15 临界转速 (一阶) 3 额定功率 16 4 最大功率 17 5 主蒸汽压力 18 临界转速 (二阶) 6 再热压力 19 7 主蒸汽温度 20 通流级数 1调节×8压力(高压缸) 8 再热温度 21 6级(中压缸) 9 背压 22 2×6(低压缸) 10 转速 23 配汽方式 11 转向 24 汽封系统 12 回热抽汽 25 叶片高度 13 给水温度 26 制造厂 东方汽轮机厂 三、汽轮机本体高中压缸主要检修项目: 1、拆化妆板 2、高中压缸及导汽管保温拆装 3、导汽管法兰、螺栓检修 4、中低压连通管拆装 5、高中压缸解体 6、汽缸、喷嘴、隔板、隔板套、轴封清理检查。 7、螺栓、定位销全部拆出清理并配合金属检查

高中压缸联合启动(全)

600MW汽轮机启动曲线说明(高中压缸联合启动) 1冷态启动 1.1起机前第一级金属温度为105摄氏度,由冷态启动转子暖机规程时间为1小时,此时间从中压进汽温度达260摄氏度时开始 计算,任何情况下不得缩短。 1.2在暖机期间要限制主蒸汽温度不超过425摄氏度,再热进汽温度保持在260摄氏度以上。 1.3冲转参数为主蒸汽温度340摄氏度,主蒸汽压力6MPa。 1.4如要做超速试验,则在试验之前应在10%负荷下至少运行4小时。 1.5蒸汽室金属温度达到当时的主蒸汽压力的饱和温度后,才能进行控制阀门的切换。 1.6初始起机,在5%负荷下至少要停留30分钟,且在停留期间主蒸汽温度每变化3摄氏度再增加1分钟的停留时间。 2温态启动 2.1起机前第一级金属温度为260摄氏度,由温热态启动推荐值确定从冲转至并网转速最短只需10分钟。 2.2冲转至额定转速蒸汽参数为主蒸汽压力8MPa,主蒸汽温度420摄氏度,由温热态启动推荐值确定,最低负荷保持时间为5分 钟。 2.3由变负荷推荐值确定,在最低负荷保持至额定负荷时间,汽轮机不受限制,可以根据锅炉状况而定。 3热态启动 3.1起机前第一级金属温度为400摄氏度,由温热态启动推荐值确定,从冲转至并网转速需10分钟。 3.2冲转参数为主蒸汽压力8MPa,主蒸汽温度470摄氏度,由温热态启动推荐值确定最低负荷保持时间及至额定负荷时间不受限 制。 4极热态启动 4.1起机前第一级金属温度为450摄氏度由温热态启动推荐值确定,从冲转制并网转速需10分钟分钟。 4.2冲转参数为主蒸汽压力10MPa,主蒸汽温度520摄氏度,由温热态启动推荐值确定温热态启动推荐值确定最低负荷保持时间 及至额定负荷时间不受限制。

680MW机组汽轮机汽封间隙的调整

680MW机组汽轮机汽封间隙的调整 一、概述 华能日照电厂#3机组汽轮机为上海汽轮机有限公司生产的超临界、单轴三缸四排汽、中间再热、凝汽式汽轮机,型号N680/24.2/566/566。该机组于2012年9月进行A级检修。为提高机组运行的安全性和经济性,在本次大修中决定对#3机进行汽封径向间隙进行调整。汽轮机汽封间隙的测量与调整是汽轮机检修工作中一项复杂且工作量极大的工作。汽封径向间隙测量与调整工作的好坏,直接影响汽轮机的热效率。汽轮机揭缸提效的重要工作之一就是汽轮机汽封径向间隙的调整。本文主要以#3机组汽轮机低压缸为例介绍汽封径向间隙的测量与调整。 二、技术方案 1、测量隔板洼窝变形 由于结构、制造、热应力等原因,机组运行后汽缸存在一定的变形,机组大修时要进行变形量的测量和变形量分析,在检修时根据变形量进行间隙的缩小和修正。测量全实缸状态相对于出半缸的洼窝变化量,是真实调整汽封间隙的关键环节,真实的掌握变形量,才能优化调整汽封间隙。洼窝变形量测量主要是为了调整并优化汽封间隙调整服务的。 在汽缸清理工作结束后,下汽缸的部件全部就位,在轴系中心调整结束后吊入假轴,利用油档洼窝作为监视尺寸,将假轴中心调整到与汽轮机转子中心相同,此工作可用假轴两端的轴套来完成,然后选择测量位置,如图一所示,在假轴上放置六个假轴盘,六个假轴盘分别针对不同的持环(或称隔板套),每个假轴盘上有三个测量支架,支架端部有传感器,传感器距离被测洼窝约3mm,利用间隙传感器通过不断盘动假轴,测量被测物体在左、右、下三个位置的读数,并做好记录。 图一假轴及其测量仪器 然后,吊进上半持环等上部部件,盘动假轴,测量被测物体在上、下、左、右四个位置的读数,做好记录;紧中分面螺栓后,用同样方法读数并记录;吊内上缸,测出未紧中分面螺栓的数值,然后紧一半螺栓,并使中分面无间隙,再用上述方法读出各数值;扣外缸,测出紧中分面螺栓前各数值,然后紧1/3螺栓,使中分面无间隙(中分面间隙不大于0.05mm),测出各数值,用逆顺序吊出汽缸各部件,并测量各顺序中的读数。整理汇总各测量数据,将变形量绘制成曲线,以备轴封、汽封调整时用。

