文档库 最新最全的文档下载
当前位置:文档库 › 飞行导引系统低速保护功能设计

飞行导引系统低速保护功能设计

飞行导引系统低速保护功能设计
飞行导引系统低速保护功能设计

飞行导引系统低速保护功能设计

摘要根据现代商用飞机对低速保护功能的要求,分析了飞行导引系统低速保护模式在商用飞机上的设计需求以及考虑实际飞行条件下的约束条件,对计算低速保护功能激活阈值的参数进行了合理选择,并给出关键参数的计算公式,同时基于高度和速度包线确定了低速保护模式的工作区间和激活条件,合理有效地设计了低速模式的工作条件。

关键词飞行导引;低速保护;系统需求;约束条件;

0 引言

当代具有高度自动化控制系统的商用飞机都具有包线保护功能以减小飞行员在某些特殊飞行条件下的工作负担,特别是在某些低速飞行条件下的低速保护功能显得更为重要。同时在之前商业航班运行中也有相关由于没有低速保护和告警功能而引起的的民航事故。

美国运输安全委员会(NTSB)对以往几十年与飞行导引系统相关的空难事故调查提供给联邦航空局(FAA)多份安全建议报告。基于NTSA的报告联邦航空局民航条款制定咨询委员会下成立的飞行导引协调工作组随后提交报告,完成了对FAR25.1329的修正[1]。

1低速保护功能的系统需求

商用飞机飞行导引系统提供低速保护功能(USPD),而低速保护模式的触发条件和工作逻辑设计需求应该考虑多种因素,进而满足相关25部条款和相应咨询通报的要求。联邦航空规章25.1329中提出当飞行导引系统使用时,飞行导引系统必须提供一种手段以避免超出正常飞行的速度包线,如果飞机已经超出正常速度包线,必须提供一种手段阻止飞行导引提供导引使飞机进入不安全的速度。

考虑到对条款和咨询通报符合性的理解以及对低速保护功能目的的确定,可以认为低速保护是避免飞机进入失速,在失速告警前进行的一种告警功能。

1.1 低速保护功能的设计要求

对于飞行导引系统中的速度保护功能设计标准可以通过以下方式实现。

飞行导引子功能之间的配合以及俯仰和推力控制的结合,速度保护的设计应该考虑速度保护应该怎样且何时结合自动驾驶仪、飞行指引和自动油门各自的功能起到速度保护的作用。应该考虑使用合适的阈值来激活和退出速度保护,而不能使这种进入和退出速度保护成为一种对飞行机组的干扰[2]。

1.2低速保护功能设计约束条件

声音引导系统(完整版)

2009全国大学生电子设计竞赛题目B: 《声音导引系统》 参赛学生: 指导教师: 学校:临沂师范学院 院系:信息学院

目录 一、设计任务与要求 (1) 二、系统整体设计方案比较与选择 (1) 三、设计与论证 (1) 1、电机运行速度设计 (1) 2、误差信号的产生 (2) 3、控制理论简单计算 (2) 四、电路设计 (2) 1、系统整体设计框 (2) 2、单元电路设计 (3) 1)可移动声源及声音接收器 (3) 2)电机驱动电路设计 (4) 3)无线收发模块 (5) 3、电源设计 (5) 五、软件设计 (6) 六、运行情况测试 (7) 1、声源速度测试 (7) 2.测试方法 (7) 3.测试数据 (7) 4.误差分析 (8) 七.设计总结 (8) 八.参考文献 (8) 九. 附录 (8) 十、结束语 (13)

声音导引系统设计与总结报告 摘要: 本文描述了声音导引系统的设计原理和实现方法。该系统由AT89S52单片机控制,双直流电机双轮驱动小车。通过NEC公司的ASSP电机控制芯片和单片机之间的串行通信实现可移动声源的运动。主控制器利用不同声音接收器间产生的误差信号,并用无线通信方式将此误差信号传输至可移动声源,引导其运动。到达目的地,发出声光信号。系统最大特点在于软件设计采用层次化、模块化的设计方法,使得复杂数学模型和控制算法得以简化和快速开发。经调试和测试,系统各项性能参数已基本达到设计指标。且本系统在设计中注意低功耗处理和力求高性价比等细节。 关键词: 声音导引 89S52单片机 ASSP芯片算法 Abstract T his system use two STC12C5A60S2 enhanced 51-series microcomputer, double dc motor drive car outfit. Through different voice signal method-the peak-trough received from various terminal, the car of distance, through wireless transmission module control vehicle, and control chip car movement, destination, a sound signal. This system in the design of low power consumption and high performance to such details.