汽轮机高中压缸培训教材

汽轮机高中压缸培训教材 高中压缸采用单流程、双层缸、水平中分结构,外缸为上猫爪支撑形式,上下缸之间采用螺栓连接。在高压缸第6级后、高压缸排汽、中压缸第11级后和中压缸排汽布置四级抽汽口,分别供1号、2号、3号高加及除氧器、小机用汽。高中压内缸之间设置有分缸隔板,在高中压外缸两端及高中压内缸之间设置有轴端密封装置,在高中压外缸和轴承座之间设置有挡油环。 汽轮机高中压缸 的主要特点 A、采用高中压 合缸技术: 这种布置方法是 将高压内缸和中压 内缸布置在同一个外缸之内,减少了轴承和轴封数量,缩短汽轮机的跨度,而且蒸汽流向相反,可以更好的平衡轴向推力。高温部分集中在汽缸的中段,轴承和调节部套受高温影响较小,两端外轴封漏汽较少。高中压合缸结构的汽轮机主要缺点是:高中压分缸隔板承受较大的压差,在汽轮机变工况时产生较大 热应力,机组的 动静部分胀差

不容易控制,由于高中压进汽管道集中布置在中部,显的拥挤,给检修带来诸多不便。另外为了防止汽轮机在甩负荷时,中间汽封室积压串汽,引起汽轮机超速,汽轮机在中间汽封室设置事故排放阀(BDV阀),在甩负荷时,将中间汽封室的存汽引至凝汽器。 B、高中压缸为双层缸结构: 双层缸结构可以使热应力分散于两缸,内缸的温度梯度和压力梯度变小,在承受相同的热应力的情况下,缸体壁厚可以减薄,有利于变工况运行。 双层缸结构的汽轮机汽缸法兰薄,在变工况情况下,这些部件的温度变化较快,没必要设置专门的法兰螺栓加热装置。 C、汽缸缸体采用抗高温材料: 由于高压及中压部分进汽压力、温度的升高,必须在材料、结构及冷却上采取相应措施。汽轮机汽缸高压部分采用具有优良的高温性能CrMoV钢;在结构上保证内缸的最大工作压力为喷嘴后的压力与高排压力差,外缸最大工作压力为高排压力与大气压之差,有效的降低了汽缸的工作压力,同时进汽口及遮热环的布置使得汽缸有一个合理的温度梯度,便于控制汽缸热应力,保证汽缸的寿命损耗在要求的范围内。 中压部分除中间汽封漏汽冷却高中压转子中间汽封段以

汽轮机本体结构(低压缸与发电机)

第一章600WM汽轮机低压缸及发电机结构简介 一、汽轮机热力系统的工作原理 1、汽水流程: 1〉再热后的蒸汽从机组两侧的两个中压再热主汽调节联合阀及四根中压导汽管从中部进入分流的中压缸,经过正反各9 级反动式压力级后,从中压缸上部四角的4 个排汽口排出,合并成两根连通管,分别进入Ⅰ号、Ⅱ号2个低压缸。低压缸为双分流结构,蒸汽从中部流入,经过正反向各7 级反动式压力级后,从2个排汽口向下排入凝汽器。排入凝汽器的乏汽在凝汽器内凝结成凝结水,由凝结水泵升压后经化学精处理装置、汽封冷却器、四台低压加热器,最后进入除氧器,除氧水由给水泵升压后经三台高压加热器进入锅炉省煤器,构成热力循环。 二、汽轮机本体缸体的常规设计 低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,,提高了转子的寿命及启动速度。#1 低压转子的前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好的自位性能,而且能承受较大的载荷,运行稳定。低压转子的另外三个轴承为圆筒轴承,能承受更大的负荷。 三、岱海电厂的设备配置及选型 1)我公司的汽轮机组选用上海汽轮机厂生产的 N600-16.7/538/538 型600MW 机组。最大连续出力可达 648.624MW。这是上海汽轮机厂在引进美国西屋电气公司技术的基础上,对通流部分作了设计改进后的新型机组,它采用积木块式的设计。形式为亚临界参数、一次中间再热、单轴、四缸、四排汽凝汽式汽轮机。具有较好的热负荷和变负荷适应性,采用数字式电液

调节(DEH)系统。机组能在冷态、温态、热态和极热态等不同工况下启动。 汽轮机有两个双流的低压缸;通流级数为28级。低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,提高了转子的寿命及启动速度。低压缸设有四个径向支持轴承。#1 低压缸的前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好的自位性能,而且能承受较大的载荷,运行稳定。低压转子的另外三个轴承为圆筒轴承,能承受更大的负荷。 汽轮机低压缸有4级抽汽,分别用于向4 台低压加热器提供加热汽源。N600-16.7/538/538汽轮机采用一次中间再热,其优点是提高机组的热效率,在同样的初参数条件下,再热机组一般比非再热机组的热效率提高4%左右,而且由于末级蒸汽温度较非再热机组大大降低,因此,对防止汽轮机组低压末级叶片水蚀特别有利。但是中间再热式机组的热力系统比较复杂。 汽轮机额定基本参数 型号N600-16.7/538/538 铭牌出力603.7MW 结构形式亚临界、一次中间再热、单轴、四缸、四排汽、反动式、冷凝式 主汽压力16.7MPa 主汽温度538℃ 再热汽压力 3.194MPa 再热汽温度538℃ 背压11.8kPa(a) 冷却水温18℃ 给水温度278.2℃ 转速3000r/min 旋转方向从汽轮机端向发电机端看为顺时针 汽轮机抽汽级数8级