飞行控制系统

飞行控制系统 为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案。为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统。与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗。多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台。 关键词:无人机;飞行控制系统;SmartFusion芯片;μC/OS-Ⅱ 0 引言 飞行控制系统是无人机的重要组成部分,是飞行控制算法的运行平台,它的性能好坏直接关系着无人机能否安全可靠的飞行。随着航空技术的发展,无人机飞行控制系统正向着多功能、高精度、小型化、可复用的方向发展。高精度要求无人机控制系统的精度高,稳定性好,能够适应复杂的外界环境,因此控制算法比较复杂,计算速度快,精度高;小型化则对控制系统的重量和体积提出了更高的要求,要求控制系统的性能越高越好,体积越小越好。此外,无人机飞行控制系统还要具有实时、可靠、低成本和低功耗的特点。基于以上考虑,本文从实际工程应用出发,设计了一种基于SmartFusion的无人机飞行控制系统。 1 飞控系统总体设计

飞行控制系统在无人机上的功能主要有两个:一是飞行控制,即无人机在空中保持飞机姿态与航迹的稳定,以及按地面无线电遥控指令或者预先设定好的高度、航线、航向、姿态角等改变飞机姿态与航迹,保证飞机的稳定飞行,这就是通常所谓的自动驾驶;二是飞行管理,即完成飞行状态参数采集、导航计算、遥测数据传送、故障诊断处理、应急情况处理、任务设备的控制与管理等工作。 飞行控制系统主要完成3个功能任务,其层次构成为三层:最底层的任务是提高无人机运动和突风减缓的固有阻尼——三个轴方向的阻尼器功能;第2层的任务是稳定无人机的姿态角——基本驾驶仪的功能(主要进行角运动控制);第3层的任务是控制飞行高度、航迹和飞行速度,实现较高级自动驾驶功能。飞行控制系统原理框图见图1。 由上述分析易知,飞行控制系统主要由飞行控制器、传感器(或敏感元件)、舵机3部分组成。无人机飞行控制系统的基本架构如图2所示。

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

B题 声音导引系统 (四川.西南科技大学)

声音导引系统 西南科技大学姜军周仁彬丁华建 赛前辅导教师:张华文稿整理辅导教师:王姮梁艳阳 摘要:系统以A VR系列Mega88为主控模块,采用NEC的电机控制芯片MMC-1控制L298N,实现可移动声源的运动控制。主控模块通过PWM控制L298N驱扬声器发音,同时接收接收器反馈的声源位置信息,经滤波处理并计算出声源当前的位置以及得到新的运动方向后,通过PID位置控制算法控制步进电机实现可移动声源的高速高精度声音引导定位。 关键字:声音引导,运动控制,PID算法 Abstract: The designed system realizes the motion control of the mobile sound source based on main process unit (MPU) A VR Mega88 MCU and NEC’s motor control chip MMC-1 controlling L298N chip. The MPU controls L298N by PWM method to drive the speaker, receiving feedback information from the receiver, and calculate the sound source’s current location and the moving direction after information filtering. Afterward, the high-speed high precision steering control according to sound source can be implemented through the PID control for stepping motor. Keywords: guide by sound, motion control, PID algorithm. 1 系统方案设计 1.1 系统方案 根据题目的功能及参数要求,本系统基本结构示意图如图1所示。 图1 系统结构示意图 声源检测、主控模块、电机驱动及信号无线传送方式等的方案选择情况如下:1)声源检测:(方案一)用运算放大器将拾音器输出的微弱电信号放大,用LM393比较器产生方波信号,以触发单片机中断,但由于有较多的干扰信号,使音频信号无法正确提取,还会至使控制器死机。(方案二)用驻极体话筒作为拾音器,经KIA4558运算放大器前级滤波放大、KIA4558组成二阶有源带通滤波器

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

声音引导装置

目录 一、系统方案 1.声源S位置的计算 2.声音的收发与处理 3.无线收发模块 4.电机控制模块 5.声音收发系统的选择与制备 6.声光显示模块 二、系统的设计与实现 三、测试结果 四、结果分析 五、结束语 参考书目