汽轮机汽封

汽轮机汽封 (一) 汽轮机有静子和转子两大部分。在工作时转子高速旋转,静子固定,因此转子和静子之间必须保持一定的间隙,不使相互摩擦。蒸汽流过汽轮机各级工作时,压力、温度逐级下降,在隔板两侧存在着压差。当动叶片有反动度时,动叶片前后也存在着压差。蒸汽除了绝大部分从导叶、动叶的通道中流过做功外,一小部分会从各种间隙中流过而不做功,成为一种损失,降低了机组的效率。(二) 转子还必须穿出汽缸,支撑在轴承上,此处也必然要留有间隙。对于高压汽缸两端和中压汽缸的前端,汽缸内的蒸汽压力大于外界大气压力,此处将有蒸汽漏出来,降低了机组效率,并造成部分凝结水损失。在中压缸的排气端和低压缸的两端因汽缸内的蒸汽压力低于外界的大气压力,在主轴穿出汽缸的间隙中,将会有空气漏入汽缸中。由于空气在凝汽器中不能凝结,从而降低了真空度,减小了蒸汽做功能力。(三) 为了减小上述各处间隙中的漏气,又要保证汽轮机正常安全运行,特设置了各种汽封。这些汽封可分为通流部分汽封、隔板汽封和轴端汽封三大类。就工作原理来讲,这三类汽封均属迷宫式汽封。1--隔板汽封2--围带汽封编辑本段二.汽封的结构汽封的结构形式一般可分为曲径汽封(迷宫汽封)、碳精汽封和水封三种。由于后两种在现代的汽轮机中很少应用,所以下面仅介绍曲径汽封的结构。迷宫式汽封的结构(表2-1) 迷宫式汽封按其齿形可分为平齿、高低齿和枞树形等多种形式,按汽封齿的加工方法又可分为整车式、镶嵌式和薄片式等。右图是各种迷宫式汽封齿的结构形式。(a)--整车式平齿汽封,(b)(c)--整车式高齿汽封, (d)--镶嵌片式汽封,(e)(f)--整车式棕树形汽封(g)(h)(i)--薄片式汽封(一).轴端汽封轴端汽封多为高低齿汽封,都设计成多段结构,每段由若干个汽封环组成,相邻两段之间设置汽室,如下图所示。汽封齿是加工或镶嵌在汽封弧段上的,汽封弧段又分可嵌装在汽封体内壁的环形槽道内形成汽封环,整个汽封环由6~8段汽封弧段组成。汽封弧段采用弹性支承,即在每个弧段的外圆面上用销子连接一个弹簧片,嵌入槽道后弹簧后弹簧片使弧段与槽道的支承面贴合。上汽封体中分面处装有压块,以防汽封弧段沿周向滑移和脱落。下汽封体靠挂耳在汽缸凹槽两侧铣出的凹台上,其底部通过焊接在汽缸凹槽内的定位键同汽缸配合。汽封体上、下两半部销钉和螺钉固定在一起,在其水平接合面处的进汽侧,每个环形槽道都开有进汽通道。汽封体在汽缸端部的固定方法与隔板套基本相同,但大型汽轮机最外端的汽封体一般用螺钉紧固在汽缸端面上,其中高温高压端的汽封体通过膨胀圈固定在汽缸上。薄片式汽封片用紧丝嵌在转子上,或同时嵌在汽封环和转子上。对于套装转子或组合转子的套装端,其汽封凸肩一般在汽封套上加工,然后热套在主轴上。而整锻转子、焊接转子或组合转子的整锻端,其汽封凸肩或汽封片直接在主轴上加工或镶嵌,此时应在主轴上对应两汽封环的轴向间隙处加工出膨胀槽。另外,某些汽轮机也采用枞树形、游标式、斜切式或径向式等多种迷宫汽封作为轴端汽封。(二).隔板汽封几种常见的隔板汽封(a)弹性、梳齿、曲折式,(b)弹性、镶嵌、曲折式(c)弹性、平齿式,(d)刚性、平齿式, 表2-1中b)、(c)、(d)为常用的隔板汽封齿形式,其结构可分为刚性汽封和弹性汽封两种。弹性汽封在汽封弧端的背面装有弹簧片,有时用拉弹簧顶替,某些汽封弧段背面还有调整垫片。刚性汽封一般只用于中压汽轮机上。弹性隔板汽封的装配结构与轴端汽封相似。高压部分常采用整车式隔板汽封;低压部分常采用镶嵌片式汽封,其汽封弧段和汽封片采用不同的材料。由于低压部分有较大的胀差,低压级隔板汽封的轴向间隙应放大,甚至采用光轴或平齿汽封。(三).围带汽封围带汽封设置在叶片顶部与隔板外缘的凸缘之间,常采用镶嵌片式或薄片式平齿汽封,汽封片直接镶嵌在凸缘上。也有在围带上直接车出汽封齿,对应的静止部分嵌上软金属制成的汽封环。在末几级无围带的叶片上,将叶顶削薄,使动静部分保持最小的径向间隙。一般在叶片进汽侧顶部和根部设置轴向汽封。叶顶的轴向汽封由围带端部车薄而成;叶根的轴向汽封通常在叶片进汽侧根部车出牙齿形汽封齿。其结构下图。1--喷嘴组,2--动叶栅,3--转向导叶,5--围带径向汽封,6--叶顶轴向汽封,7--叶根轴向汽封编辑本段三.汽封径向间隙和轴向间隙1.汽封径

各种汽轮机汽封形式介绍

汽轮机各种型式汽封的应用及评价 关键字:汽封, 刷式汽封, 改造位置, 优化建议, 性能对比 引言 汽轮机是将蒸汽的热能转变为机械能的一种动力机械,级是其最基本的工作单元,在结构上它是由喷嘴和其后的动叶栅所组成,蒸汽进入喷嘴后其热能转变为动能,然后进入动叶给动叶片以冲动力,使叶轮旋转而输出机械功。大型汽轮机就是由多个级组成,每个级都有动、静两部分组成,因此整个汽轮机也就由动、静两部分组成。汽轮机的转动与静止部分之间必须有一定的间隙,以防相互摩擦。由于汽缸内外、隔板前后以及带反动度的动叶两侧存在压差,而相应各处动静部分之间又必须保持一定间隙以使它们不致相碰,因此必须设置汽封装置。 汽轮机的汽封根据安装的位置不同分为:轴端汽封(简称轴封)、隔板汽封、和通流部分汽封,分别用来防止汽轮机的轴端、隔板和动叶顶部、根部蒸汽的泄漏,其作用分别是防止外界空气进入汽轮机,与汽轮机内的蒸汽混合,减少蒸汽泄漏量,从而减少化学补水量和防止高位能的工作介质低位能流动。作为汽轮机的易损件和必备部件,汽轮机的汽封越来越引起从事汽轮机设计的工程技术人员的关注。因为从汽轮机运行的测试结果可以看出汽轮机级间蒸汽泄漏使得机组内效率降低,漏汽损失占级总损失的29%,其中动叶顶部漏汽损失则占总漏汽损失的80%,比静叶或动叶的型面损失或二次流损失还大,后则仅占级中损失15%。。近年随着汽轮机汽封技术的不断发展,汽轮机运行的安全可靠性和机组热效率都得到相应的提高。 为了减少漏气损失,提高机组安全和经济性,国内外有关部门对传统汽封进行改造和设计,已陆续出现了许多新型汽封。 一、 传统疏齿式(迷宫式密封)密封 传统的迷宫密封为一种非接触式密封,不能杜绝泄漏,而是用逐级节流的方法来抑制泄漏,由于受设备轴向长度的限制,使迷宫密封泄漏量较大,并且迷宫密封的泄漏流量随着压差的增大而急剧上升,其密封效率急剧下降,据相关统计资料显示,汽轮机间隙每增加0.0254mm,平均功率损失约4~5kW 。 目前被广泛应用于大、中、小型汽轮机的传统汽封主要为迷宫式汽封。迷宫式汽封中根据断面的形状不同常用的有枞树型汽封和梳齿式汽封。其中梳齿式汽封因其汽封成本低、结构简单、安全可靠且易于安装而被广泛应用。其结构如下图: 梳齿式迷宫汽封简图

汽轮机高中压缸安装作业指导书DOC

REV 版次 签名日期签名日期签名日期 MODI. 修改 STATUS 状态编写AUTH. 审核CHK’D BY批准APP’D BY 广东火电工程总公司 GUANGDONG POWER ENGINEERING CORPORATION 文件号DOCUMENT NO. GPEC/SWP/OG/QJ/03/0004 汕尾工程项目部 作业指导书 3号机汽轮机高中压缸安装 版权所有COPYRIGHT GPEC/SWP 2010 Page 1 of 9

目录 1.施工概况 (3) 2.依据的图纸、文件及标准 (3) 3.作业准备和条件要求 (3) 4.施工工序关键的质量控制点 (4) 5.作业程序内容 (4) 6.计算校核: (6) 7.作业检查验收和应达到的质量标准 (7) 8.安全措施 (8) 9.记录和签证 (9) 10.环保要求 (9) 11.附录 (9) 发文范围:(共份)归档夹类:夹号: (N为电子分发) 本版文件于年月日开始实施。 批准人:

3号机汽轮机高、中压缸安装 1. 施工概况 汕尾电厂一期3号660MW机组汽轮机为超超临界、一次中间再热、单轴、三缸四排汽、双背压凝汽式汽轮机。本机组型号为N660-25/600/600。额定转速为3000r/min,转向为从汽轮机向发电机侧看去为逆时针方向。 本型号汽轮机的高压通流部分由1个单列调节级和7个压力级组成;中压通流部分由6个压力级组成。高中压缸为双层缸结构,高中压缸内部装有高压内缸、中压内缸、高压隔板、喷嘴室、中压隔板及前、中、后汽封等。※安装注意:开启高压内缸上半时,一定要装上吊住蒸汽室上半的专用螺钉,以防因磨擦而将蒸汽室上半带起并滑落※。 2. 依据的图纸、文件及标准 2.1. 《工程建设标准强制性条文》(电力工程部分)2006版 2.2. 《电力建设安全工作规程》(火力发电厂部分)DL5009.1-92 2.3. 《电力建设施工及验收技术规范(汽机篇)》DL5011-92 2.4. 《火电施工质量检验及评定标准(汽机篇)》DL/T5210.3-2009 2.5. 东方汽轮机厂提供的相关图纸和说明书 2.6. 相关的合同文件及会议纪要 3. 作业准备和条件要求 3.1. 作业前的施工机工具准备 3.1.1. 汽机厂房行车80t/20t两台 3.1.2. 水准仪一台 3.1.3. 液压分体油顶(5t:1组;25t:2组;50t:2组) 3.1. 4. 螺旋千斤顶(常用) 3.1.5. 汽机厂供专用工具、吊具一批 3.1.6. 合像水平仪两台 3.1.7. 百分表(带表架)0~10mm 10套 3.1.8. 千分表(带表架)0~5mm 2套 3.1.9. 外径千分尺0~25 mm 25~50 mm 250~300 mm 300~350 mm各一套 3.1.10. 内径千分尺一套