声音引导系统(B题) 摘要:本系统以两片STC89C52RC做为控制核心,采用小音箱作为声源,能实现声源的大功率输出。用驻极体麦克风作为接收器并经过放大电路及三极管开关电路实现有声音时输入单片机高电平的目的,从而实现距离差的判断。采用机械波式无线收发模块,实现两个单片机的数据传送。 关键词:声音引导,STC89C51,ASSP控制芯片,驻极体麦克风 一、系统方案 1.声源S位置的计算 方案一:以A为原点,AB、AC分别为x轴、y轴建立坐标系。当S发出声音信号后,分别经过Δt1、Δt2、Δt3到达A、B、C三点并接收,经过一定的处理后可以计算出SA与SB、SA与SC得距离差ΔL1、ΔL2,可知其为两条双曲线。这样只通过发射一次声波信号就能计算出曲线的轨迹,得到交点,即当前声源S所在的坐标位置。这样理论上小车就能够直接走到W点。但此种方案对CPU的要求太高,运算时间长,容易导致单片机故障。 方案二:在ABC三点的接收信号传到单片机B,声源的控制CPU为单片机A。当系统启动时,单片机A开始计数同时发送指令时单片机B也开始计数。从声源发出声音道单片机B接收到声音经过了时间T,利用s=vt就可以得出声源到ABC的距离了。从而确定声源的坐标。此方案可以较精确的得出声源距ABC各自的距离,但所用的硬件设备较多,整系统的调试繁琐。 方案三:先忽略SA与SC之间的距离差。只比较SA与SB的距离差,当差为正时,小车向A的方向走,当为负时小车向B的方向走。当走到OX线时SA与SB得差为0,声源在原地停止5s~10s,然后比较SA与SC得距离差,操作同上。这样就可以使声源走到W处。此方案配合利用实时控制算法PID可以达到较好的效果,而且程序量小,所需的硬件设备很少。 方案选择:经过以上比较,我们选择了方案三。 2.声音的收发与处理 在A、B、C处分别放置三个麦克风A、B、C用以接收声音信号。 方案一:采用音频运放再经过施密特整形后进行逻辑运算的方法,进行相位差的计算。这样就能通过相位差来计算SA、SB、SC之间的距离,进而通过比较哪个大来进行相应的电机控制。 方案二:通过比较A、B及A、C接收到信号的时间差的正负来判断S距A、B、C哪个更远些,进而控制电机往相应的位置行走。此方案不需要很多的外围电路及程序设计,且可行性高。缺点是比较难达到比赛所要求的平均速度。 方案选择:鉴于硬件准备的不足及相应知识的缺乏,我们选择了方案二,以实现声源能够到达W点为最高目的。 3.无线收发模块 方案一:采用电磁波作为无线传输方法,如采用APC200A-43。APC200A-43模块是高度集成半双工微功率无线数据传输模块,其嵌入高速单片机和高性能射频芯片。采用高效的循环交织检错编码,抗干扰和灵敏度都大大提高,最大可以纠24bits连续突发错误。但其价格特高,如果邮购每片达100元,且程序调试复杂,烧写困难。 方案二:采用机械波作为无线传输的方法,即通过声波。让单片机B控制音响发声作为无线信号,在移动声源S上也安装一个麦克风作为无线接收装置。当SA和SB相等时,由单片机B控制的音响发声,使单片机A上的麦克风接收到信号,电机停止转动。

基于单片机的声音导引自动定位系统设计

第13卷 第1期2011年1月 大连民族学院学报 Journa l of Dalian N ationalitiesU niversity V o.l 13,N o .1January 2011 收稿日期:2010-04-13;最后修回日期:2010-10-11 指导教师:陈兴文(1969-),男,辽宁锦州人,教授,主要从事计算机控制及教学管理研究。 文章编号:1009-315X (2011)01-0093-01 基于单片机的声音导引自动定位系统设计 艾青楠,金成宰,宋海波 (大连民族学院创新教育中心学生,辽宁大连116605) 中图分类号:TN919 文献标志码:A 1 理论算法分析 距离远的接收器一定比距离近的接收器后接收到信号[1]。如图1中当移动小车声源从OX 线右侧开始运动后,实时判断A 、B 两点接收到的音频脉冲信号的时间差,当时间差为零时,说明声源到A 、B 两点的距离相同。同理可以利用接收器A 、C 实现移动声源离目标Y 方向的位置。 图1 系统示意图 2 系统的软硬件设计 系统硬件结构如图2,其中电机控制采用NEC 公司的 A SSP 芯片,电机驱动采用两片M C33886芯片实现,采用P WM 技术控制;声音接收器利用SPCE061A 中集成的音频输入专用ADC 以及AGC 放大电路,移动小车声源利用SPCE061A 内置的DAC 和外接的功放实现脉冲音频信号输出;无线数据传输模块利用R F2401 B 实现移动小车声源与接收器之间的数据传输[2]。移动小车声源及接收端程序流程图如图3。 图2 硬件系统方框图 3 实验测试 当移动声源到达OX 轴后停留8s 再转向到达W 点, 对启动点到W 点的距离和响应时间进行测试,结果见表 1。测量平均定位误差为2.10c m,速度可以达到10c m s -1。 图3 软件程序流程图 表1 再次启动到达W 点的响应时间 再次启动点与W 点的距离/c m 433846第1次响应时间/s 4.094.05 4.33第2次响应时间/s 4.123.72 4.18第3次响应时间/s 3.973.44 4.24平均响应时间/s 4.063.74 4.41平均速度/(c m s -1)10.5910.1610.72平均定位误差/c m 2.40 1.60 2.30 系统利用无线通信技术和凌阳单片机语音处理技术实 现了移动声源与接收端之间的数据传送和采集和处理,可实现移动声源的自动定位功能,系统满足定位误差、定位速度等要求。 参考文献: [1]韦作凯,杜秋,臧晓明,等.基于单片机实现触摸屏的实 时数据采集[J].大连民族学院学报.2008,10(5):479.[2]彭传正,林春景.凌阳单片机原理与实践[M ].北京:北京航空航天大学出版社,2006 (责任编辑 刘敏)