汽封详细介绍种类和图片分解

一,汽封类型介绍 汽封类型:传统汽封、刷式汽封、蜂窝汽封、布莱登汽封、DAS汽封、接触式气封,布莱登汽封、侧齿汽封、叶根汽封接触式油档、倾斜式蜂窝汽封(机组轴封间隙在0.30-0.60之间的比较多)。 第一代汽封是梳齿型汽封 第二代汽封是接触式汽封,有布莱登汽封和蜂窝状型汽封,但布莱登汽封存在的很大的问题,在变负荷时存在卡涉现象。 第三代汽封是刷式汽封,在哈尔滨有一个公司生产接触式汽封实现了无缝汽封,不过这种汽封磨损比较严重,但汽封效果是最好的。 目前常见的汽封形式:梳齿汽封——汽轮机出厂时基本是梳齿;蜂窝汽封——国内厂家很多,有的电厂使用不能正常起机,个人感觉可以少量使用,低压轴封及低压叶顶,另外选择厂家很重要;布莱登汽封——美国技术,国内哈尔滨布莱登生产,抄袭国外技术,常在平衡环位置使用,其他位置均不适用,也有用在其他部位但效果不好;接触式汽封——哈尔滨通能专利,是从浮动油挡发展而来,两处的温度不一样,接触易引发振动等事故,如楼上所说要是真出点事划不来;侧齿汽封——大连华鸿专利,对梳齿的优化汽封,安全但效果有限,适合领导做创业绩项目使用;刷式汽封——南京某公司生产,抄袭国外技术,国内不成熟,现在的质量很差;铁素体汽封——概念汽封,梳齿汽封材质不同而已,成本低但售价高。汽封效果好坏间隙很重要,选用的汽封要保证机组安全,然后调整合适的间隙。

二、文字加图片分析 1、刷式气封 局限性:运行后易倒伏,持久性比较差,进口合金钢丝周期比国产长。 这是一种新型刷封,是超越蜂窝汽封之上的刷式汽封,刷材料是钴基合金,耐高温,耐磨损,整个结构充分的考虑到了安全性能,目前已经好几个电厂改造使用,效果很不错的。

研究汽轮机汽封改造的节能效果

研究汽轮机汽封改造的节能效果 发表时间:2018-07-02T11:44:08.670Z 来源:《电力设备》2018年第6期作者:翟峰[导读] 摘要:在我国节能降耗工作的推进下,当前的汽轮机技术也有了一定的进步,要求做好汽轮机汽封改造工作中,不断推进汽轮机的节能效果。 (神华亿利能源有限责任公司电厂内蒙古 014300)摘要:在我国节能降耗工作的推进下,当前的汽轮机技术也有了一定的进步,要求做好汽轮机汽封改造工作中,不断推进汽轮机的节能效果。 关键词:汽轮机;汽封改造;节能引言 目前,随着汽轮机设计制造技术的不断引进,国内汽轮机设计制造水平得到大幅度提升,汽轮机内效率也达到较高水平。然而机组投产后,各种容量汽轮机的内效率普遍达不到设计值,导致机组运行经济性下降。影响汽轮机内效率的因素很多,其中汽轮机通流部分动、静叶汽封和轴封漏汽是导致汽轮机内效率降低的重要原因,特别是汽轮机参数越来越高,相同密封间隙下,通过级间汽封的流量增大。现代汽轮机最常用的汽封仍为梳齿式结构。近几年来,随着技术的发展,从国外引进了多种新型汽封,较典型的有蜂窝汽封、刷式汽封、可调式汽封、接触式汽封、侧齿汽封等。尽管这些汽封结构形式不尽相同,但设计者的指导思想是通过增加齿数、减小间隙、增加阻力,来提高密封效果,减小漏汽所造成的损失。汽封的改造和改进都是为了减少漏汽,提高汽轮机内效率,但不同的汽封有着不同的技术特点和工作特性,目前各种新型汽封在汽轮机汽封节能改造中得到广泛应用。 1、刷式密封的原理 相较于传统的齿型曲径汽封,刷式汽封的密封性能更好,其泄漏量约为是齿型曲径汽封的1/5,同时,刷式汽封是一种柔性密封型式,具有高效阻尼,并能够在保证密封效果的情况下对汽轮机动叶和静叶之间瞬态不同心具有一定的容忍度,能够改善了转子的稳定性,提高机组运行安全性。刷式汽封的刷丝是由钴基高温合金制成的,钴基高温合金的特点是韧性高、脆性低,即使在汽轮机运行的高温、高压和高转速的恶劣环境中刷丝也能稳定工作。由图1可以看出:刷式汽封是由前面板、背板和夹在两者之间的高密度高温合金丝组成的刷丝组成。刷丝沿转子的旋转方向有一定倾角,机组冷态时,刷丝的尖端与转子间存在一定间隙,机组运行时其间隙在热膨胀和蒸汽压差作用下闭合;刷丝与转子表面轻微接触,刷丝的弹性可追踪转子的径向偏移,转子、气流的振动和扰动可以使刷丝恢复原状态,从而达到密封作用。