5.1音效系统及组建使用教程

目录 什么是5.1声道?........... 相信很多人都不太了解! .. (2) 5.1声道表现的效果为: (2) 那么我们要怎样实现完整的5.1声道效果呢? (2) 5.1声道音响设备包括: (2) 怎么识别播放设备是否支持5.1声道? (2) 5.1音箱连接: (3) 5.1摆放示意图: (4) Realtek HD音频管理器声卡设置(5.1调试设置): (4) 1、调出Realtek HD音频管理器 (4) 2、XP系统下Realtek HD音频管理器面板: (4) 3、WIN7/WIN8系统下Realtek HD音频管理器面板: (6) 哈曼卡顿5.1试音碟 (6) nrg文件播放方法 (7) Realtek声卡型号及驱动 (7) 声音设置原理: (8)

什么是5.1声道?........... 相信很多人都不太了解! 5.1声道是指中央声道,前置左、右声道,后置左、右环绕声道,以及所谓的0.1声道重低音声道。 5.1声道表现的效果为: 中央声道喇叭,负责再生配合屏幕上的动作,大部分时间它是负责人物对白的部分;前置左、右声道喇叭,则是用来弥补在屏幕中央以外或不能从屏幕看到的动作及其他声音;后置环绕音效喇叭是负责外围及整个背景音乐,让人感觉置身于整个场景的正中央。万马奔腾的震撼、飞机从头顶呼啸而过的效果,就是由它所赐;而马达声、轰炸机的声音或是大鼓等震人心弦的重低音,则是由重低音喇叭一手包办。这套系统的优点在于可获得更清晰的前面声音、极好的音场形象和更宽阔的音场以及真实的立体环声,从而可以聆听到前所未有的背景中的细微声音移动。 那么我们要怎样实现完整的5.1声道效果呢? 首要条件是要有一套5.1声道音响设备。其次是播放设备支持5.1声道(大多电脑和播放器都支持),最后是有带5.1音效的音源(高清无损或蓝光电影,3D游戏,无损音乐等)。 5.1声道音响设备包括: 2个前置音箱、2个后置音箱、1个中置环绕、 1个重低音炮,这五个声道相互独立,其中“.1” 声道,则是一个专门设计的超低音声道。 如:漫步者R151T(低端) ¥299元; 漫步者R351T07(中低端) ¥599元; 漫步者R501TIII (中端) ¥899元; 漫步者C6XD(中端) ¥1399元; 漫步者DA5100(中高端) ¥1799元; 漫步者S5.1Pro(高端无解码)¥2999元; 漫步者S5.1MKII(高端支持解码)¥3799元. (价格为现阶段全国统一网络售价,在此感谢天猫毅飞数码专营店技术支持。) 怎么识别播放设备是否支持5.1声道? 电脑识别:

声音导引系统 (电子设计大赛)

电子设计竞赛 声音导引系统 作者:王一鸣范春辉陈昌曼 设计单位:天津工业大学2009年9月5日

声音导引系统 摘要:简易智能电动车由一个电动玩具车改造而成。系统的控制部分以单片机为核心,步进电机为驱动装置,通过发出周期性脉冲音频信号,对A,B,C,三个声音接收器的信号的采集、分配,处理,并反馈至电动车的核心单片机部分,进而实现功率放大,反馈所需要的执行命令至步进电机,较好地实现了电动车的驱动及转向电机的运动控制和相关信息的处理和声光显示。 关键词:电动车,传感器,驱动控制,无线语音收发,音频引导,液晶显示,声控功能

本系统要求设计并制作一声音导引系统,示意图如图1所示。 图1 系统示意图 S 可移动声源 图中,AB与AC垂直,Ox是AB的中垂线,O'y是AC的中垂线,W 是Ox和O'y的交点。 声音导引系统有一个可移动声源S,三个声音接收器A、B和C,声音接收器之间可以有线连接。声音接收器能利用可移动声源和接收器之间的不同距离,产生一个可移动声源离Ox线(或O'y线)的误差信号,并用无线方式将此误差信号传输至可移动声源,引导其运动。 可移动声源运动的起始点必须在Ox线右侧,位置可以任意指定。1.基本要求

(1)制作可移动的声源。可移动声源产生的信号为周期性音频脉冲信号, 如图2所示,声音信号频率不限,脉冲周期不限。 (2)可移动声源发出声音后开始运动,到达Ox 线并停止,这段运动时间 为响应时间,测量响应时间,用下列公式计算出响应的平均速度,要求平均速度大于 5cm/s 。 (3)可移动声源停止后的位置与Ox 线之间的距离为定位误差,定位误差小于3cm 。 (4)可移动声源在运动过程中任意时刻超过Ox 线左侧的距离小于5cm 。 (5)可移动声源到达Ox 线后,必须有明显的光和声指示。 (6)功耗低,性价比高。 2.发挥部分 (1)将可移动声源转向180度(可手动调整发声器件方向),能够重复基本要求。 (2)平均速度大于10cm/s 。 (3)定位误差小于1cm 。 (4)可移动声源在运动过程中任意时刻超过Ox 线左侧距离小于2cm 。 (5)在完成基本要求部分移动到Ox 线上后,可移动声源在原地停止5s ~ 10s ,然后利用接收器A 和C ,使可移动声源运动到W 点,到达W 点以后,必须有明显的光和声指示并停止,此时声源距离W 的直线距离小于1cm 。整个运动过程的平均速度大于10cm/s 。 图2 信号波形示意图 可移动声源的起始位置到Ox 线的垂直距离 响应时间 平均速度=

QFT飞行控制系统设计

QFT 飞行控制系统设计 4.1 引言 在飞控系统中,被控对象(如直升机等)往往是非常复杂的多输入多输出系统,具体表现为非线性、时变、高度耦合、高阶、不稳定、模型不确定性等。因此,这对设计一个覆盖整个飞行包线的控制器带来相当大的难度。目前,国内外设计全包线控制器一般有以下几种方法: 增益调度(gain scheduling )、非线性动态逆(Non-Linear Dynamic Inversion )、定量反馈理论(QFT )、自适应控制(AC )等。其中,国内外大多数采用增益调度方法。 本章将介绍一种工程上较为容易实现的强鲁棒控制理论—定量反馈理论(QFT )。重点介绍了MIMO 系统设计QFT 控制器的原理和一般步骤。 4.2 MIMO 系统的QFT 控制器设计概述 定量反馈理论(QFT )是以色列人Horowitz 教授提出的一种强鲁棒控制理论,它针对当对象具有不确定性和存在干扰的情况下,如何利用反馈信息设计出满足一定要求的控制系统这一问题而提出的。QFT 的最初发展首先研究具有不确定性的线性时不变单输入单输出系统(LTI/SISO ),如图4.1所示。其中,P 为不确定控制对象,r 为指令输入,y 为系统输出,1d 和2d 分别表示输入干扰和输出干扰,G 和F 为要设计的控制器和前置滤波器。随着QFT 的理论研究的深入,进一步推广到多输入多输出、非最小相位/不稳定、时变及非线性等系统。LTI/SISO 系统是QFT 研究的基础,而其他的MIMO 系统等都可以通过数学变化转化为等效的LTI/SISO 系统,再进行设计。 y 图4.1 SISO 系统的QFT 控制框图 MIMO 系统QFT 研究的重点就是如何有效地将原控制系统转化成一组等效的MISO 系统,从而可以运用相对成熟的SISO 系统QFT 设计分析,这也是MIMO 系统QFT 设计相比较与SISO 系统设计的最大特点。图4.2给出了两输入两输出系统的等效过程。可以看出原系统是22?系统,等效后变成了4个结构类似的21?子系统。每个系统都有两个输入端,一个输出端。两个输入分别是指令输入和由各子系统之间耦合作用引起的输入,即“干扰”输入。 然后,就可以对每个子系统采用SISO 系统的QFT 设计方法设计对应的控制器。最后,将各子系统的设计结果综合起来就是原系统的设计结果。

2009年全国大学生电子设计大赛题目(全)

光伏并网发电模拟装置(A 题) 【本科组】 一、任务 设计并制作一个光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S 和电阻R S 模拟光伏电池,U S =60V ,R S =30Ω~36Ω;u REF 为模拟电网电压的正弦参考信号,其峰峰值为2V ,频率f REF 为45Hz~55Hz ;T 为工频隔离变压器,变比为n 2:n 1=2:1、n 3:n 1=1:10,将u F 作为输出电流的反馈信号;负载电阻R L =30Ω~36Ω。 R L U S 图1 并网发电模拟装置框图 二、要求 1.基本要求 (1)具有最大功率点跟踪(MPPT )功能:R S 和R L 在给定范围内变化时, 使d S 1 2 U U =,相对偏差的绝对值不大于1%。 (2)具有频率跟踪功能:当f REF 在给定范围内变化时,使u F 的频率f F =f REF , 相对偏差绝对值不大于1%。 (3)当R S =R L =30Ω时,DC-AC 变换器的效率η≥60%。 (4)当R S =R L =30Ω时,输出电压u o 的失真度THD ≤5%。 (5)具有输入欠压保护功能,动作电压U d (th )=(25±0.5)V 。 (6)具有输出过流保护功能,动作电流I o (th )=(1.5±0.2)A 。 2.发挥部分 (1)提高DC-AC 变换器的效率,使η≥80%(R S =R L =30Ω时)。 (2)降低输出电压失真度,使THD ≤1%(R S =R L =30Ω时)。 (3)实现相位跟踪功能:当f REF 在给定范围内变化以及加非阻性负载时,