这就是刷式密封的最大结构特点。刷式密封介质泄漏主要发生在密集排列的细金属丝之间形成的微小缝隙中,由于刷子中刷丝间空隙的不均匀性作用,均匀的来流进入刷丝束中就变得不均匀了,利用刷丝间空隙的不均匀结构产生的横向流破坏同向流,使流体产生了自密封效应。横向流动代替向前流动对流体自密封贡献最大,它能增大横流过刷丝的总压降,使汽封的泄漏量减少。随着压比的增大,刷子中刷丝的密度增加,刷丝之间的空隙减少而使有效的泄漏面积减少,同时使泄漏流动的阻力增大,从而使泄漏随压比增加的梯度降低。最终有效降低蒸汽泄漏量。 2、浅谈几个汽封技术改造方案 2.1、技术原则 高压缸部分:根据汽轮机通流部分的原理,越是压力高的级组汽封漏汽量对级效率的影响越大,高压缸的汽封治理尤为重要。根据机组高压缸效率的高低而考虑对高压缸调节级及第几级压力级隔板汽封及叶顶汽封的改造。中压缸部分:考虑到中压缸效率提高对机组热耗率的影响较大(理论计算表明:中压缸效率每提高1%,可使机组热耗率减小23.09kJ/(KW?h))。根据机组效率与设计值的偏差,来决定对中压缸隔板及动叶叶顶汽封改造多少,对于动叶叶顶汽封,可根据揭缸后汽封检查情况,进行汽封间隙调整或者部分汽封升级改造。低压缸部分:低压缸设计作功份额大,提高低压缸效率对经济性的影响更明显,故可采用新型先进汽封对低压缸隔板及动叶叶顶汽封进行升级改造。轴封部分:从汽轮机高中压平衡盘轴封漏汽量、自密封系统的运行以及轴封加热器的运行状况判断,高中压平衡盘汽封漏量较大、轴端泄漏量处于良好的状态,因此可根据揭缸后检查情况,对平衡盘汽封、轴端汽封进行部分汽封升级改造或者汽封间隙调整。 2.2、技术方案 通过性能分析,高压缸效率与设计值低对比,中压缸实际效率与设计值低的对比,低压缸效率和设计值的对比。来决定对通流部分汽封改造的多少以提高机组的经济性。蜂窝汽封具有有效除湿作用。低压缸叶顶汽封采用蜂窝式密封,利用蜂窝的网络结构可以把甩到蜂窝上的水珠吸附住,通过蜂窝背板上设计的疏水槽将收集的水排走,降低了蒸汽湿度,可以有效地保护低压缸末几级动叶片免受水力冲蚀,有利于动叶片的长期安全运行。在低压缸后部湿蒸汽区可采用蜂窝汽封。高中压缸平衡盘轴封漏汽对机组热耗及高、中压缸效率影响较大。计算结构表明:高中压缸间轴封漏汽率每增加1t,影响热耗率升高1.05kJ/(kW?h)。如机组高中压缸间轴封漏汽量大影响机组热耗,应采用自调整汽封产品对此处原有汽封进行改造升级,以保证此处的良好密封效果。低压缸轴封为光轴梳齿汽封,宜改为接触式汽封。 3、汽轮机汽封改造后的测试分析某发电公司两台330MW汽轮机进行综合升级改造,全面更换了汽轮机高、中、低压缸通流部分,通流部分汽封也做了改造,换成新型汽封,机组缸效率和热耗率指标得到大幅度改善。汽封型式的改变和动静间隙的调整,对汽轮机缸效率的提高和热耗率的降低也起到了重要作用,但这不能作为汽封改造评价的依据,因此对于通流部分综合升级改造的汽轮机,可以利用轴封漏汽量、轴封压力、轴加进汽参数和水侧参数等来评价和判断汽封改造的效果。3.1汽封改造前后性能试验数据两台330MW机组汽封改造前后进行性能考核试验,得到轴封漏汽压力、温度、漏汽量以及轴加进汽压力、轴加进汽温度、经过轴加的凝水温升等数据,如表1所示。表1试验结果表明,汽轮机汽封改造后,高压后轴封至除氧器漏汽量、高中压后轴封至低压轴封漏汽量、经过轴加的凝水温升都有明显的降低;1号机组高压后轴封至除氧器漏汽量由9208.5kg/h降低到3042.4kg/h,高、中压后轴封至低压轴封漏汽量由5161.0kg/h降低到2613.5kg/h,经过轴加的凝水温升由2.8℃下降到2.2℃;2号机组高压后轴封至除氧器漏汽量由4805.5kg/h降低到3610.2kg/h,高、中压后轴封至低压轴封漏汽量由2079.0kg /h降低到1176.1kg/h,经过轴加的凝水温升由4.4℃下降到2.6℃。2号机组汽封改造后,利用变汽温法,进行高、中压缸间平衡盘汽封漏汽量的测量计算。 表1汽封改造前后性能试验数据