均能保证u F 与u REF 同相,相位偏差的绝对值≤5°。 (4)过流、欠压故障排除后,装置能自动恢复为正常状态。 (5)其他。 三、说明 1.本题中所有交流量除特别说明外均为有效值。 2.U S 采用实验室可调直流稳压电源,不需自制。 3.控制电路允许另加辅助电源,但应尽量减少路数和损耗。 4.DC-AC 变换器效率o d P P η= ,其中o o1o1P U I =?,d d d P U I =?。 5.基本要求(1)、(2)和发挥部分(3)要求从给定或条件发生变化到电路 达到稳态的时间不大于1s 。 6.装置应能连续安全工作足够长时间,测试期间不能出现过热等故障。 7.制作时应合理设置测试点(参考图1),以方便测试。 8.设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、 主要的测试结果。完整的电路原理图、重要的源程序和完整的测试结果用附件给出。

声音引导系统

声音导引系统 中文摘要:本系统为实现以声音引导小车按预定方案运行而设计。系统采用51最小系统板作为此系统的检测核心和控制核心,通过对声音信号的检测,准确实现小车坐标定位,并通过无线发射接收模块将坐标信息传送至车载MCU,实现小车的声音引导控制。小车无线传输模块采用集成nrf24l01模块,以期实现坐标信息实时无线传输。电机驱动、控制模块采用ASSP芯片以及分离MOS管H桥电路使电机的控制精确、稳定。声音检测模块则采用多级放大滤波电路接收三路声音信号准确检测,并将此信号传送至地面控制MCU进行坐标定位。 1 系统方案设计 1.1 AT89S52系列单片机系统方案 采用两块AT89S52单片机系统,车载单片机实现声音信号的发送,无线信号的接受,以及电机驱动芯片的控制。陆基单片机完成三路声音信号捕获,处理并将小车坐标信息通过无线发射。系统编程容易,性价比高。 1.2 MSP430单片机系统方案 采用MSP430单片机系统作为控制的核心,来实现智能小车无线传输、声音处理、电机驱动等功能。 1.3系统方案比较 AT89S52系列单片机系统方案价格低廉,技术比较成熟,使用简单,应用广泛,而且能较好的实现系统的要求。MSP430系统方案功耗虽然较低,但编程比较复杂,价格昂贵,因而,决定采用该方案1。 1.4 AT89S52单片机系统方案设计 本设计采用AT89S52单片机作为核心控制系统,以直流电机为驱动,结合无线、声音处理模块完成设计任务。系统可以划分为以下几个基本模块:无线数据传输、小车控制、声音检测处理、信息显示模块。系统设计框图如图: 图1.0系统方案框图 1.5 方案选择 (1)电机驱动模块

2009年全国电子设计大赛B题—声音导引系统

编号:01 2009全国大学生电子设计竞赛题目B: 《声音导引系统》

目录 1方案设计与论证 (2) 1.1主控系统选择 (3) 1.2电机选择 (3) 1.3电机控制系统选择 (3) 1.4无线数据通信模块选择 (3) 1.5声音信号处理方案选择 (3) 2电路设计 (3) 2.1系统组成 (4) 2.2音频发射 (4) 2.3音频处理 (4) 2.4电机控制系统 (5) 3软件设计 (5) 4系统测试 (6) 4.1测试仪器 (6) 4.2测试方法 (6) 4.3测试数据 (7) 4.4误差分析 (7) 5设计总结 (7) 6参考文献 (7) 7 附录 (8) 附1:部分元器件清单 (8) 附2:仪器设备清单 (8) 附3:部分程序清单 (8)

声音导引系统设计与总结报告 摘要:本系统采用两片STC12C5A60S2增强型51单片机,双直流电机双轮驱动小车。通过接收点收到声音信号时间不同,判断小车离各个接收站的距离远近,通过无线传输模块控制车载单片机,进而控制小车运动,到达目的地,发出声光信号。本系统在设计中注意低功耗处理和力求高性价比等细节。 本设计主要特点: 1. 高效的L293电机驱动电路,提高电源利用率。 2.双电源设计,控制电路电源与电机电源隔离,信号通过光耦传输。 3.采用测时间差的方式,通过3点声音信号实现精确定位。 关键词: 声音导引可移动声源声音接收器单片机智能车 Abstract T his system use two STC12C5A60S2 enhanced 51-series microcomputer, double dc motor drive car outfit. Through different voice signal method-the peak-trough received from various terminal, the car of distance, through wireless transmission module control vehicle, and control chip car movement, destination, a sound signal. This system in the design of low power consumption and high performance to such details. 1.方案设计与论证 1.1主控系统选择 方案一:采用高性能嵌入式系统,比如ARM。如果采用此方案,可以很好的解决数据处理和控制功能,但是ARM价格昂贵且本科阶段很少接触,在短时间内完成困难比较大。 方案二:采用大规模可编程逻辑器件,如FPGA,CPLD但本题属于控制类,不适合采用此方案。 方案三:采用2片高性能单片机来实现,一片用来处理音频信号接收,同时控制车载单片机,担当主控单片机。另一块作为从单片机,用来控制小车运动。 考虑到方案的可实行性和性价比,我们采用STC12C5A60S2增强型51单片机,此款单片机内部不分频,采用RISC精简指令集,可实现高速运算,存储空间大,价格低廉,性价比极高。 1.2电机选择 本题是控制类题目,所以电机的选择尤为重要。 方案一:选择普通直流电机,通过减速齿轮增大扭力,提高带负责能力。直流电机的优点是价格便宜,控制容易,但难以精确控制是其一大弱点。 方案二:选择步进电机。步进电机的特点是可以精确控制电机选择步数和角度,缺

西工大飞行控制系统总复习

总复习 第一章 飞行动力学 一、概念: 1、体轴系纵轴ox 在飞机对称平面内;速度轴系纵轴a ox 不一定在飞机对称平面内;稳定轴系纵轴ox 在飞机对称平面内,与体轴系纵轴ox 相差一个配平迎角0α。 2、俯仰角θ的测量轴为地轴系横轴g oy ;滚转角φ(倾斜角)的测量轴为体轴系纵轴ox ;偏航角ψ的测量轴为地轴系铅锤轴g oz 。 3、迎角α:空速向量在飞机对称平面内投影与机体纵轴ox 夹角。 以的投影在ox 轴之下为正。 4、β(侧滑角):空速向量v 与飞机对称平面的夹角。以v 处于对称面右为正。 5、坐标系间的关系 机体轴系b S 与地轴系g S 之间的关系描述为飞机姿态角(ψφθ、、); 速度轴系a S 与机体轴系b S 之间的关系描述为气流角(βα、); 速度轴系a S 与地轴系g S 之间的关系描述为航迹角(χμγ、、)。 6、舵偏角符号 升降舵偏角e δ:平尾后缘下偏为正0>e δ,产生低头力矩。0a δ,产生左滚转力矩 0r δ,产生左偏航力矩0

声音定位系统

2014年重庆理工大学电子设计竞赛 声音定位系统(C题)

摘要:本系统使用STM32产生频率为500Hz的正弦波信号,该信号用LM386进行功率放大及驱动后输入到蜂鸣器作为声源。接收部分使用拾音器进行接收,首先对接收的信号经过同相放大,使变化的电流信号转换为变化的电压信号。然后经过由OP07组成的有源带通滤波器,该滤波器的中心频率为 500Hz,带宽为100Hz,增益为1倍,去除周围环境的声波,滤波后的信号正好是蜂鸣器发出的声音信号。再对滤波后的两路信号经过相移检测电路,可以把滤波后的正弦波转换为方波,以便单片机STM32对相位差信号进行捕获。声源定位是通过对四个拾音器接收到相位差信号进行处理,经过一套比较完善的算法可得声源的坐标,即可进行声源定位。 关键词:500Hz 声音定位 STM32 一、系统方案

1.声音信号产生的选择 方案一:采用NE555产生频率为500Hz的方波用来作为声音信号。它的作用是用内部的定时器来构成时基电路。外部通过简单的电路可获得所得的信号。该电路搭建比较简单,原理易于理解,电路中元器件参数也比较好计算。 方案二:用单片机STM32来产生频率为500Hz的正弦波用来作为声音信号。该正弦波信号的产生实质上是将正弦波转换的到的数组存入单片机,经DA转换输出正弦波。 方案比较:方案一中,用NE555产生信源不是很稳定,波形不太规范且信号的频率不固定,这样的信号对本系统不太合适。方案二中,用软件来产生信号,该信号很稳定,是比较标准的频率为500Hz的正弦波信号,而且,产生波形比较灵活,从而为发挥部分做好准备。因此选择方案二。 2.声源的选择 方案一:采用低音扬声器作为声源。扬声器是一种把电信号转变为声信号的换能器件。将单片机产生的频率为500Hz的信号接在扬声器的接收端,扬声器能发出强度比较大的声音信号。 方案二:采用无源蜂鸣器作为声源。无源蜂鸣器在提供一定频率的正弦波震荡源时,能够发出声音。试验中用无源蜂鸣器发声时,声音比较清晰,但声音强度比扬声器稍弱。 方案比较:这里选择方案二。 3.滤波方案的选择 方案一:用RC无源滤波器。通过计算可以较方便的通过匹配电阻电容得出所需要的通频带。该滤波电路抗干扰性较强,有较好的低频特性,并且选用标准的阻容元件易得。 方案二:用有源滤波器。有源滤波器是利用可关断电力电子器件,产生与负荷电流中谐波分量大小相等、相位相反地电流来抵消谐波的滤波装置。