汽轮机汽封间隙调整方法与工艺 苏善政

汽轮机汽封间隙调整方法与工艺苏善政 发表时间:2018-05-30T09:13:55.093Z 来源:《电力设备》2018年第2期作者:苏善政[导读] 摘要:目前国内新装机组均以提高机组热效率为首要目标,在工程建设全过程实施精细化管理,提高投产质量。 (中国能源建设集团东北电力第一工程有限公司辽宁省铁岭市 112000)摘要:目前国内新装机组均以提高机组热效率为首要目标,在工程建设全过程实施精细化管理,提高投产质量。对施工单位安装工艺要求也越来越高,作为施工单位我们着手于汽轮机通流间隙的质量控制,目的是通过减小汽轮机径向间隙,提高机组热效率。汽轮机径向间隙减小对机组热效率的提高具有决定性作用,本文从保证安装质量出发,针对汽封间隙调整过程进行探索、总结,并在工程中加以应用 和推广。同时也将对我公司其他工程同类机组安装具有指导意义。 关键词:汽封间隙;方法;工艺 1、汽封间隙调整的重要意义 在汽封间隙调整问题上确实存在着安全与经济的矛盾。汽封间隙调整的目的是通过对汽缸隔板、隔板套、汽封套和汽封块的调整,在保证机组安全可靠的前提下,使汽封间隙调整在标准范围内并趋向最小值。这样才能保证汽轮机各级间减少漏汽损失,提高机组热效率。汽封间隙调整是汽轮机安装中一项重要工作,是影响汽轮机热效率的主要因素,也是耗费工时和人力、影响安装进度的关键工序。 2、汽封调整前的准备 2.1调整前的技术准备 2.1.1 组织施工人员熟悉汽封调整厂家提供的相关资料,尤其是汽封的结构、安装工艺、安装注意事项等。 2.1.2熟悉汽轮机厂提供的汽轮机出厂质量证明书、厂供设备图纸,记录并熟悉汽轮机各轴承箱油挡洼窝和高中、低压缸内各部套洼窝偏心设计值,以便准确调整、找正各部套位置。 2.1.3熟悉汽轮机厂提供的汽轮机本体通流部分汽封图纸,记录并熟悉汽轮机本体通流部分径、轴向汽封间隙设计值。 2.1.4根据上述数据,召开专题会,与汽轮机厂工代、汽轮机厂质保部、监理、专家组等相关专业技术人员共同讨论并最终确定汽轮机本体通流部分汽封间隙调整标准(包括汽封齿轴之间径向间隙、整圈膨胀间隙、退让间隙等)、汽封调整工艺和方法等。确定调整标准:取高中压、低压所有通流间隙原有设计值(厂家图纸)的下限值做为新的名义值,名义值的公差取—0.10mm~0mm。 2.1.5对汽轮机安装人员详细讲解汽封径向间隙调整、调整的工序、工艺、注意事项等,提高、加深主要施工负责人对此项工作的认识。 2.1.6汽封块到货后,首先,认真检查产品质量合格证、检验试验报告等是否规范、齐全;其次,对汽封块逐块进行检查、验收,确保每一块汽封块外观质量合格; 2.2汽封调整过程准备 2.2.1分别在半实缸、全实缸状态下,测量记录高中-低转子靠背轮中心。根据靠背轮中心数据,结合高中、低压部分汽封解体情况、汽缸垂弧和变形情况,在半实缸状态下找正汽轮机轴系中心。 2.2.2依据汽缸洼窝、缸内各部套洼窝标准,用拉钢丝方法找正缸内各部套洼窝偏心,测量汽缸垂弧和变形情况。注意:用钢丝找正、调整,在计算、调整时务必考虑钢丝挠度。 2.2.3在完成各部套洼窝中心调整工作后,方可进行汽封间隙调整。 2.2.4对汽封安装、调整工艺要进行严格控制,冷态下的汽封间隙要充分考虑汽轮机热态时的变化情况,以及转子的受力和移动方向的影响。 2.2.5半实缸验收下半部分汽封间隙合格后(半实缸调整汽封间隙时要综合考虑汽缸垂弧和变形等引起的间隙变化,以减少扣全实缸验收次数),在盖上半汽缸前,在每圈汽封内抽去一块汽封块后,方可进行全实缸验收汽封间隙。 2.2.6全实缸调整验收,装100%汽缸螺栓,消除缸内部套、缸面结合面间隙,且汽缸螺栓全部达到设计紧力。 2.2.7全实缸验收汽封间隙,务必使90%以上汽封间隙达到拟定标准后,方可进行下一步工序工作。 2.2.8在全实缸验收合格后,务必严格按照汽轮机厂膨胀间隙标准,调整缸内各部套及汽封圈膨胀间隙。 2.2.9对汽封调整质量进行全过程监督、把关,做到关键节点、控制点100%检查、验收合格。 2.2.10汽轮机本体所有通流部分汽封安装、调整后,必须严格按照下列程序验收:安装或调整工作负责人验收→安装或调整单位技术负责人验收→公司质保部验收→监理、业主验收→国电东北分公司专家组验收→国电集团汽机专业组验收。 3、汽封调整过程控制 3.1为了确保汽封间隙调整的准确性,避免因各部件结合面不严密造成漏汽损失,避免部件存在变形造成汽封间隙不规律变化,首先,我们空合了各个部套上下半,并逐个进行认真地检查、测量、验收、记录,消除结合面间隙;其次,合缸检查汽缸垂弧及变形情况,防止因垂弧、变形过大引起汽封间隙的较大变化,现场采用空扣缸拉钢丝测量汽缸垂弧和变形量的方法,准确掌握汽缸垂弧和变形对汽封间隙的影响,更加真实的反映全实缸状态下的汽封间隙。 3.2测量方法:利用汽缸两端的轴承座固定一根工字钢,纵贯汽缸,并在工字钢上装设百分表,表针指向各级隔板槽及轴封洼窝处,测量记录百分表数值;然后,合上半缸,紧完汽缸中分面螺栓后,每道隔板槽处均有不同程度抬升,与汽缸的挠曲曲线一致,测量记录各级隔板槽及轴封洼窝处抬升量,得出了一条近似于挠曲曲线的汽封调整修正值曲线,并且根据此修正值曲线,在半实缸状态下对汽封间隙进行调整。 3.3隔板、动叶、轴封、汽封轴向间隙的准确性,关系到汽轮机差胀限值问题,如果测量调整失误,将使机组发生动静碰擦,并产生严重的后果,检查高中压转子和低压转子围带轴向错口情况,将高中压转子和低压转子分别调整到制造厂给出的K值位置,用塞块、楔形塞尺测量、记录每一级叶轮、汽轴封高齿的前后两侧轴向间隙,对照制造厂标准和总装记录进行一一对应的比较,通过我们现场实际测量,发现部分轴向间隙超标,经厂家确认现场不需处理。轴向间隙是影响机组经济性一个重要原因,因此轴向间隙超标,必须及时反馈。必要时,调整K值或返厂加工、消缺;