(hxn2)声音导引系统

甘肃省大学生电子设计大赛设计报告 题目:声音导引系统 院校:甘肃省河西学院 参赛学生姓名:吉彦平尹喜金梅艳 指导教师:顾建雄南雅公黄小娜

摘要:本文对声音引导系统的整体设计方案进行了全面的分析,主要分为四个部分:声源设计、声音发射、声音信号接受和指令信号的产生与发射,以及ASSP芯片(型号MMC-1)控制声源运动。设计作品基本满足各项技术指标。 关键词:无线信号传输红外传感器ASSP芯片(MMC-1)

1 系统方案 1.1设计要求 1.1.1 基本要求 (1)制作可移动的声源。可移动声源产生的信号为周期性音频脉冲信号,如图1所示,声音信号频率不限,脉冲周期不限。 (2)可移动声源发出声音后开始运动,到达Ox 线并停止,这段运动时间为响应时间,测量响应时间,用下列公式计算出响应的平均速度,要求平均速度大于 5cm/s 。 (3)可移动声源停止后的位置与Ox 线之间的距离为定位误差,定位误差小于3cm 。 (4)可移动声源在运动过程中任意时刻超过Ox 线左侧的距离小于5cm 。 (5)可移动声源到达Ox 线后,必须有明显的光和声指示。 (6)功耗低,性价比高。 1.1.2 发挥部分 (1)将可移动声源转向180度(可手动调整发声器件方向),能够重复基本要求。 (2)平均速度大于10cm/s 。 (3)定位误差小于1cm 。 (4)可移动声源在运动过程中任意时刻超过Ox 线左侧距离小于2cm 。 (5)在完成基本要求部分移动到Ox 线上后,可移动声源在原地停止5s ~10s ,然后利用接收器A 和C ,使可移动声源运动到W 点,到达W 点以后,必须有明显的光和声指示并停止,此时声源距离W 的直线距离小于1cm 。整个运动过程的平均速度大于10cm/s 。 图1 信号波形示意图 可移动声源的起始位置到Ox 线的垂直距离 响应时间 平均速度=

基于单片机的声音引导跟踪系统

第1章绪论 随着计算机技术和人工智能技术的飞速发展,使机器人在功能和技术层次上有了很大的提高。由于这些技术的发展,推动了机器人概念的延伸。通过声音导航定位,引导机器人往目的地运动,实现机器人的路线选择及较精确定位。组建基于单片机的的声音导航定位系统,完成整个系统的软硬件设计。机器人听觉定位跟踪声源系统研究是当前国际上的前沿课题。它是机器人实现智能化必不可少的一部分,是智能科学研究成果在机器人上的体现。尽管取得了一些令人鼓舞的成果,但是机器人距离实现智能化还有很长的路要走。随着脑科学、认知科学和人工智能等学科研究的发展,机器人听觉能力必将产生突破性的进展。 1.1课题研究的目的与意义 信号与信息处理学科是信息科学的重要组成部分,该学科水平的高低反映一个国家的整体科技水平。数字信号处理已在通信、声音、图像、自动控制、雷达、军事、航空航天等领域实现广泛应用。 数字信号处理的主要研究对象是声音信号和图像信号。现代技术发展中,实现智能化、数字化是控制系统的重要发展方向。而声音信号的处理是重要应用之一。滤波是声音信号处理的重要部分,其主要目的是在信号中提取有用信号,屏蔽无用的噪声。将提取的有用信号进行处理,从而控制硬件实现智能化。声音控制小车是未来智能化发展的方向之一。声音定位在人和动物的日常生活中着重要意义。通过声音导航定位,引导机器人往目的地运动,实现机器人的路线选择及较精确定位。组建基于单片机的的声音导航定位系统,完成整个系统的软硬件设计。 声音滤波电路在实际生活中有很多应用,可以通过声音的采集滤波实现对某种声音的响应,比如智能声控机器人,通过人的声音对智能机器人实现起名,控制向左、向右行走等。 1

相关文档
相关文档 最新文档