高中压缸联合启动

百万机组之高中压缸联合启动 题注:上海产汽轮机和发电机;哈尔滨锅炉,采用微油方式。两台汽泵。发电机有刷励磁。 汽轮机DEH采用西门子公司的SPPA-T3000,该系统包括汽轮机的自启动、应力、转速控制以及在线试验、ETS保护系统等功能。不知是出于知识产权保护还是德国人严谨作风,汽机冲转过程步骤和内容过于复杂了。从百万机组控制系统来看,西门子仍然有它的不足之处。 操作任务:____号机组冷态启动操作票 锅炉汽水分离器金属壁温左:1:2:3:4: 右:1:2:3:4: 汽轮机高压转子温度:内表面:中间层:外表面: 汽轮机中压转子温度:内表面:中间层:外表面: 汽轮机高压缸金属温度:100%:50%:。 高压主汽阀金属温度:100%:50%:。 调阀金属温度:100%:50%:。 1 启动前准备 1.1 接值长机组启动命令后,各有关岗位准备好操作工器具及有关仪器、报表,检查机组所有检修工作全部结束,各系统及设备均处于完好状态,机组符合启动及并网要求。 1.2 检查机组各厂用变压器投运正常,6kV、380V厂用电系统已恢复正常运行方式,各电源联锁投运正确,DC115V、DC230V、UPS系统运行正常。 1.3 联系热工,送上热工电源,并开足仪表一次阀,检查各信号状态及参数显示与实际相符,声光报警正常,各控制、操作开关良好。 1.4 送上各电动阀电源。并联系热工送上气动阀气源, 并进行试转,均应灵活无卡涩现象,开关方向及限位正确。 1.5 完成各系统启动前的检查,将各系统阀门置于“阀门检查卡”要求状态,投用就地各液位计且正常。 1.6 热工完成主、辅设备启动前的试验且正常可靠,确认锅炉、汽机保护全部投入。 1.7 发变组保护,厂用电保护传动实验合格。确认发变组保护,厂用电保护全部投入。 1.8 机组大联锁试验合格。 1.9 检查各油箱及各辅机轴承油位正常,油质合格。 1.10 确认消防正常投入,烟感报警系统运行正常。 1.11 燃料系统检修工作结束,通知各煤仓上煤。 1.12 按照工业水系统启动检查卡检查完毕,工业水系统投入。 1.13 联系化学制水,向500t水箱进水至高位并化验水质应合格。 1.14 通知灰控投入冷渣水泵,建立炉底水封。电除尘可靠备用,输灰系统投入。 1.15 确认锅炉四管泄漏监测系统投运正常,各探头冷却风投入。 1.16 机组各转动机械润滑油、控制油油质化验已合格。 1.17 检查确认循环水、开式水系统运行正常。 1.18 检查确认闭冷水系统运行正常。 1.19 检查确认圧缩空气系统运行正常。 1.20 检查汽机EH油系统、旁路油系统运行正常。 1.21 主机润滑油系统运行正常:启动一台主机润滑油泵,并投入自动。 1.22 检查发电机密封油系统运行正常。

汽轮机汽封间隙测量及调整方法

一、汽封的结构及原理 汽轮机的汽封主要包括隔板汽封,叶顶(围带)汽封和轴端汽封。汽封的工作原理主要是利用截面变大、蒸汽膨胀,使得压力变小,经过多次截面变大,压力变小,使得蒸汽压力与轴封蒸汽压力相等,停止向外流动,轴封蒸汽压力平衡仍然利用截面变大、压力变小的原理,经过冒汽封之后,使轴封压力与大气压力相等,不再外漏。通过实践证明,高压缸前汽封间隙每增加0.10mm,轴封漏汽量就会增加1-1.5t/h;高压部分各级隔板汽封间隙每增加0.10mm,级效率将降低0.4%-0.6%,如果隔板汽封漏汽量增加,转子的轴向推力将加大,在一定程度上会影响汽轮机的安全运行。因此,汽封间隙必须按照设计标准进行调整,而调整之前准确的测量汽封间隙就成了前提条件。 二、汽封间隙的测量方法 1.用塞尺测量汽封间隙: 塞尺测量汽封间隙是一种最直接而又准确的方法,但是只适合测量可以看见的部位,主要包括下半结合面两侧和轴端汽封最外一圈等。在测量中分面两侧汽封齿径向间隙时,在汽封块背弧处用一个特制的工具将其楔死,防止塞汽封间隙时,汽封块发生退让,产生假间隙。测量时应一个齿一个齿的测量,并按顺序作好记录。在测量之前,转子应放在工作位置,即转子推力盘要靠死推力轴承工作面,且K值符合设计要求。根据汽封块的大小和宽窄选择合适规格的塞尺,尽量往深处测量。发生卡涩时先检查汽封块是否有毛刺,以免测量不准确。测量高低齿时如果塞尺太宽不能塞入时可将塞尺裁成比齿间轴向间隙略小的专用塞尺,但裁完后要将每片打磨干净,不得有卷边和毛刺等,以免测量误差过大。 2.用压铅丝法测量汽封间隙: 在测量汽封间隙时,为了能够全面、真实的反映汽封间隙情况,所以采用压铅丝的方法测量。根据不同的汽封间隙要求选择合适的铅丝(铅丝太粗会造成阻力大压出来不准确, 而铅丝太细会发生间隙过大时压不着,而造成不知调整量的情况),并用胶布粘放在汽封齿(整圈)上。 压铅丝法测量汽封的步骤: 1)前期准备。如果弹簧片的弹力较小,压之前需要用竹楔或木楔之类的东西将汽封块背死以防止汽封块退让而使压出的痕迹不准确; 2)铅丝的选择。由于目前的汽封齿加工都比较规范,我的经验就是选择比汽封间隙要求的最大值粗0.5mm左右的铅丝 3)铅丝的放置。放置时铅丝与汽封块要贴牢,在高低齿的汽封上放置时更应注意不能将铅丝用力在上面用手按,应提前按照高低齿的形状做好所用的铅丝再放到位,然后用粘度较大的胶布把铅丝两头长出的部分弯折并与汽封块侧面贴; 4)过程中的注意事项。吊入转子之前一定要将转子按照工作扬度找平后才可放入,并且吊入过程中一定保持转子平稳、位置合适,落入轴瓦时为了避免发

相关文档